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Abstract: In this paper, an optimal higher-order iterative technique to approximate the multiple
roots of a nonlinear equation has been presented. The proposed technique has special properties: a
two-point method that does not involve any derivatives, has an optimal convergence of fourth-order,
is cost-effective, is more stable, and has better numerical results. In addition to this, we adopt the
weight function approach at both substeps (which provide us with a more general form of two-point
methods). Firstly, the convergence order is studied for multiplicity m = 2, 3 by Taylor’s series
expansion and then general convergence for m ≥ 4 is proved. We have demonstrated the applicability
of our methods to six numerical problems. Out of them: the first one is the well-known Van der Waals
ideal gas problem, the second one is used to study the blood rheology model, the third one is chosen
from the linear algebra (namely, eigenvalue), and the remaining three are academic problems. We
concluded on the basis of obtained CPU timing, computational order of convergence, and absolute
errors between two consecutive iterations for which our methods illustrate better results as compared
to earlier studies.
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1. Introduction

Finding the multiple roots of the roots of the nonlinear equation g(x) = 0 is one of
the most difficult tasks. Since the multiple roots play an important role in the areas of
Computer Science, applied Mathematics, Physics, applied Chemistry and Engineering.
For example, the Ideal Gas Law [1] describes the relationship between molecular size and
attraction forces and the behavior of a real gas. The solution of such an equation with an
analytical approach is either complicated or almost non-existent. Then, we have to focus on
iterative methods. One of the most famous iterative techniques is the modified Newton’s
method (MNM) [2,3], which is defined as

xs+1 = xs −m
g(xs)

g′(xs)
, s = 0, 1, . . . . (1)

Its order of convergence is quadratic if the multiplicity m of the required root is to be
known in advance.

The main problem of this method is the use of the first-order derivative at each substep.
There are several occasions in real life problems where finding the derivative is either quite
complicated or time consuming or does not exist. In those cases, it is always fruitful to use
a derivative free method. Thus, Traub–Steffensen [4] suggested a derivative free scheme,
which is defined by

xs+1 = xs −m
g(xs)

g[µs, xs]
, (2)
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where µs = xs + αg(xs), α 6= 0 ∈ R.
Later on, Kumar et al. [5] and Kansal et al. [6] suggested the following second-order

one point derivative free schemes:

xs+1 = xs − G(θ), θ =
g(xs)

g[µs, xs]
, (3)

and

xs+1 = xs −m
(1− a)g(µs) + ag(xs)

g[µs, xs]
, a ∈ R, (4)

respectively, where µs = xs + αg(xs), α 6= 0 ∈ R.
Since all of the above three iterative schemes are one-point, they have several issues

regarding their convergence order and efficiency (more details can be found in [2,3]). Then,
researchers turned towards multi-point derivative free methods for known and unknown
multiplicity [7,8]. Some of the important schemes are given below.

Hueso et al. [9] developed a fourth-order derivative-free method, which is given by

ys =xs − b
g(xs)

g[xs + g(xs)q, xs]

xs+1 =xs −
[

a1 + a2h(ys, xs) + a3h(xs, ys) + a4h(ys, xs)
2
] g(xs)

g[xs + g(xs)q, xs]
,

(5)

where h(ys, xs) =
g[ys+g(ys)q ,ys ]
g[xs+g(xs)q ,xs ]

and the values of other constants like q, a1, a2, a3, a4 can be
found in [9].

Baccouch [10] proposed many higher-order multi-point methods. One of the fourth-
order derivative frees is given by

xs+1 =xs −
(

m(m2 − 6m + 1)
g{2,s} + 6g{1,s} − 3g(xs)− 2g{−1,s}

)
(g(xs))

2

+ 4m2(m− 2)

(
g{1,s} − 2g(xs) + g{−1,s}

(g{1,s} − g{−1,s})3

)
(g(xs))

3

− 16m3

(
(g{1,s} − 2g(xs) + g{−1,s})

2

(g{1,s} − g{−1,s})5 −
g{2,s} − 3g{1,s} + 3g(xs)− g{−1,s}

6(g{1,s} − g{−1,s})4

)
(g(xs))

4),

(6)

where
g{1,s} =g(xs + g(xs))

g{2,s} =g(xs + 2g(xs)),

g{−1,s} =g(xs − g(xs)).

We denoted the scheme (6) by (BM).
In 2019, Sharma et al. [11] proposed the following fourth-order derivative scheme:

zs = xs −m
g(xs)

g[vs, xs]
,

xs+1 = zs − H(ts, ys)
g(xs)

g[vs, xs]
,

(7)

where vs = xs + βg(xs), ts =
(

g(zs)
g(xs)

) 1
m and ys =

(
g(zs)
g(vs)

) 1
m . The details of the weight

function H(ts, ys) and conditions can be found in [11].
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In 2020, Sharma et al. [12] suggested a new derivative scheme, which is given below:

zs = xs −m
g(xs)

g[vs, xs]
,

xs+1 = zs − G(hs)

(
1
ys

+ 1
)

g(xs)

g[vs, xs]
,

(8)

where vs = xs + βg(xs), us =
(

g(zs)
g(xs)

) 1
m , hs =

us
1+us

and ys =
(

g(vs)
g(xs)

) 1
m .

In 2020, Kumar et al. [13] presented a new fourth-order derivative free scheme, which
is defined by

ys = xs −m
g(xs)

g[vs, xs]
,

xs+1 = ys −
ts

α1 + α2ts

g(xs)

α3g[vs, xs] + α4g[ys, vs]
,

(9)

where vs = xs + βg(xs), ts =
(

g(ys)
g(xs)

) 1
m and the values of parameters α1, α2, α3, and α4 are

depicted in [13].
In 2020, Behl et al. [14] presented the following derivative free family of fourth-order

iterative methods:

ys = xs −m
g(xs)

g[us, xs]
,

xs+1 = ys +
(ts + zs)(ys − xs)

2(1− 2ts)
,

(10)

where us = xs + αg(xs) + xs, ts =
(

f (ys)
f (xs)

)
1/m and zs =

(
f (ys)
f (us)

)
1/m.

