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Abstract: A proper understanding of the porous structure of packed beds of spheres is imperative in
the analysis and design of the processes involving fluid flow and heat and mass transfer. The radial
variation in porosity is of specific interest. When the positions and sizes of the spheres are known,
the radial variation in porosity can be determined using volume-based, area-based, or line-based
approaches. Here, the focus is on the area-based methods which employ the intersections between
the spheres and selected cylindrical planes to determine the radial variation in porosity, focusing
specifically on the calculation of the area of the curved elliptic intersection between a sphere and a
cylindrical plane. Using geometrical considerations, analytical integral expressions have been derived
based on the axial direction, angular direction, or the radial direction as independent variables. The
integral expressions cannot be integrated analytically and have been evaluated using approximations
or numerical integration. However, only indirect validation of the calculation of the intersection
area has been provided by comparing the radial porosity profiles obtained with experimental data.
This study provides direct validation of the calculated area through refined numerical integra-
tion of the primary integral expressions and the evaluation of the area employing computer-aided
design software.
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1. Introduction

Cylindrical packed beds consisting of spherical particles are encountered in industrial
applications such as in pebble bed reactors in the nuclear industry, in operations in chem-
ical processes requiring interphase contact (for example, separation and heterogeneous
catalysis), and practical applications such as packed columns for chromatography and
regenerative heat exchangers [1–3]. A proper understanding of the characteristics of the
porous structure of cylindrical packed beds is imperative in the analysis and design of
the processes involving fluid flow, and heat and mass transfer [1]. It has been found that
the container wall has a significant effect on the packing structure in the near-wall region,
which affects the flow distribution and heat and mass transfer [2,4]. The most important
characteristic is the porosity or void fraction and the radial variation in porosity is of
specific interest [5]. The radial variation in porosity has been determined directly from
experimental measurements using various approaches [2,5–7]. When the positions and
sizes of the spheres are known, the radial variation in porosity can be determined using
numerical techniques. The positions and diameters of the spheres have been determined
experimentally [1,8,9] as well as numerically using packing algorithms [10,11] and the
discrete element method [12,13]. The radial variation in porosity can be determined numer-
ically using volume-based [8,14,15], area-based [16–19], or line-based [20–22] approaches.
In this study, the focus is on the area-based methods of Mariani et al. [16], Mueller [18],
and Du Toit [17,19], which employ the intersection between the spheres and selected cylin-
drical planes to determine the radial variation in porosity. The focus is specifically on the
calculation of the area of the curved elliptic intersection between a sphere and a cylindrical
plane.
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Using geometrical considerations, Mariani et al. [16] derived an analytical integral
expression in terms of the axial direction based on the analytical expression describing
the lengths of the in-plane arcs as a function of axial position, defining the intersection.
The integral cannot be evaluated analytically and was transformed to expressions involv-
ing Legendre complete elliptic integrals of the first and second kind. Mariani et al. [16]
evaluated the elliptic integrals using an efficient numerical procedure to calculate the area.
Du Toit [19], following a similar approach, calculated the area by integrating the derived
analytical integral expression numerically.

Using the same geometrical considerations, Du Toit [17,19] derived an integral expres-
sion in terms of the circumferential or angular direction based on the analytical expression
describing the in-plane vertical or axial lines, as function of angular position, defining the
intersection. Since the integral cannot be evaluated analytically, Du Toit [17,19] integrated
the analytical integral expression numerically to determine the area.

Mueller [18] derived an integral expression in terms of the radial direction based on
the analytical expression for the axial height of the area, as a function of the radial position,
obtained from the equations describing the surfaces of the sphere and the cylindrical plane.
This integral can also not be evaluated analytically, and Mueller [18] therefore evaluated it
numerically to determine the intersection area.

Mariani et al. [16], Du Toit [17,19], and Mueller [18] only provided indirect valida-
tion of the calculation of the intersection area by comparing the radial porosity profiles
they obtained with available corresponding experimental results or by calculating the
number of spheres in the bed. This study, in the first place, provides direct validation
of the calculation of the intersection area through the refined numerical integration em-
ploying Simpson’s rule [23] of the primary integral expressions of Mariani et al. [16],
Du Toit [17,19], and Mueller [18] and the evaluation of the area employing computer-aided
design software. Secondly, the characteristics and the performance of the respective ap-
proaches are compared in terms of the number of uniformly spaced integration points
that are required to obtain an accurate result. Four test cases representing typical sphere—
cylindrical plane configurations that can be encountered are used to perform the analysis.

