
Citation: Machado, P.; Pinheiro, S.J.;

Afreixo, V.; Silva, C.J.; Leitão, R.

Graph Theory Approach to

COVID-19 Transmission by

Municipalities and Age Groups.

Math. Comput. Appl. 2022, 27, 86.

https://doi.org/10.3390/

mca27050086

Academic Editor: Gianluigi Rozza

Received: 6 July 2022

Accepted: 5 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

Graph Theory Approach to COVID-19 Transmission by
Municipalities and Age Groups
Pedro Machado 1, Sofia J. Pinheiro 1, Vera Afreixo 1 , Cristiana J. Silva 1,* and Rui Leitão 2

1 Center for Research and Development in Mathematics and Applications (CIDMA),
Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

2 Public Health Unit, Baixo Vouga Health Centers Cluster, 3810-164 Aveiro, Portugal
* Correspondence: cjoaosilva@ua.pt

Abstract: The COVID-19 pandemic remains a global problem that affects the health of millions of
people and the world economy. Identifying how the movement of people between regions of the
world, countries, and municipalities and how the close contact between individuals of different age
groups promotes the spread of infectious diseases is a pressing concern for society, during epidemic
outbreaks and pandemics, such as COVID-19. Networks and Graph Theory provide adequate and
powerful tools to study the spread of communicable diseases. In this work, we use Graph Theory to
analyze COVID-19 transmission dynamics between municipalities of Aveiro district, in Portugal, and
between different age groups, considering data from 2020 and 2021, in order to better understand the
spread of this disease, as well as preparing actions for possible future pandemics. We used a digraph
structure that models the transmission of SARS-CoV-2 virus between Aveiro’s municipalities and
between age groups. To understand how a node fits over the contact digraphs, we studied centrality
measures, namely eigencentrality, closeness, degree, and betweenness. Transmission ratios were
also considered to determine whether there were certain age groups or municipals that were more
responsible for the virus’s spread. According to the results of this research, transmissions mostly
occur within the same social groupings, that is, within the same municipalities and age groups.
However, the study of centrality measures, eliminating loops, reveals that municipalities such as
Aveiro, Estarreja and Ovar are relevant nodes in the transmission network of municipalities as well
as the age group of 40–49 in the transmission network of age groups. Furthermore, we conclude that
vaccination is effective in reducing the virus.

Keywords: graph theory; centrality measures; COVID-19; betweenness centrality; closeness centrality;
degree centrality; eigencentrality; age groups; municipals

1. Introduction

The pandemic caused by the SARS-CoV-2 virus, known as COVID-19, remains a major
problem on a global scale. The virus not only affected the health of millions of people, but
it also hindered the growth of economies around the world. Overpopulation, globalization,
and hyper-connectivity have been identified as important factors that have accelerated the
transmission of this infectious disease, turning the epidemic into a pandemic [1].

Concerning the SARS-CoV-2 virus, the main transmission mode was recognized as the
dissemination of aerosol droplets by normal breathing and speech [2]. In this sense, aerosol
exposure related to SARS-CoV-2 and the risk of infection have led to further studies [3].
However, the spread of infectious diseases is mainly caused by two factors: the virus’s
physical and chemical properties, and the way people interact with each other through their
social networks [4]. Humans are not passive hosts for viruses; they actively interact with
one another and, as a consequence, transfer diseases to socially predictable subjects and
locations [4]. The way people build social networks influences the overall status and pattern
of a virus spread. In fact, one common research question is to identify which network
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characteristics predict the importance of a node regarding the disease spreading [5–7].
More precisely, structural network measures, such as centrality measures, are sought that
classify nodes in the same order of some quantity describing their importance in relation
to the spread of the disease [8,9]. Some studies aim to investigate the predictive power of
such centrality measures [10,11].

In Portugal, several restrictive measures were taken between 2020–2021. With the aim
of preventing the virus transmission, on 18 March 2020, with the declaration of the first
state of emergency, extraordinary and urgent restrictive measures were applied in terms of
movement rights and economic freedoms. This state of emergency ended on 2 May, and
was followed by a decrease in the epidemic crisis. During the summer of 2020 until the
next state of emergency on 6 November 2020, the Portuguese government changed contin-
gency states or alert states depending on the countryside or regional epidemic situation.
In September 2020, an increase marking the beginning of a second wave peaked in Novem-
ber with over 6000 daily new cases despite the reintroduction of some restrictive measures
in late October and early November 2020 [12].