In 2021, Behl et al. [15] suggested a new fourth-order derivative free variant of
Chebyshev–Halley family, which is defined as follows:

ys = xs −m
g(xs)

g[us, xs]
,

xs+1 = ys + m
g(xs)

g[us, xs]

(
1 +

ζ

1− 2βζ

)[
ζ

2
− H(τ)

)
, β ∈ R,

(11)

where us = xs + αg(xs), τ =
(

g(ys)
g(us)

)
1/m and ζ =

(
g(ys)
g(xs)

)
1/m. The values and hypotheses

of weight function can be found in [15].
Very recently, in 2022, Behl [16] proposed another fourth-order derivative free scheme,

which is given by
ts = xs −mH(ζ),

xs+1 = ts −mζ

[
1
2

η + bηθ + M(θ)

]
,

(12)

where µs = xs + α f (xs), α, b ∈ R, and ζ = g(xs)
g[µs ,xs ]

. Two multi valued functions are given as

θ =
(

g(ts)
f (xs)

) 1
m and η =

(
g(ts)
g(µs)

) 1
m . The hypotheses and conditions on weight function M are

described in [16]. Some other higher-order derivative-free techniques can be found in [10,17].
From the above discussion, it is clear that derivative free multi-point methods for multiple
roots are in demand.

Thus, motivated in the same direction, we want to suggest a new and more general
scheme, which can produce better and faster numerical results. Our scheme has the proper-
ties: optimal order of convergence; derivative free; flexible at both substeps; cost effective;
and more stable. Our scheme is based on a weight function approach. The best part of our
scheme is not only optimal derivative-free but also flexible at both substeps. With a suitable
choice of weight functions at the first and second substep, we can construct many new and
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existing techniques. For example, if we choose b = 0 in the Expression (12), then it is a
special case of our scheme. We illustrate the applicability of our methods to six numerical
problems. On the basis of obtained results, we found that our methods demonstrate better
results as compared to earlier studies in terms of CPU timing, computational order of
convergence, absolute errors and differences between two consecutive iterations.

2. Suggested Higher-Order Scheme and Its Analysis

Here, we suggest a new 4th-order iterative technique for multiple zeros m ≥ 2, which
is given by

ys = xs −mH(τ),

xs+1 = ys −mτ
(

Q(ζ) + M(ϑ)
)

,
(13)

where µs = xs + θg(xs), τ = g(xs)
g[µs ,xs ]

. In addition to this, three weight functions H : C→ C,
Q : C → C and M : C → C are analytic in the neighborhood of origin (0). Moreover,

ζ =
(

g(ys)
g(xs)

) 1
m and ϑ =

(
g(ys)
g(µs)

) 1
m are two multi-valued maps. We adopt the principal

root (see [18]), which can be obtained by ζ = exp
[

1
m log

(
g(ys)
g(xs)

)]
, with log

(
g(ys)
g(xs)

)
=

log
∣∣∣ g(ys)

g(xs)

∣∣∣+ i arg
(

g(ys)
g(xs)

)
for −π < arg

(
g(ys)
g(xs)

)
≤ π. The choice of arg(z) for z ∈ C agrees

with log(z), which is mentioned in the numerical section. In an analogous way, we obtain

ζ =
∣∣∣ g(ys)

g(xs)

∣∣∣ 1
m . exp

[
1
m arg

(
g(ys)
g(xs)

)]
= O(es).

It is clear to say that, by choosing b = 0 and H(τ) = τ
2 in the Expressions (12) and (13),

respectively, then Behl’s scheme [16] turns as a special case of our scheme. In Theorem 1–3,
we demonstrate the convergence analysis of (13), without adopting any extra value of g or
g′ at some other points.

Theorem 1. Assume that a map g : D ⊂ C → C is an analytic in D surrounding the required
zero. Let x = η (say) be a multiple solution of multiplicity m = 2. Then, the new constructed
scheme (13) has 4th-order convergence, with the following conditions:

H0 = 0, H1 = 1, H2 = 0, M0 = −Q0, M1 = Q1 =
1
2

, Q2 = 4−M2. (14)

It satisfies the following error equation

es+1 =−
(α2

0θ + α1)

48α3
0

[
− 18α1α2

0θ + 12α2α0 − 33α2
1 +

(
α2

1 + α4
0θ2 + 2α1α2

0θ
)

M3

− 12α2
0θM2

(
α2

0θ + α1

)
− 2α2

0H3 +
(

α4
0θ2 + 2α1α2

0θ + α2
1

)
Q3

]
e4

s + O(e5
s ).

where |Q0| < ∞, |M2| < ∞, |M3| < ∞, |Q3| < ∞ and |H3| < ∞. Note that
H0, M0, and Q0 denote the functional value of H, M, and Q at origin (0). The subscripts
j = 1, 2, 3 in Hj represent the first-order, second-order, and third-order derivative, respectively, at
the origin (0). The weight functions Mj and Qj are also defined in the similar fashion.

Proof. We assume es = xs − η and αi = g(2+i)(η)
(2+i)! , 0 ≤ i ≤ 4, (i ∈ W) are the terms

of error (in sth iteration) and asymptotic constant, respectively. We choose the Taylor’s
series expansions for g at two different points x = xs and x = µs = xs + θg(xs) in the
neighborhood of η with hypotheses g(η) = g′(η) = 0 and g′′(η) 6= 0. Then, we obtain

g(xs) = e2
s

(
α0 + α1es + α2e2

s + α3e3
s + α4e4

s + O
(
e5

s
))

(15)

and
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g(µs) =e2
s

[
α0 +

(
2α2

0θ + α1

)
es +

(
α3

0θ2 + 5α1α0θ + α2

)
e2

s +
(

5α1α2
0θ2 + 6α2α0θ + 3α2

1θ + α3

)
e3

s

+
(

α1α3
0θ3 + 8α2α2

0θ2 + 7α2
1α0θ2 + 7α3α0θ + 7α1α2θ + α4

)
e4

s + O
(
e5

s
)]

.
(16)

By using Equations (15) and (16), we have

τ =
g(xs)

f [µs, xs]
=

1
2

es −
(α2

0θ + α1)

4α0
e2

s +
(α4

0θ2 − 4α1α2
0θ − 4α2α0 + 3α2

1)

8α2
0

e3
s + O

(
e4

s
)
. (17)

It is clear from the Expression (17) that the τ = O(es). Thus, we can easily expand
H(ζ) in the neighborhood of origin (0) in the following way:

H(τ) = H0 + H1τ +
1
2!