2. Theoretical Overview
2.1. Intersection of Cylindrical Plane and Sphere

A proper understanding of the radial variation in the porosity in cylindrical packed
beds is important due to the fact that the container wall has a significant effect on the
porous structure in the near-wall region which affects the heat and mass transfer and the
flow distribution [1,2,4]. When the positions and the diameters of the spheres are known,
the radial variation in porosity can be obtained employing numerical techniques [14–22].
In the area-based methodologies of Mariani et al. [16], Mueller [18], and Du Toit [17,19],
the radial variation in porosity is determined by considering the intersections between the
spheres and selected cylindrical planes. The accurate calculation of the area of the curved
elliptical intersection between a sphere and a cylindrical plane is critical for the success of
these methodologies.

If we define the radius of the sphere to be rp, the radial position of the sphere to be rs,
and the radial position of the cylindrical plane to be r, the cylindrical plane intersects the
sphere; that is, it cuts through the sphere or is inside the sphere when:

max
(
0, rs − rp

)
≤ r ≤ rs + rp. (1)

Figure 1a shows a top view of the case where the cylindrical plane cuts through the
sphere and Figure 1b shows a side view depicting the resulting curved elliptical intersection
surface.
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Figure 1. Cylindrical plane cutting through sphere (a) top view of plane at 0z = , (b) side view. 
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where cR  is the radius of the cylindrical container. The angular limits of the elliptical 
intersection surface are defined by the intersections of the cylindrical plane and the cir-
cumference of the center plane of the sphere at sθ−  and sθ+ . It is assumed that the axial 
position of the sphere center is at 0.z =  The upper limit of the elliptical surface is at 
s Bz z= . 

Figure 2a shows a top view when the cylindrical surface is inside the sphere and 
Figure 2b shows the resulting intersection surface. The cylindrical plane is inside the 
sphere when: 
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Figure 2. Cylindrical plane inside sphere (a) top view of plane at 0z = , (b) side view. 

The intersection plane lies between π θ π− ≤ ≤ +  or as shown in Figure 2b between 
0 2θ π≤ ≤ . The lower limit of the curve defining the upper edge of the intersection surface 
is at Az . In the case of Figure 1b we have that 0Az = . 

2.2. Du Toit Angular Integration 
Du Toit [17,19] has shown the area A  of the intersection surface can be obtained by 

integrating in the angular or tangential ( )θ  direction as indicated in Figure 1b. The area 
is given as: 

0
4 ,sA z rd

θ

θ θ=   (4) 

Figure 1. Cylindrical plane cutting through sphere (a) top view of plane at z = 0, (b) side view.

The cylindrical plane cuts through the sphere when:

rp ≤ rs ≤ Rc − rp or 0 < rs < rp and rp − rs < r, (2)

where Rc is the radius of the cylindrical container. The angular limits of the elliptical
intersection surface are defined by the intersections of the cylindrical plane and the circum-
ference of the center plane of the sphere at−θs and +θs. It is assumed that the axial position
of the sphere center is at z = 0. The upper limit of the elliptical surface is at zs = zB.

Figure 2a shows a top view when the cylindrical surface is inside the sphere and
Figure 2b shows the resulting intersection surface. The cylindrical plane is inside the sphere
when:

0 < rs < rp and r ≤ rp − rs. (3)
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Figure 2. Cylindrical plane inside sphere (a) top view of plane at z = 0, (b) side view.

The intersection plane lies between −π ≤ θ ≤ +π or as shown in Figure 2b between
0 ≤ θ ≤ 2π. The lower limit of the curve defining the upper edge of the intersection surface
is at zA. In the case of Figure 1b we have that zA = 0.