This paper focuses on the social networks, particularly on concepts of centrality
measures in a graph identifying important nodes. We consider centrality measures from
graph theory, to better interpret the COVID-19 transmission network in Aveiro, Portugal,
considering their municipalities as well as the role of the different age groups in the spread
of the virus.

Graph theory is a powerful tool for measuring and describing social interactions,
being commonly used to describe social networks. Graphs are mathematical models
that represents relationships between entities that are the vertices of the graph and the
relationships between them represented by links or edges of the graph. They can be used
to model anything from chemical structures [13] to city drainage systems [14] or to human
brain networks [15]. If the edges are directed from one vertex to other, the graph is called
a directed graph or digraph. In this case the edges are called arcs and the vertices are
called nodes. We use a digraph to represent the transmission of SARS-CoV-2 virus between
Aveiro’s municipalities and between age groups and we study some centrality measures
to explain it. In [16] the centrality measures as a way to control the spread of the virus
through vaccination were studied.

SARS-CoV-2 transmission was previously interpreted using these methods in countries
like Italy [17], India [1], and Turkey [18] with different levels of results. Several research
studies on the spread of diseases are based on graph models and show how their use can
significantly help in controlling dissemination [16,19–21].

2. Materials and Methods

In this study, all COVID-19 related test results in Baixo Vouga Primary Care Clus-
ter (ACES BV) reported to the Public Health Unit (PHU) between 8 March 2020, and
14 January 2022 (N = 17,568) were considered. However, due to missing numbers and/or
insufficient information in the data for 2022, only the first two years of data were considered.
Since the study’s focus was on the dynamics between municipalities and age groups, the
database was filtered to contain just the relevant data for this purpose. The dataset was
also filtered to eliminate missing and repetitive items.

The resulting dataset was then used to generate contact matrices for age groups and
municipalities for 2020 and 2021, as well as January-June, July-September, and October-
December time intervals for 2021 (in this latter period the data are more complete), allowing
a comparative study between the two complete years as well as considering the children’s
school year. First, to realize the global dynamics of COVID-19 disease in the period
2020–2021, we studied the contact matrices considering the data from this period referring
to age groups and municipalities. Then, to detect the importance/influence of a node in
the transmission of the virus, we studied some centrality measures. For this, the contact
matrices were used to generate digraphs where the nodes represent the municipalities or
age groups and there is a weighted arc linking two nodes if there is transmission between
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them. The weight of an arc quantifies the level of transmission. In this case, loops, which
are arcs that start and end at the same node, were taken out because the centrality measures
were meant to focus on the relationships between nodes, and thus only the arcs that
represented transmissions between nodes were kept. A path in a digraph is a sequence
of nodes in which there is an arc pointing from each node in the sequence to its successor
in the sequence, with no repeated arcs. The length of a path is the sum of the weights
of its arcs. If the digraph is unweighted, then we assume that the weight is one. The
shortest path in a digraph is a path such that the sum of the weights of its constituent arcs
is minimum [22].

The following centrality measures were applied: closeness centrality, betweenness
centrality, eigencentrality, degree centrality. The closeness centrality of a node represents
its proximity to all other nodes in the network. It is calculated as the average of the
shortest path lengths from one node to all other nodes in the network, and so represents
the transmission strength. The closeness centrality of a node v, C(v), is defined by

C(v) =
1

∑v 6=u d(v, u)
(1)

where d(v, u) is the distance (length of the shortest path) between nodes v and u.
The betweenness centrality evaluates a node’s impact on the information flow in the

network, and thus it represents the power of a node as a bridge between nodes [15]. The
betweenness centrality of a node v, B(v), is defined by

B(v) = ∑
u 6=v 6=w

σuw(v)
σuw

(2)

where σuw is the total number of shortest paths from u to w and σuw(v) the number of those
paths that pass through v.

The eigencentrality is another way to figure out how important a node is in a network,
and looks at how strong/relevant each node’s neighbors are in the proximity network [23].
In this way, a node with a few relevant neighbors has a larger eigenvector centrality than a
node with various neighbors of limited relevance. This measure is computed by assuming
that the centrality of node v is proportional to the sum of centrality of node v’s neighbors.

The degree centrality is the number of arcs incident on a node [24] and refers to the
sum of the indegree and outdegree centrality measures.