H2τ2 +
1
3!

H3τ3, (18)

where Hj = H j(0), 0 ≤ j ≤ 3, (j ∈W).
The Expressions (17) and (18) provide the following error expression:

ẽs = ys − η = −2H0 +
(

1− H1

)
es +

(
H1
(
α2

0θ + α1
)

2α0
− H2

4

)
e2

s + O
(
e3

s
)
. (19)

From (19), we observe that the scheme will attain at least a 2nd-order of conver-
gence, when

H0 = 0, H1 = 1. (20)

By using Expression (20) in (19), we obtain

ẽs =
1
4

(
2α0θ +

2α1

α0
− H2

)
e2

s + O
(
e3

s
)
. (21)

By adopting Taylor’s series expansions, we have

g(ys) = ẽ2
s

(
α0 + α1eys + α2e2

ys + O
(
e5

s
))

. (22)

From Expressions (17), (18) and (22), we further yield

ζ =

(
g(ys)

g(xs)

) 1
2

=
1
4

(
2α0θ +

2α1
α0
− H2

)
es

− 1
24

3
(

2α4
0θ2 − 6α1α2

0θ − 8α2α0 + 8α2
1 − H2(2α3

0θ + 3α1α0)
)

α2
0

+ H3

e2
s + O

(
e3

s )
)
,

(23)

and

ϑ =

(
g(ys)

g(µs)

) 1
2

=
1
4

(
2α0θ +

2α1

α0
− H2

)
es

− 1
24

3
(

6α4
0θ2 − 2α1α2

0θ − 8α2α0 + 8α2
1 − H2(4α3

0θ + 3α1α0)
)

α2
0

+ H3

e2
s + O

(
e3

s )
)
.

(24)
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From the Expressions (23) and (24), we have ζ = ϑ = O(es). Thus, we expand Q(ζ)
and M(ϑ) in the neighborhood of origin (0), which are defined as:

M(ϑ) = M0 + M1ϑ +
1
2!

M2ϑ2 +
1
3!

M3ϑ3, (25)

and
Q(ζ) = Q0 + Q1ζ +

1
2!

Q2ζ2 +
1
3!

Q3ζ3, (26)

where Mj = Mj(0), Qj = Qj(0) and 0 ≤ j ≤ 3, (j ∈W).
By using Expressions (15)–(26) in scheme (13), we obtain

es+1 = −
(

M0 + Q0

)
es +

2

∑
i=0

Aiei+2
s + O

(
e5

s
)
, (27)

where Ai = Ai

(
θ, α1, α2, α3, α4, H2, H3, M0, M1, M2, M3, Q0, Q1, Q2, Q3

)
.

From (27), we observe that the scheme will attain at least the 2nd-order of conver-
gence, when

M0 = −Q0,

where Q0 ∈ R.
The terms A0 and A1 should be simultaneously zero for 4th-order convergence. We

can attain this if
H2 = 0, M1 = Q1 =

1
2

, Q2 = 4−M2, (28)

where M2 ∈ R.
We have the following error equation by adopting (28) in (27):

es+1 =−
(α2

0θ + α1)

48α3
0

[
− 18α1α2

0θ + 12α2α0 − 33α2
1 +

(
α2

1 + α4
0θ2 + 2α1α2

0θ
)

M3

− 12α2
0θM2

(
α2

0θ + α1

)
− 2α2

0H3 +
(

α4
0θ2 + 2α1α2

0θ + α2
1

)
Q3

]
e4

s + O(e5
s ),

(29)

where M3, H3, Q3 ∈ R. We deduce from Expression (29) that our scheme (13) has obtained
the fourth-order of convergence for θ ∈ R and m = 2 with the same number of values of
the involved function. Hence, Expression (13) is an optimal scheme.

Theorem 2. Applying the same conditions of Theorem 1, the suggested iterative technique (13) has
4th-order convergence, when m = 3. It satisfies the following error equation:

es+1 =

(
−18β2β1β0 − 27β1β3

0θ + 36β3
1 + 2β1β2

0H3 − β3
1M3 − β3

1Q3

162β3
0

)
e4

s + O(e5
s ).

Proof. We assume es = xs − η and βi =
g(3+i)(η)
(3+i)! , 0 ≤ i ≤ 4, (i ∈ W) are the terms of

error (in the sth iteration) and asymptotic constant, respectively. We choose the Taylor’s
series expansions for g at two different points x = xs and x = µs = xs + θg(xs) in the
neighborhood of η with hypotheses g(η) = g′(η) = g′′(η) = 0 and g′′′(η) 6= 0. Then,
we obtain

g(xs) = e3
s

(
β0 + β1es + β2e2

s + β3e3
s + β4e4

s + O
(
e5

s
))

(30)

and

g(µs) =e3
s

[
β0 + β1es + (α2 + 3β2

0θ)e2
s +

(
7β0β1θ + β3

)
e3

s

+
(

8α2β0θ + 3β3
0θ2 + 4β2

1θ + β4

)
e4

s + O
(
e5

s
)]

,
(31)
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respectively.
By using the Expressions (30) and (31), we have

τ =
g(xs)

f [µs, xs]
=

1
3

es −
β1

9β0
e2

s −
6α2β0 + 9β3

0θ − 4β2
1

27β2
0

e3
s + O

(
e4

s
)
. (32)

It is clear from the Expression (32) that τ = O(es). Thus, we can expand H(ζ) in the
neighborhood of origin (0) in the following way:

H(τ) = H0 + H1τ +
1
2!