2.2. Du Toit Angular Integration

Du Toit [17,19] has shown the area A of the intersection surface can be obtained by
integrating in the angular or tangential (θ) direction as indicated in Figure 1b. The area is
given as:

A = 4
∫ θs

0
zθrdθ, (4)

where zθ is axial height of the elliptical curve defining the upper edge of the intersection
surface relative to z = 0. The factor 4 accounts for the symmetry of the intersection surface
around z = 0 and θ = 0. The upper integration limit θs (intersection angle) is given as:

θs = cos−1

[
r2 − r2

p + r2
s

2 r rs

]
, (5)
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when the cylindrical plane cuts through the sphere. In the case where the cylindrical plane
remains inside the sphere the intersection angle is given as:

θs = π. (6)

The axial height zθ of the upper edge of the intersection surface at the angular position
θ can be obtained as:

zθ =
√

r2
p − r2 − r2

s + 2 r rs cos(θ). (7)

The integral Equation (4) cannot be calculated analytically, and Du Toit [17,19] there-
fore integrated Equation (4) numerically using Simpson’s rule [23].

2.3. Du Toit Axial Integration

Du Toit [19] has shown the area A of the intersection surface can also be obtained by
integrating in the axial (z) direction. The area is given as:

A = 2
∫ zs

0
Szdz, (8)

where Sz is the in-plane arc at the axial position z defining the intersection surface. The
factor 2 accounts for the symmetry of the intersection surface around z = 0. The upper
integration limit zs (axial integration height) is given as:

zs =
√

r2
p − (r− rs)

2. (9)

The length of the in-plane arc Sz is obtained as:

Sz = 2θzr, (10)

where θz is the in-plane arc angle. When the cylindrical plane cuts through the sphere the
in-plane arc angle θz can be obtained from:

θz = cos−1

[
r2

s + r2 + z2 − r2
p

2 r rs

]
, (11)

whilst when the cylindrical plane remains within the sphere, the in-plane arc angle is given as:

θz = π. (12)

The integral Equation (8) can also not be calculated analytically, and Du Toit [19]
therefore also integrated Equation (8) numerically using Simpson’s rule [23].

2.4. Mariani Elliptical Integration

Mariani et al. [16] also adopted the axial integration approach discussed in Section 2.3,
but chose to write the integral expression to calculate the area of the intersection plane as:

A = 4r

[
πzA +

∫ zB

zA

cos−1

(
r2

s + r2 + z2 − r2
p

2rrs

)
dz

]
, (13)

where the upper integration limit is zB = zs from Equation (9). The lower integration limit
zA is given as:

zA =


√

r2
p − (r + rs)

2 when r < rp − rs

0 when r > rp − rs.
(14)

The first condition in Equation (14) occurs when the cylindrical plane remains inside
the sphere as shown in Figure 2 and the second condition occurs when the cylindrical plane
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cuts through the sphere as shown in Figure 1. To facilitate the integration of Equation (13)
Mariani et al. [16] have shown that the integral expression can be transformed to:

A =

(
8rzBE(k) when k ≤ 1
8rzB

[(
k−1 + k

)
K
(
k−1)+ kE

(
k−1)] when k > 1,

(15)

where the factor k is defined as:

k =
2
√

rrs

zB
. (16)

Substituting Equation (9) in Equation (16) it can be shown that when Equation (2) is
valid, then k > 1 and when Equation (3) is valid, then k ≤ 1. K(m) is the Legendre complete
elliptic integral of the first kind and is defined as:

K(m) =
∫ π/2

0

dθ√
1−m2 sin2(θ)

for 0 ≤ m ≤ 1, (17)

whilst E(m) is the Legendre complete elliptic integral of the second kind and is defined as:

E(m) =
∫ π/2

0

√
1−m2 sin2(θ) dθ for 0 ≤ m ≤ 1. (18)

The Legendre complete elliptic integrals cannot be calculated analytically, and the
values must be obtained from tables, series expansions, or by employing numerical integra-
tion [24–26]. Note the fact that K(k) has a singular value at k = k−1 = 1 does not affect the
application of Equation (15). Mariani et al. [16] integrated the Legendre complete elliptic
integrals using an efficient numerical procedure.