Closeness and betweenness centrality measures are based on the shortest paths that
can be taken from one node to every other node in the network. Since in our case the arc’s
weights are the number of transmission cases between two nodes, that is, the greater the
number of transmissions, the higher the arc’s weight, and consequently the closer the nodes
involved should be, we consider the inverse of the arc’s weights as entries of the contact
matrices to perform the calculations for the centrality measures.

All the digraphs and the calculation of the centrality measures were made using the
igraph R package [25].

Matrices were also used to make transmission ratios by figuring out the ratio between
the number of people infected by each group and the number of people infected in each
group. This allowed to find out which groups spread the most per person. Furthermore,
ratio values greater than one indicate that this group increased the prevalence of COVID-19
by stating that, on average, each individual in the target group infected more than one
person and therefore disseminated the virus.



Math. Comput. Appl. 2022, 27, 86 4 of 11

3. Results
3.1. Contact Matrices and Digraphs Relating to the Whole-Time Span for Both Municipality Data
as Well as Age Group Data

Tables 1 and 2 show the contact matrices according to the overall time span of the data
(2020 to 2021), both for data relating to municipalities and for data relating to distinct age
groups. In the following tables the color coding helps to discern the level of transmission,
where a darker color corresponds to a higher value.

Table 1. Contact matrix regarding the data of the different age groups between 2020 and 2021.

00–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90+
00–9 296 124 70 220 270 45 53 28 11 2
10–19 123 468 110 133 429 185 68 40 11 7
20–29 121 233 911 317 292 606 184 74 36 12
30–39 404 287 250 757 261 271 287 82 32 22
40–49 357 724 327 265 828 257 259 240 77 24
50–59 97 291 493 257 267 689 199 149 162 45
60–69 86 95 169 235 172 199 553 121 92 55
70–79 14 55 45 57 150 81 117 256 51 17
80–89 10 13 27 23 51 110 71 84 114 21
90+ 1 7 9 9 25 35 44 24 22 24

Table 2. Contact matrix regarding the data of the different municipalities between 2020 and 2021.
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A. Velha 1132 20 0 31 4 7 0 0 2 4 1
Águeda 38 1739 27 38 2 3 0 21 1 4 2
Anadia 1 20 1333 15 0 3 0 29 0 1 0
Aveiro 37 24 20 3492 19 127 2 38 7 6 18

Estarreja 8 5 1 20 1250 1 47 0 18 0 1
Ílhavo 6 8 2 150 2 1785 2 12 1 1 18

Murtosa 0 0 0 8 68 2 638 0 7 1 0
O. Bairro 6 28 21 40 2 8 0 624 1 0 4

Ovar 2 4 0 18 30 1 10 0 2863 1 2
S. Vouga 0 7 3 2 0 3 1 0 1 509 2

Vagos 1 5 6 47 1 23 0 5 0 1 838

The municipalities data matrix displays a pattern, that is, the higher number is always
given in the principal diagonal which means that the highest number of infections was
within the municipality itself. However, in the age group matrix, this is not so evident,
occurring in some groups but always at a much lower level than the other matrix, being the
transmission more dispersed on the lines. This trend implies that, for both municipalities
and age groups, transmissions preferentially occur with the same group. Furthermore, in
Table 1 the transmission numbers have a two-decade gap, which may be justified by the
existence of a relationship between parents and children. In Table 2, excluding the principal
diagonal, the higher values coincide with geographically close municipalities.

3.2. Centrality Measures and Transmission Ratios

Since, in the study of centrality measures, the main goal is to study the level of
transmission between different classes, the loops were eliminated from the digraphs; that
is, the entries of principal diagonal of the contact matrices have been rewritten with zeros.
The digraphs corresponding to contact matrices for municipalities and age groups are
presented in Figure 1. The network structure conforms to the distances between the nodes
(see Section 2 distance definition) in both municipalities and ages digraphs. For example,
in the left digraph can be visualize an isolation of the S. Vouga municipality and in the
right digraph is the 90+ age group that is isolated.
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Figure 1. (a) Digraph of municipalities data regarding 2020 and 2021; and (b) digraph of age group
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To facilitate the results interpretation, using the same scale, we normalize the values
for closeness and eigencentrality according to the min-max scaling:

x−min
max−min

× 100,

where x is the calculated value and min and max are, respectively the minimum and
maximum of the calculated value concerning all municipalities or age groups.