H2τ2 +
1
3!

H3τ3, (33)

where Hj = H j(0), 0 ≤ j ≤ 3, (j ∈W).
With the help of Expressions (32) and (33), we further have

ẽs = ys − η = −3H0 +
(

1− H1

)
es +

(
β1H1

3β0
− H2

6

)
e2

s + O
(
e3

s
)
. (34)

From (34), we observe that the scheme will attain at least the 2nd-order of conver-
gence, when

H0 = 0, H1 = 1. (35)

By using Expression (35) in (34), we obtain

ẽs =

(
β1

3β0
− H2

6

)
e2

s + O
(
e3

s
)
. (36)

By adopting Taylor’s series expansions, we have

g(ys) = ẽ2
s

(
β0 + β1eys + β2e2

ys + O
(
e5

s
))

. (37)

From Expressions (32), (33) and (37), we further yield

ζ =

(
g(ys)

g(xs)

) 1
3

=

(
−1

6
H2 +

β1

3β0

)
es + O

(
e2

s )
)
,

(38)

and

ϑ =

(
g(ys)

g(µs)

) 1
3

=

(
−1

6
H2 +

β1

3β0

)
es + O

(
e2

s )
)
.

(39)

From Expressions (38) and (39), we have ζ = ϑ = O(es). Thus, we expand Q(ζ) and
M(ϑ) in the neighborhood of origin (0), which is defined as:

M(ϑ) = M0 + M1ϑ +
1
2!

M2ϑ2 +
1
3!

M3ϑ3, (40)

and
Q(ζ) = Q0 + Q1ζ +

1
2!

Q2ζ2 +
1
3!

Q3ζ3. (41)

By adopting Expressions (30)–(40) in scheme (13), we obtain

es+1 = −
(

M0 + Q0

)
es +

2

∑
i=0

Biei+2
s + O

(
e5

s
)
, (42)
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where Bi = Bi

(
θ, β1, β2, β3, β4, H2, H3, M0, M1, M2, M3, Q0, Q1, Q2, Q3

)
.

From (42), we observe that the scheme will attain at least the 2nd-order of conver-
gence, when

M0 = −Q0.

The coefficient of e2
s and e3

s should be simultaneously zero, in order to deduce the
4th-order convergence. This can be easily obtained by the following values:

H2 = 0, M1 = Q1 =
1
2

, Q2 = 4−M2. (43)

We have the following error equation by adopting (43) in (42):

es+1 =

(
−18β2β1β0 − 27β1β3

0θ + 36β3
1 + 2β1β2

0H3 − β3
1M3 − β3

1Q3

162β3
0

)
e4

s + O(e5
s ). (44)

where M3, H3, Q3 ∈ R. We deduce from Expression (44) that our scheme (13) has obtained
the fourth-order of convergence for θ ∈ R and m = 3 with the same number of values of
the involved function. Hence, (13) is an optimal scheme.

2.1. General Error Equation of Technique (13)

Theorem 3. Applying the same conditions of Theorem 1, the suggested scheme (13) has 4th-order
convergence, when m ≥ 4. It satisfies the following error equation:

es+1 =
[2H3γ1γ2

0 −M3γ3
1 −Q3γ3

1 − 6mγ1γ2γ0 + (3m + 27)γ3
1

6m3γ3
0

]
e4

s + O(e5
s ).

Proof. We assume es = xs − η and γi = g(m+i)(η)
(m+i)! , 0 ≤ i ≤ 4, (i ∈ W) are the terms

of error (in sth iteration) and asymptotic constant, respectively. We choose the Taylor’s
series expansions for g at two different points x = xs and x = µs = xs + θg(xs) in
the neighborhood of η with hypotheses g(η) = g′(η) = g′′(η) = · · · = gm−1(η)0 and
gm(η) 6= 0. Then, we obtain

g(xs) = em
s

(
γ0 + γ1es + γ2e2

s + γ3e3
s + γ4e4

s + O
(
e5

s
))

(45)

and

g(µs) =em
s

[
γ0 + γ1es + γ2e2

s + Γe3
s + O

(
e4

s
)]

, (46)

respectively, where

Γ =

{
4γ2

0θ + γ3, m = 4

γ3, m > 4

}
.

By using the Expressions (45) and (46), we have

τ =
g(xs)

f [µs, xs]
=

1
m

es −
γ1

m2γ0
e2

s +

(
(m + 1)γ2

1 − 2mγ0γ2

m3γ2
0

)
e3

s + O
(
e4

s
)
. (47)

It is clear from the Expression (47) that τ = O(es). Thus, we can expand H(ζ) in the
neighborhood of origin (0) in the following way:

H(τ) = H0 + H1τ +
1
2!

H2τ2 +
1
3!

H3τ3, (48)

where Hj = H j(0), 0 ≤ j ≤ 3, (j ∈W).
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With the help of Expressions (47) and (48), we further have

ẽs = ys − η = −mH0 +
(

1− H1

)
es +

(
γ1H1

mγ0
− H2

2m

)
e2

s + O
(
e3

s
)
. (49)

From (49), we observe that the scheme will attain at least the 2nd-order of conver-
gence, when

H0 = 0, H1 = 1. (50)

By using Expression (50) in (49), we obtain

ẽs =

(
γ1

mγ0
− H2

2m

)
e2

s + O
(
e3

s
)
. (51)

By adopting Taylor’s series expansions, we obtain

g(ys) = ẽ2
s

(
γ0 + γ1eys + γ2e2

ys + γ3e3
ys + γ4e4

ys + O
(
e5

s
))

. (52)

By using (47), (48) and (52), we further yield

ζ =

(
g(ys)

g(xs)

) 1
m

=
(−1)m

2m

(
H2 −

2γ1
γ0

)
es + O

(
e2

s )
)
,

(53)

and

ϑ =

(
g(ys)

g(µs)

) 1
m

=
(−1)m

2m

(
H2 −

2γ1

γ0

)
es + O

(
e2

s )
)
.