2.5. Mueller Radial Integration

Mueller [18] derived an integral expression in terms of the radial direction x based on
the analytical expression for the axial height zx, at the radial position x, of the upper edge
of the intersection surface above z = 0 obtained from the equations describing the surfaces
of the sphere and the cylindrical plane. The equation describing the surface of the sphere is
given as:

(x− rs)
2 + y2 + z2 = r2

p, (19)

whilst the equation for the cylindrical plane is given as:

x2 + y2 = r2. (20)

Substituting Equation (20) in Equation (19) gives the expression for the axial height zx
of the edge of the intersection surface:

zx =
√

r2
p − r2 + 2xrs − r2

s . (21)

The in-plane arc length element ds can be written, applying Equation (20), as:

ds =
√

dx2 + dy2 =

√
1 +

(
dy
dx

)2
dx =

rdx√
r2 − x2

. (22)

The integral expression to calculate the area of the intersection surface can then be
written as:

A = C
∫ r

LL

(
zx√

r2 − x2
r
)

dx, (23)



Math. Comput. Appl. 2022, 27, 79 6 of 14

where the lower integration limit LL and the integration constant C are defined as:

LL =
r2

s + r2 − r2
p

2rs
and C = 4, (24)

when the cylindrical plane cuts through the sphere and the conditions in Equation (2) are
applicable. When the cylindrical plane remains within the sphere and the condition in
Equation (3) are applicable, then the lower integration limit and the integration constant are:

LL = −r and C = 4. (25)

Lastly, when rs = 0 and 0 ≤ r ≤ rp, then the lower integration limit and the integration
constant are defined as:

LL = 0 and C = 8. (26)

Note that x = −r and x = r are singular points. The integral Equation (23) cannot be
calculated analytically and therefore needs to be evaluated using numerical integration
or another suitable method. Mueller [18] does not describe the approach employed to
integrate the integral expression numerically.

3. Results
3.1. Calculation of Intersection Areas

Four sphere–cylindrical plane test configurations were selected to evaluate the ability
of the methodologies of Mariani et al. [16], Du Toit [17,19], and Mueller [18] to calculate
the areas of the intersections between the spheres and the cylindrical planes accurately.
The four test configurations were chosen to be representative of sphere–cylindrical plane
configurations that typically occur in cylindrical packed beds consisting of spheres for
which the radial variation in porosity must be obtained.

In this study, Equations (4), (8), (15), and (23) were evaluated numerically employing
Simpson’s rule [23]. It was not the purpose of the study to compare the performance of
different numerical integration methods. Simpson’s rule was, therefore, selected for the
numerical integration because all the functions to be integrated are smooth, as well as the
fact that Simpson’s rule is third-order accurate and simple to implement.

The first step in the analyses was to find the maximum integration interval size in
each case for which the value obtained for the intersection area changed by less than
1× 10−4 mm2 between successive values selected for the integration interval size.

The second step in the analyses was to compare the intersection areas that were
obtained for the different cases with the corresponding areas obtained using the finite
element code COMSOL Multiphysics [27] and the computer aided design (CAD) codes
SOLIDWORKS [28] and NX [29].

Finally, the performance of the methodologies was compared considering the number
of integration points required in each case to obtain an accurate solution for the intersection
area.

3.1.1. Test Configurations

The test configurations that were selected for the analyses are summarized in Table 1
and shown in Figure 3.

For Cases 1c and 2c the cylindrical plane remained within the sphere with r > rs for
Case 1c and r < rs for Case 2c. For Cases 3c and 4c the cylindrical plane cuts through the
sphere with rs < rp and r > rp − rs for Case 3c and rs > rp for Case 4c. The same sphere
radius of 30 mm was used for all the cases reported in this study. In Table 1 the values of
the limits and parameters θs, zs = zB, zA, LL, and k occurring in Equations (4), (8), (15),
and (23) are also tabulated.
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Table 1. Test configurations for the analyses.

Parameter Case 1c Case 2c Case 3c Case 4c

rp (mm) 30.0 30.0 30.0 30.0
rs (mm) 7.5 15.0 22.5 60.0
r (mm) 15.0 7.5 37.5 60.0
θs (deg) 180.0 180.0 53.13010 28.95502

zs = zB (mm) 29.04738 29.04738 25.98076 30.0
zA (mm) 19.84313 19.84313 0.0 0.0

k (-) 0.730296743 0.730296743 2.236068 4.0
LL (mm) −15.0 −7.5 22.5 52.5
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The red lines in the CAD drawings of Cases 1c, 2c, 3c, and 4c shown in Figure 3
indicate the radial distance of the cylindrical plane from the centre line, the radial position
of the centre of the sphere from the centre line and the radius of the sphere respectively.

3.1.2. Du Toit Angular Integration

To integrate Equation (4) numerically using Simpson’s rule [23], to obtain the intersec-
tion area, it is rewritten to become:

A =
4∑ (zθ,i−1 + 4zθ,i + zθ,i+1)r∆θ

3
for i = 2, 4, 6 . . . , n− 1, (27)

where
zθ,i =

√
r2

p − r2 − r2
s + 2 r rs cos(θi) for 0 ≤ θi ≤ θs, (28)

and ∆θ the angular increment. n is the number of angular integration points with n ≥ 3 and
an uneven number. The results for the analysis of the numerical integration of Equation (4)
are summarized in Table 2. The values for the angular increment ∆θ are the nominal values
in degrees that were specified. The code adapts the angular increment where necessary to
obtain an even number of increments for the interval 0 ≤ θ ≤ θs in order to apply Simpson’s
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rule. Note that in Equation (27) the curvature of the elliptic surface is represented exactly,
whilst the edge of the surface is represented discretely.

Table 2. Convergence analysis for Equation (4) [17,19].

Case 1c Case 2c Case 3c Case 4c

∆θ (deg) A (mm 2) A (mm 2) A (mm 2) A (mm 2)

1.00 × 10−1 4648.7417 2324.3708 2811.8029 2849.9743
1.00 × 10−2 4648.7417 2324.3708 2811.8345 2850.0553
1.00 × 10−3 4648.7417 2324.3708 2811.8355 2850.0579
1.00 × 10−4 2811.8355 2850.0580
1.00 × 10−5 2850.0580

It can be seen in Table 2 that an angular increment of ∆θ = 1 × 10−3 deg can be
considered as sufficient to obtain a converged solution for the integral.

3.1.3. Du Toit Axial Integration

To integrate Equation (8) numerically using Simpson’s rule [23], to obtain the intersec-
tion area, it is rewritten to become:

A =
2∑ (Sz,i−1 + 4Sz,i + Sz,i+1)∆z

3
for i = 2, 4, 6 . . . , n− 1, (29)

where
Sz,i = 2θs,ir, (30)

with

θz,i = cos−1

[
r2

s + r2 + z2
i − r2

p

2 r rs

]
for 0 ≤ zi ≤ zs, (31)

and ∆z the axial increment. n is the number of axial integration points with n ≥ 3 and an
uneven number. The results for the analysis of the numerical integration of Equation (8) are
summarized in Table 3. The values for the axial increment ∆z are the nominal values as a
fraction of the sphere diameter that were specified. The code also adapts the axial increment
where necessary to obtain an even number of increments for the interval 0 ≤ z ≤ zs in
order to apply Simpson’s rule. Note that in Equation (29), the curvature of the elliptic
surface is represented exactly, whilst the edge of the surface is represented discretely.

Table 3. Convergence analysis for Equation (8) [19].

Case 1c Case 2c Case 3c Case 4c

∆z
(
1/dp

)
A (mm 2) A (mm 2) A (mm 2) A (mm 2)

1.00 × 10−1 4546.4251 2273.2126 2761.4722 2812.8134
1.00 × 10−2 4645.6167 2322.8083 2810.4152 2848.8880
1.00 × 10−3 4648.6216 2324.3108 2811.7911 2850.0210
1.00 × 10−4 4648.7411 2324.3705 2811.8341 2850.0568
1.00 × 10−5 4648.7416 2324.3708 2811.8355 2850.0579
1.00 × 10−6 4648.7417 2324.3708 2811.8355 2850.0580
1.00 × 10−7 4648.7417 2850.0580

It can been in Table 3 that an axial increment of ∆z = 1× 10−6 (1/dp
)

is required to
obtain a converged solution for the integral. The fact that the numerical integration for
Equation (8) requires a finer increment than the numerical integration of Equation (4) to
obtain a converged solution can be attributed to the intersection surface being flatter at
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the top (+zs) and bottom (−zs) than at the left hand (+θs) and right hand (−θs) sides
of the elliptical intersection plane. It should also be noted that the angular increment of
∆θ = 1× 10−3 deg in the case of the angular integration translates to 9× 10−6 < r∆θ/dp < 3× 10−5

for the four cases considered.