(54)

From the Expressions (53) and (54), we have ζ = ϑ = O(es). Thus, we expand Q(ζ)
and M(ϑ) in the neighborhood of origin (0), which is defined as:

M(ϑ) = M0 + M1ϑ +
1
2!

M2ϑ2 +
1
3!

M3ϑ3. (55)

and
Q(ζ) = Q0 + Q1ζ +

1
2!

Q2ζ2 +
1
3!

Q3ζ3. (56)

By adopting Expressions (45)–(55) in scheme (13), we obtain

es+1 = −
(

M0 + Q0

)
es +

2

∑
i=0

Ciei+2
s + O

(
e5

s
)
, (57)

where Ci = Ci

(
θ, γ1, γ2, γ3, γ4, H2, H3, M0, M1, M2, M3, Q0, Q1, Q2, Q3

)
.

From (57), we observe that the scheme will attain at least the 2nd-order of conver-
gence, when

M0 = −Q0.

The terms C0 and C1 should be simultaneously zero for 4th-order convergence. We
can attain this by choosing the following values

H2 = 0, M1 = Q1 =
1
2

, Q2 = 4−M2. (58)



Math. Comput. Appl. 2022, 27, 74 10 of 17

We have the final asymptotic error equation by adopting (58) in (57), which is given by

es+1 =
[2H3γ1γ2

0 −M3γ3
1 −Q3γ3

1 − 6mγ1γ2γ0 + (3m + 27)γ3
1

6m3γ3
0

]
e4

s + O(e5
s ), (59)

where M2, M3, H3 ∈ R. We deduce from Expression (59) that our scheme (13) has obtained
the fourth-order of convergence for θ ∈ R and m ≥ 4 with the same number of values of
the involved function. Hence, (13) is an optimal scheme.

Remark 1. It seems from (59) (for m ≥ 4) that θ is not involved in this expression. However, it
actually appears in the coefficient of e5

s . Here, we do not need to calculate the coefficient of e5
s because the

optimal fourth-order of convergence is already obtained. Furthermore, the calculation work of e5
s is quite

rigorous and consumes a huge amount of time. Nonetheless, the role of θ can commence in (29) and (44).

Remark 2. We can easily obtain Behl’s scheme [16] as a special case of our scheme, by choosing
b = 0 and H(τ) = τ

2 in the Expressions (12) and (13), respectively.

2.2. Some Special Cases of the Proposed Scheme

Here, we choose the following weight functions H(τ), M(ϑ), and Q(ζ), which satisfy
the conditions of Theorems 1–3:

M1 : H(τ) = τ + d1τ3, M(ϑ) = −a1 +
1
2

ϑ + cϑ2, Q(ζ) = a1 +
1
2

ζ + (2− c)ζ2.

M2 : H(τ) =
aτ + b2τ3

a + b3τ2 , M(ϑ) =
a2 + b1ϑ + c1ϑ2

u1 + (2b1 − u1)
u1
2a2

ϑ + wϑ2 , Q(ζ) =
−a2 + b1ζ + (2u1 − c1)ζ

2

u1 + (−2b1 + u1)
u1
2a2

ζ + wζ2 .

M3 : H(τ) = τ + d1τ3, M(ϑ) =
a2 + b1ϑ + c1ϑ2

u1 + (2b1 − u1)
u1
2a2

ϑ + wϑ2 , Q(ζ) =
−a2 + b1ζ + (2u1 − c1)ζ

2

u1 + (−2b1 + u1)
u1
2a2

ζ + wζ2 .

M4 : H(t) =
aτ + b2τ3

a + b3τ2 , M(ϑ) = −a1 +
1
2

ϑ + cϑ2, Q(ζ) = a1 +
1
2

ζ + (2− c)ζ2.

where d1, a1, c, a, b2, b3, a2, b1, c1, u1, w ∈ R. For numerical work, we choose d1 = 1, a1 = 2,
c = 1, a = 2, b2 = 1, b3 = 1, a2 = 1, b1 = 1, c1 = 1, u1 = 2, w = 2 in the above weight functions.

3. Numerical Experiments

In this segment, proposed schemes M1–M4 are verified on some academic and applica-
tion oriented problems. Here, the attained outcomes are compared with already developed
methods by Zafar et al. [19], Sharma et al. [12], Behl [16], and Kansal et al. [6], respectively.
All of the above mentioned existing schemes are listed below:

Zafar et al. scheme (FM1) [19]:

ys =xs −m
g(xs)

g′(xs)
,

xs+1 =ys −m
us(4us + 1)
(us + 1)2

g(xs)

g′(xs)
, s = 0, 1, 2, . . . ,

where

us =

(
g(ys)

g(xs)

)
1
m .

Zafar et al. scheme (FM2) [19]:

ys =xs −m
2g(xs)

2g′(xs) + mg(xs)
,

xs+1 =ys −mus

(
1 + 2us +

11
2

u2
s

)
g(xs)

g′(xs) + mg(xs)
, s = 0, 1, 2, . . . ,
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where

us =

(
g(ys)

g(xs)

)
1
m .

Sharma et al. scheme (SM1) [12]:

ys =xs −m
g(xs)

g[xs, µs]
,

xs+1 =ys −
(m

2
hs(1 + 3hs)

)(
1 +

1
vs

)
g(xs)

g[xs, µs]
, s = 0, 1, 2, . . . ,

where
µs =xs + γg(xs), γ ∈ R,

us =

(
g(ys)

g(xs)

)
1
m ,

vs =

(
g(µs)

g(xs)

)
1
m ,

hs =
us

1 + us
.

Behl scheme (RM) [16]:

ys = xs −mH(τ),

xs+1 = ys −mτ
( ζ

2
+

1
10

ζϑ + M(ϑ)
)

, s = 0, 1, 2, . . . ,

where
µs =xs + θg(xs),

τ =
g(xs)

g[µs, xs]
,

ϑ =

(
g(ys)

g(xs)

) 1
m

,

ζ =

(
g(ys)

g(µs)

) 1
m

,

H(τ) =τ + τ3,

M(ϑ) =− ϑ(−7.6ϑ− 1)
7.6ϑ + 2

.