3.1.4. Mariani Elliptic Integration

The ability of Equation (15) to calculate the intersection area accurately is dependent on
the accurate numerical integration of the Legendre complete integrals Equations (17) and (18).
Using Simpson’s rule [23], Equation (17) can be rewritten to become:

K(m) =
∑ (IK,i−1 + 4IK,i + IK,i+1)∆θ

3
for i = 2, 4, 6 . . . , n− 1, (32)

where
IK,i =

1√
1− m2 cos2(θi)

for 0 ≤ θi ≤ π/s, (33)

and ∆θ the angular increment. n is the number of angular integration points with n ≥ 3 and
an uneven number. Using Simpson’s rule [23], Equation (18) can be rewritten to become:

E(m) =
∑ (IE,i−1 + 4IE,i + IE,i+1)∆θ

3
for i = 2, 4, 6 . . . , n− 1, (34)

where
IE,i =

√
1− m2 sin2(θi) for 0 ≤ θi ≤ π/s, (35)

and ∆θ the angular increment. n is the number of angular integration points with n ≥ 3
and an uneven number. The results for the analysis for the numerical integration of
Equations (17) and (18) are summarized in Table 4 and compared with the corresponding
values tabulated by Milne-Thomson [30]. It can be seen in Table 4 that the values obtained
using Simpson’s rule are in exact agreement with corresponding values given by Milne-
Thomson [30]. The results were obtained for integration increment of ∆θ = 1× 10−2 rad.

Table 4. Validation of numerical integration of Legendre complete elliptic integrals.

Simpson’s Rule Milne-Thomson [30]

m2 E(m2) K(m2) E(m2) K(m2)

0.1 1.530757636 1.612441348720 1.530757636 1.612441348720
0.5 1.350643881 1.854074677301 1.350643881 1.854074677301
0.9 1.104774733 2.578092113348 1.104774733 2.578092113348

The results for the analysis for the numerical integration of Equation (15) are summa-
rized in Table 5. The values for the independent variable increment ∆θ are the nominal
values in radians that were specified. The code adapts the independent variable increment
where necessary to obtain an even number of increments for the interval 0 ≤ θ ≤ π/2 in
order to apply Simpson’s rule.

Table 5. Convergence analysis for Equation (15) [16].

Case 1c Case 2c Case 3c Case 4c

∆θ (rad) A (mm 2) A (mm 2) A (mm 2) A (mm 2)

1.00 × 10−1 4648.7417 2324.3708 2811.8355 2850.0580
1.00 × 10−2 4648.7417 2324.3708 2811.8355 2850.0580
1.00 × 10−3 4648.7417 2324.3708 2811.8355 2850.0580
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It can been in Table 5 that an independent variable increment of ∆θ = 1× 10−1 rad
is sufficient to obtain a converged solution of the integral. Note that in Equation (15), the
curvature of the elliptic surface and the edge of the surface are represented exactly.

3.1.5. Mueller Radial Integration

To integrate Equation (23) numerically using Simpson’s rule [23], to obtain the inter-
section area, it is rewritten to become:

A =
C∑ (IM,i−1 + 4IM,i + IM,i+1)r∆z

3
for i = 2, 4, 6 . . . , n− 1, (36)

where

IM,i =

√
r2

p − r2 + 2 x rs − r2
s

√
r2 − x2

for LL ≤ xi ≤ r, (37)

and ∆x the radial increment. n is the number of radial integration points with n ≥ 3 and
an uneven number. The singularities at x = −r and x = +r were circumvented by setting
the value of the integrand for x1 equal to the value of the integrand for x2 and by setting
the value of the integrand for xn equal to the value of the integrand for xn−1.

The results for the convergence analysis for the numerical integration of Equation (23)
are summarized in Table 6.

Table 6. Convergence analysis for Equation (23) [18].

Case 1c Case 2c Case 3c Case 4c

∆x
(
1/dp

)
A (mm 2) A (mm 2) A (mm 2) A (mm 2)

1.00 × 10−1 3357.7813 1492.4812 1837.1173 1828.8018
1.00 × 10−2 4266.0634 2049.1817 2485.3647 2375.8312
1.00 × 10−3 4527.3808 2238.5827 2709.9127 2700.6604
1.00 × 10−4 4610.3532 2297.2269 2779.5819 2802.9507
1.00 × 10−5 4636.6018 2315.7867 2801.6353 2835.1597
1.00 × 10−6 4644.9027 2321.6563 2808.6099 2845.3467
1.00 × 10−7 4647.5277 2323.5124 2810.8155 2848.5681
1.00 × 10−8 4648.3578 2324.0994 2811.5129 2849.5868
1.00 × 10−9 4648.6203 2324.2850 2811.7335 2849.9090
3.00 × 10−10 4648.6752 2324.3238 2811.7899 2849.9764

The values for the radial increment ∆x are the nominal values as a fraction of the sphere
diameter that that were specified. The code adapts the independent variable increment
where necessary to obtain an even number of increments for the interval LL ≤ x ≤ r
in order to apply Simpson’s rule. It can be seen in Table 6 that the solutions cannot be
considered as fully converged for the smallest radial increment. Note that in Equation (23),
the curvature of the elliptic surface, as well as the edge of the surface, are represented
discretely.

3.2. Comparison of Areas and Performance

Table 7 is a summary of the converged numerical solutions for the areas of the inter-
section surfaces for cases 1c to 4c obtained using Equations (4), (8), (15), and (23) obtained
from Tables 2, 3, 5, and 6. Included in Table 7 also are the areas of the intersection surfaces
obtained using the Measuring Geometry Tool in COMSOL Multiphysics [27], and the CAD
packages SOLIDWORKS [28] and NX [29].
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Table 7. Summary of results for intersection areas.

Case 1c Case 2c Case 3c Case 4c

A (mm 2) A (mm 2) A (mm 2) A (mm 2)

Equation (4) [17] 4648.7417 2324.3708 2811.8355 2850.0580
Equation (8) [19] 4648.7417 2324.3708 2811.8355 2850.0580

Equation (15) [16] 4648.7417 2324.3708 2811.8355 2850.0580
Equation (23) [18] 4648.6752 2324.3238 2811.7899 2849.9764

COMSOL [27] 4648.7410 2324.3619 2811.8342 2850.0255
SOLIDWORKS [28] 4648.5749 2324.3166 2811.5967 2849.9363

NX [29] 4647.0269 2323.6438 2809.5591 2848.5306

In Table 7 it can be observed that the agreement between the results obtained by
Du Toit [17] (Equation (4)), Du Toit [19] (Equation (8)), Mariani et al. [16] (Equation (15)),
Mueller [18] (Equation (23)), and COMSOL [27], SolidWorks [28], and NX [29] is very good.
The maximum relative difference between the numerical results and the COMSOL results
is 0.001%, the maximum difference between the numerical results and the SOLIDWORKS
results is 0.008%, and the maximum difference between the numerical results and the
NX results is 0.081%. It can, therefore, be concluded that the methodologies of Mariani
et al. [16], Du Toit [17,19], and Mueller [18] calculated the area of the intersection between a
sphere and a cylindrical plane correctly.

It has been noted that in the numerical integration of Equations (4) and (8) the cur-
vature of the curved elliptical surface is represented exactly, but the edge of the surface
discretely, whilst in the numerical integration of Equation (23) both the curvature of the
curved elliptic surface and the edge of the surface are represented discretely. Compared to
that in the numerical integration of Equation (15), both the curvature of the curved elliptic
surface and the edge of the surface are represented exactly. The values of the respective
integration increments are a reflection of these characteristics. Due to the differences in
the physical meaning of the integration increments, they cannot be directly used as a
measure of the computational effort, which is of interest for the practical implementation
of the methodologies to determine the radial variation in porosity of a packed bed. A
truer reflection of the computational effort is the number of integration points in each case
required to obtain an accurate numerical solution. Table 8 gives a summary of the number
of integration points required in each of the cases listed in Table 7.

Table 8. Summary of number of integration points.