Kansal et al. scheme (TM) [6]:

µs =xs + γg(xs),

xs+1 = xs −m
1
4 g(µs) +

3
4 g(xs)

g[µs, xs]
, s = 0, 1, 2, . . . .

In addition to the above methods, we also compare our methods with another fourth-
order derivative free scheme (6) proposed by Baccouch [10], called by (BM).

In all the experimental works, we consider the value of γ = −0.01. The outcomes of
experiments have been achieved by the software Mathematica 10 at 10,000 multiple precision
digits of mantissa with processor Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz 1.19 GHz, and
RAM 8 GB on the 64-bit operating system. The stopping criterion is |xs − xs−1|+ |g(xs)| ≤ 200.
The following tables represent that our methods illustrate better results in contrast to the earlier
studies in view of the errors between two consecutive iterations es = |xs − xs−1|, CPU timing,
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ACOC (approximate computational order of convergence) denoted as ρ. The following approach
is adopted to calculate the ACOC.

ρ =
ln |xs+1−xs |
|xs−xs−1|

ln |xs−xs−1|
|xs−1−xs−2|

, for each s = 2, 3, . . . (60)

Furthermore, the iterative process stops after three iterations, and each numerical is
tested against different initial values. It is important to note that the meaning of b(±a) is
b× 10±a in the following tables.

Example 1. Firstly, we tested the methods on the Van der Waal’s ideal gas equation [15]

(P +
an2

V2 )(V − nb) = nRT

that describes the behavior of particular gas with some particular values of a and b. The values
n, R, and T are calculated with the help of values a and b. Hence, the Equation (2) formulates the
nonlinear equations of volume of gas(V) in terms of variable x as

g1(x) = x3 − 5.22x2 + 9.0825x− 5.2675.

One of the required zeroes of multiplicity m = 2 of g1(x) is x = 1.75. Table 1 represents the
obtained results of different iterative methods for starting point x0 = 1.9. It is easily observed
from the table that proposed methods M1, M2, M3 and M4 have less absolute functional errors in
contrast to other methods. In addition, the order of convergence is not achieved by method FM2 even
up to seven iterations. Furthermore, our method M4 consumes the lowest CPU time as compared to
other mentioned methods.

Table 1. The outcomes of Example 1 based on various methods.

Methods |e2| |e3| |e4| |g(e4)| ρ CPU Time

SM1 1.9 (−2) 5.7 (−4) 4.6 (−9) 1.3 (−59) 4.000 0.454
FM1 1.9 (−2) 5.7 (−4) 4.6 (−9) 1.4 (−59) 4.000 0.469
FM2 1.4 (−2) 7.1 (−5) 1.2 (−14) 7.3 (−55) 6.148 0.359
RM 1.9 (−2) −6.1 (−5) 7.2 (−9) 7.7 (−58) 4.000 0.547
BM 1.9 (−2) 1.2 (−4) 2.5 (−9) 6.3 (−62) 4.000 0.434
TM 3.4 (−2) 9.0 (−3) 1.1 (−3) 1.2 (−11) 2.000 0.406
M1 1.6 (−1) 2.8 (−4) 1.5 (−10) 5.2 (−72) 4.000 0.516
M2 1.7 (−2) 3.6 (−4) 4.9 (−10) 8.8 (−68) 4.000 0.438
M3 1.7 (−2) 3.6 (−4) 4.8 (−10) 8.2 (−68) 4.000 0.437
M4 1.6 (−2) 2.8 (−4) 1.5 (−10) 4.9 (−72) 4.000 0.421

Example 2. Next, we consider the study of the blood rheology model [20] that investigates the
physical and flow characteristics of blood. In reality, blood is a non-Newtonian fluid and is referred
to as Caisson fluid. According to the Caisson fluid model, basic fluids flow in tubes in such a way
that the wall-to-wall region experiences a velocity gradient and the fluid’s central core moves as a
plug with minimal deformation. The following function is taken into consideration as a nonlinear
equation to examine the plug flow of Caisson fluids as

H = − x4

21
+

4x
3
− 16

√
x

7
+ 1;

here, we consider H = 0.40 to compute the flow rate reduction and reduces to nonlinear equation as

g(x) =
x8

441
− 8x5

63
− 2857144357x4

50000000000
+

16x2

9
− 906122449x

250000000
+

3
10

.
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To make the function g2(x) have multiple roots, we take function g(x) as

g2(x) =
(

x8

441
− 8x5

63
− 2857144357x4

50000000000
+

16x2

9
− 906122449x

250000000
+

3
10

)4

.

By applying the proposed schemes, we obtained the required zero x = 0.08643356. . . of mul-
tiplicity m = 4 of the function g2(x). Table 2 represents the obtained results of different iterative
methods for starting point x0 = 0.22. It is easily observed from the table that proposed methods
M1, M2, M3 and M4 have less absolute functional errors in contrast to other methods.

Table 2. The outcomes of Example 2 based on various methods.