Case 1c Case 2c Case 3c Case 4c

Equation (15) [16] 159 159 159 159
Equation (4) [17,19] 18,001 18,001 53,131 28,957

Equation (8) [19] 96,825 96,825 86,603 100,001
Equation (23) [18] 1,666,666,667 833,333,335 1,250,000,001 416,666,667

It can be seen in Table 8 that the numerical integration of Equation (15) requires
the least number of integration points followed by Equation (4), then Equation (8), and
lastly Equation (23). It can further be observed in Table 8 that the number of integration
points required in the case of Equation (15) is independent of the sphere–cylindrical plane
configuration. The reason for this is the fact that the numerical integration of Equation (15)
is only dependent on the accurate numerical integration of the Legendre complete elliptic
integral Equations (17) and (18). It can, therefore, be concluded that the methodology of
Mariani et al. [16] is the most effective approach as measured by the number of integrations
points that are required to calculate the area of the intersection between a sphere and a
cylindrical plane accurately.
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4. Conclusions

Cylindrical packed beds consisting of spherical particles are found in various industrial
and practical applications [1–3]. The container wall has a significant influence on the
packing structure in the near-wall region affecting the flow distribution and heat and mass
transfer [2,4]. This requires an understanding of the characteristics of the radial variation
in in the porosity [1,5]. When the positions and the diameters of the spheres forming
the packed bed are known, numerical techniques [14–22] can be used to obtain the radial
variation in porosity. Employing area-based methodologies, Mariani et al. [16], Mueller [18],
and Du Toit [17,19] determine the radial variation in porosity by considering the areas of
the intersections between the spheres in the packed bed and selected cylindrical planes.
The accurate calculation of the area of the curved elliptical intersection between a sphere
and a cylindrical plane is of critical importance for the success of these methodologies.

This study endeavoured to provide a direct validation of the calculation of the in-
tersection through the refined numerical integral using Simpson’s Rule [23] of the pri-
mary integral expressions of Equation (4) [17,19], Equation (8) [19], Equation (15) [16],
and Equation (23) [18]. Four representative sphere–cylindrical plane configurations were
chosen to evaluate the ability of the methodologies to calculate the intersection area. The
first step in the analyses was to find the maximum size of the integration interval for each
case that gave a converged value for the intersection area. The second step in the analyses
was to compare the intersection areas that were obtained for the different cases with the
corresponding areas obtained using the finite element code COMSOL Multiphysics [27]
and the computer aided design (CAD) codes SOLIDWORKS [28] and NX [29]. It was
found that the corresponding intersection areas obtained by the methodologies of Mariani
et al. [16], Du Toit [17,19], and Mueller [18] are in excellent agreement and also in very good
agreement with the corresponding areas obtained using the Measuring Geometry Tool in
COMSOL Multiphysics, and the CAD packages SOLIDWORKS and NX.

The study also considered the performance of the methodologies of Mariani et al. [16],
Du Toit [17,19], and Mueller [18] by comparing the number of integration points required in
each case to obtain an accurate solution for the intersection area. The number of integration
points is considered to be a representative reflection of the computational effort and of
interest for the practical implementation of the methodologies. It was found that the
numerical integration of Equation (15) requires the least number of integration points
followed by Equation (4), then Equation (8), and lastly Equation (23). It was further
observed that the number of integration points required in the case of Equation (15) is
independent of the sphere–cylindrical plane configuration.

It can thus be stated that in this study the calculation of the area of the intersection
surface between a cylindrical plane and a sphere using the approaches of Mariani et al. [16],
Du Toit [17,19], and Mueller [18] have been validated. It can also be concluded that the
procedure of Mariani et al. [16], compared to the methodologies of Du Toit [17,19] and
Mueller [18], requires the least computational effort to obtain an accurate solution for
the intersection area based on Simpson’s rule [23], which was employed to perform the
numerical integration of the relevant integral expressions.

As a natural extension of the study, it is recommended that the computational effort
of more advanced numerical integration methods [23,31,32] be evaluated in view of the
fact that it has been shown that the methodologies of Mariani et al. [16], Du Toit [17,19],
and Mueller [19] give the correct results for the area of the intersection between a sphere
and a cylindrical plane. However, it is recommended that this be done in the context of
the calculation of the radial variation in porosity for a selection of cylindrical packed beds
consisting of varying numbers of spheres. The study should include the pebble bed model
consisting of 450,000 spheres generated by Suikkanen et al. [13].
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