Methods |e2| |e3| |e4| |g(e4)| ρ CPU Time

SM1 2.7 (−2) 7.0 (−7) 3.6 (−25) 4.6 (−389) 4.000 0.406
FM1 2.6 (−2) 6.0 (−7) 2.0 (−25) 3.0 (−393) 4.000 0.375
FM2 2.6 (−3) 6.7 (−14) 3.0 (−56) 2.2 (−898) 4.000 0.360
RM 2.7 (−2) 8.2 (−7) 8.4 (−25) 9.3 (−383) 4.000 0.406
BM 3.0 (−2) 3.7 (−5) 1.1 (−16) 5.4 (−247) 4.000 0.719
TM 1.1 (−2) 6.3 (−5) 2.1 (−9) 4.0 (−69) 2.000 0.421
M1 2.8 (−2) 4.4 (−7) 3.2 (−26) 5.3 (−407) 4.000 0.347
M2 2.7 (−2) 4.5 (−7) 3.7 (−26) 8.6 (−406) 4.000 0.324
M3 2.8 (−2) 5.1 (−7) 6.8 (−26) 2.3 (−401) 4.000 0.338
M4 2.7 (−2) 3.8 (−7) 1.6 (−26) 5.6 (−412) 4.000 0.406

Example 3. Since eigenvalue plays a significant role in linear algebra, it has many applications in
real life problems such as image processing and quality of a product. Sometimes, it is a tough task
to evaluate eigenvalues in the case of a larger size matrix. Thus, we consider the following ninth
order matrix:

B =
1
8



−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 2 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24


,

The characteristic equation of matrix B forms the following polynomial equation:

g3(x) = x(x8 − 29x7 + 349x6 − 2261x5 + 8455x4 − 17663x3 + 15927x2 + 6993x− 24732) + 12960.

This function has a zero x = 3 of multiplicity m = 4. Tables 3 and 4 report the results of proposed
schemes that are much better in contrast to available techniques in view of absolute functional errors,
order of convergence, and CPU time. We choose two starting points x0 = 2.8, and x0 = 3.1, for a
better comparison. One of the initial guesses x0 = 2.8 is on the left-hand side of the required root,
and the other one is on the right-hand side. Furthermore, there is no doubt that method FM2 is
consuming the lowest CPU timing, but convergence toward the required zero is very slow and not
attaining the required convergence order.
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Table 3. The outcomes of Example 3 based on various methods.

Methods |e2| |e3| |e4| |g(e4)| ρ CPU Time

SM1 7.7 (−5) 6.2 (−18) 2.6 (−70) 4.2 (−1115) 4.000 0.468
FM1 9.9 (−5) 1.7 (−17) 1.4 (−68) 9.4 (−1088) 4.000 0.500
FM2 3.4 (−2) 6.8 (−8) 2.5 (−15) 3.4 (−237) 1.330 0.422
RM 8.5 (−5) 1.2 (−17) 5.6 (−69) 2.0 (−1093) 4.000 0.563
BM 4.1 (−2) 2.2 (−2) 6.7 (−2) 6.4 (−10) * *
TM 7.2 (−3) 1.2 (−5) 3.5 (−11) 5.2 (−85) 2.000 0.500
M1 7.7 (−5) 4.9 (−18) 8.2 (−71) 1.1 (−1123) 4.000 0.453
M2 7.2 (−5) 3.3 (−18) 1.4 (−71) 4.5 (−1136) 4.000 0.438
M3 7.9 (−5) 6.0 (−18) 2.0 (−70) 2.0 (−1117) 4.000 0.499
M4 6.9 (−5) 2.5 (−18) 4.2 (−72) 1.1 (−1144) 4.000 0.531

* stands for: Order of convergence is not attained in the first four iterations.

Table 4. The outcomes of Example 3 based on various methods with starting point x0 = 3.1.

Methods |e2| |e3| |e4| |g(e4)| ρ CPU Time

SM1 5.9 (−3) 2.0 (−10) 2.9 (−40) 1.7 (−634) 4.000 0.625
FM1 6.1 (−3) 2.3 (−10) 5.2 (−40) 2.4 (−630) 4.000 0.474
FM2 3.3 (−6) 5.8 (−12) 7.4 (−47) 5.3 (−369) 6.000 0.460
RM 6.0 (−3) 3.0 (−10) 1.8 (−39) 2.6 (−621) 4.000 0.502
BM 1.6 (−3) 2.3 (−10) 1.2 (−37) 3.4 (−583) 4.000 1.187
TM 2.9 (−3) 2.0 (−6) 9.6 (−13) 1.8 (−97) 2.000 0.567
M1 6.0 (−3) 1.8 (−10) 1.4 (−40) 4.5 (−640) 4.000 0.500
M2 5.9 (−3) 1.4 (−10) 4.9 (−41) 1.8 (−647) 4.000 0.416
M3 6.0 (−3) 1.9 (−10) 2.2 (−40) 8.8 (−637) 4.000 0.478
M4 5.9 (−3) 1.3 (−10) 2.8 (−41) 1.2 (−651) 4.000 0.463

Example 4. Now, we examine the suggested methods on the following academic problem having
multiplicity 4 for the root z = i

g4(z) = z(z2 + 1)
(

2ez2+1 + z2 − 1
)

cosh2(
πz
2
).

The results with initial values x0 = 1.2i, and x0 = 0.9i, respectively, are shown in Tables 5 and 6.
It is clear from the tables that our methods are showing much better results not only in the case of absolute
residual errors but also in CPU timing.

Table 5. The outcomes of Example 4 based on various methods with starting point x0 = 1.2i.

Methods |e2| |e3| |e4| |g(e4)| ρ CPU Time

SM1 1.5 (−4) 2.8 (−16) 3.2 (−63) 1.9 (−1000) 4.000 0.687
FM1 1.7 (−4) 4.1 (−16) 1.5 (−62) 6.8 (−990) 4.000 0.641
FM2 3.6 (−2) 1.5 (−3) 3.6 (−12) 1.2 (−182) 4.000 1.155
RM 1.5 (−4) 2.9 (−16) 4.0 (−63) 1.1 (−958) 4.000 0.656
BM 1.2 (−1) 1.5 (−2) 7.5 (−7) 1.9 (−92) 4.708 2.921
TM 7.3 (−3) 1.7 (−5) 1.0 (−10) 3.7 (−81) 2.000 0.459
M1 1.1 (−4) 4.5 (−17) 1.1 (−66) 7.2 (−1057) 4.000 0.688
M2 1.1 (−4) 1.2 (−16) 8.1 (−65) 1.5 (−1026) 4.000 0.625
M3 1.2 (−4) 6.6 (−17) 5.8 (−66) 4.2 (−1045) 4.000 0.563
M4 1.3 (−4) 9.2 (−17) 2.2 (−65) 1.1 (−1035) 4.000 0.594
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Table 6. The outcomes of Example 4 based on various methods with starting point x0 = 0.9i.

Methods |e2| |e3| |e4| |g(e4)| ρ CPU Time

SM1 9.5 (−3) 3.7 (−9) 9.6 (−35) 8.5 (−545) 4.000 0.688
FM1 9.6 (−3) 3.9 (−9) 1.1 (−34) 7.2 (−544) 4.000 0.718
FM2 1.1 (−2) 9.9 (−5) 1.2 (−8) 1.6 (−126) 1.335 1.547
RM 9.3 (−3) 3.7 (−9) 1.0 (−34) 4.3 (−544) 4.000 0.828
BM 1.8 (−4) 1.5 (−14) 8.3 (−55) 8.2 (−860) 4.000 2.640
TM 4.4 (−3) 6.4 (−6) 1.4 (−11) 4.9 (−88) 2.000 0.547
M1 9.4 (−3) 1.9 (−9) 3.8 (−36) 2.7 (−568) 4.000 0.814
M2 9.5 (−3) 2.7 (−9) 1.8 (−35) 3.9 (−557) 4.000 0.625
M3 9.4 (−3) 2.2 (−9) 7.1 (−36) 1.0 (−563) 4.000 0.704
M4 9.6 (−3) 2.4 (−9) 1.0 (−35) 4.4 (−561) 4.000 0.735

Example 5. Next, the following academic problem has been considered:

g5(x) =

(
x−
√

5
)4(

x− 1
)2

+ 1
,

which has a zero x = 2.23607 of multiplicity 4. The suggested methods are tested with starting value
x0 = 1.4 and attained results represented in Table 7. We found from the numerical results that our
methods M1, M2, M3 and M4 have better numerical results in contrast to the methods SM1, FM1,
and FM2. Method M2 is not only consuming the lowest CPU timing but also perform much better
results as compared to the existing ones.

Table 7. The outcomes of Example 5 on various methods.

Methods |e2| |e3| |e4| |g(e4)| ρ CPU Time

SM1 1.6 (−2) 8.6 (−9) 7.5 (−34) 1.2 (−534) 4.000 0.469
FM1 1.5 (−2) 6.3 (−9) 2.1 (−34) 1.3 (−543) 4.000 0.469
FM2 2.3 (−1) 5.2 (−1) 1.2 (−1) 1.0 (−19) 1.326 0.479
RM 1.5 (−2) 1.1 (−8) 2.7 (−33) 4.4 (−525) 4.000 0.453
BM 2.1 (−1) 5.2 (−1) 3.1 (−2) 8.6 (−28) 4.239 0.485
TM 1.0 (−1) 2.6 (−3) 1.6 (−6) 6.5 (−50) 2.000 0.312
M1 1.3 (−2) 2.4 (−9) 3.0 (−36) 1.3 (−573) 4.000 0.579
M2 1.3 (−2) 2.0 (−9) 1.2 (−36) 4.1 (−580) 4.000 0.437
M3 1.3 (−2) 3.3 (−9) 1.2 (−35) 8.3 (−564) 4.000 0.516
M4 1.2 (−2) 1.1 (−9) 9.4 (−38) 1.9 (−578) 4.000 0.468

Example 6. Lastly, the following academic problem with large multiplicity has been considered.

g6(x) = ex −
l=9

∑
l=0

xl

l!
,

which has a zero x = 0 of multiplicity 10. All the proposed and earlier methods are examined with
initial value x0 = 1. The achieved outcomes are shown in Table 8, which clearly demonstrate the
exceptional results of the other methods. Moreover, the fourth order methods FM1, and FM2 are not
working for this example of higher multiplicity.
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Table 8. The outcomes of Example 5 on various methods.

Methods |e2| |e3| |e4| |g(e4)| ρ CPU Time

SM1 4.8 (−6) 2.1 (−27) 8.2 (−113) 1.2 (−4544) 4.000 1.266
FM1 divergent divergent divergent divergent * *
FM2 divergent divergent divergent divergent * *
RM 3.6 (−7) 3.0 (−30) 1.5 (−122) 0.4 (−4212) 4.000 0.860
BM 1.7 (−5) 2.9 (−25) 2.9 (−104) 1.3 (−4202) 4.000 13.359
TM 9.7 (−3) 8.6 (−7) 6.7 (−15) 4.0 (−311) 2.000 0.531
M1 3.6 (−7) 2.9 (−30) 1.3 (−122) 2.1 (−4920) 4.000 1.172
M2 1.3 (−6) 3.2 (−30) 1.1 (−124) 3.0 (−5026) 4.000 1.156
M3 3.6 (−7) 2.9 (−30) 1.3 (−122) 5.0 (−4920) 4.000 1.189
M4 4.3 (−7) 8.9 (−33) 1.6 (−135) 1.2 (−5465) 4.000 1.219

* stands for: No needs to calculate these values in the case of divergence.

Overall, we observe from Tables 1–8 that proposed techniques have lower residual
errors and CPU time in contrast to other methods with the same number of iterations.

4. Conclusions

• We constructed a new two-step, free from derivatives and a cost effective iterative
technique for multiple zeros (m ≥ 2).

• The presented scheme used three different weight functions (at both substeps) in order
to obtain a more general form of two-point methods.

• Several new cases are depicted in Section 2.
• Behl’s scheme [16] is obtained as a special case of our scheme, by choosing b = 0 and

H(τ) = τ
2 in the Expressions (12) and (13), respectively.

• Since our scheme (13) consumes only three values of g at different points, the maxi-
mum bound (optimal level) of our scheme is achieved by Kung–Traub conjecture.

• From Table 7, it is confirmed that methods FM1 and FM2 diverge from the required
solution. However, our methods do not exhibit this behavior. On the other hand, M4
is not only converging to the required solution but also has the lowest absolute error
among other depicted techniques.

• Finally, we deduce from Tables 1–8 that our schemes are more stable and cost effective.
These methods could be a better alternative to the earlier studies.
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