3.2.1. Municipalities Analysis for 2020 and 2021

Table 3 presents centrality measures by municipalities and by year (2020 and 2021).
Aveiro, district capital, has the highest values for closeness centrality, degree centrality, and
betweenness centrality for both years which means that Aveiro is the municipality with
the highest transmission speed, like a transmission bridge between municipalities with
the most connections. In terms of closeness centrality, we can also highlight Ílhavo and
Águeda that have highest mean values. In terms of eigencentrality, Ílhavo and Vagos are
the municipalities that present the highest mean value, which means that the population
of Ílhavo and Vagos becomes easily infected because they are connected to a node whose
population is easily infected. Therefore, we may conclude that their neighbors are, in
general, responsible for the higher transmission. Geographically Ílhavo borders Aveiro and
Vagos and Vagos borders Aveiro, Ílhavo and O. Bairro.

Table 3. Centrality Measures of the digraph related to the municipality data in 2020 and 2021.

Closeness Betweenness Degree Eigen
2020 2021 2020 2021 2020 2021 2020 2021

A. Velha 62 62 0 0 8 14 73 54
Águeda 97 76 11 18 14 16 69 23
Anadia 28 51 6 0 8 12 0 51
Aveiro 100 100 70 69 18 20 25 28

Estarreja 48 63 18 34 12 11 60 16
Ílhavo 85 91 7 9 12 17 100 50

Murtosa 42 29 0 0 8 8 22 13
O. Bairro 37 79 0 6 11 11 56 0

Ovar 58 46 0 0 10 12 55 78
S. Vouga 0 0 0 0 6 12 44 100

Vagos 62 74 0 0 11 13 83 64
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The transmission ratios for both years are shown in Figure 2, and no municipality
seems to contrast with the others, being all practically similar in both years. However, A.
Velha and O. Bairro, present transmission ratios with opposite signs in 2020 and 2021. It is
also observed that Murtosa, O. Bairro, and Vagos are above the other municipalities in 2020.
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3.2.2. Municipalities Analysis in 2021

When subdividing the 2021 data (Jan–Jun, Jul–Sept and Oct–Dec), it is possible to
better understand the dynamics of the disease throughout the year. The division of 2021
attempted to illustrate the changes that particularly occur in the summer (second interval,
Jul–Sept).

Thus, regarding the closeness centrality (Table 4), Estarreja and Ovar were the munici-
palities that presented the highest transmission speed in the first interval, suggesting that
these municipalities are able to disseminate the virus efficiently, taking a central position in
the network, that is, they require few intermediates for contacting others. In the second
interval (summer and vacations period), most municipalities report numbers that warrant
higher transmission. In the third interval, we can highlight Aveiro and Ílhavo since they
are the municipalities with highest transmission speed and S. Vouga with the smallest one,
which is a municipality with an ageing population and is geographically isolated.

Table 4. Centrality Measures of the digraph related to the municipality data of Jan–Jun, Jul–Sept and
Oct–Dec time intervals of 2021.

Closeness Betweenness Degree Eigen
Jan–
Jun

Jul–
Sept

Oct–
Dec

Jan–
Jun

Jul–
Sept

Oct–
Dec

Jan–
Jun

Jul–
Sept

Oct–
Dec

Jan–
Jun

Jul–
Sept

Oct–
Dec

A. Velha 54 82 51 4 14 8 12 7 10 60 30 38
Águeda 53 78 78 17 1 2 16 12 12 62 100 89
Anadia 33 73 49 4 0 0 9 7 9 16 35 71
Aveiro 59 100 100 54 64 68 19 16 17 67 75 22

Estarreja 100 53 34 25 24 24 11 7 9 54 63 23
Ílhavo 51 94 96 9 0 29 15 7 14 100 36 100

Murtosa 61 25 21 0 0 0 6 2 6 0 2 0
O. Bairro 58 89 63 7 0 5 11 7 10 31 42 62

Ovar 77 97 14 0 0 0 11 4 7 72 30 16
S. Vouga 0 0 0 0 0 0 10 2 4 80 0 47

Vagos 62 75 74 0 0 8 10 7 0 91 61 80
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The betweenness centrality reveals that Aveiro was the most relevant municipality
since it was shown to have the highest value in all the intervals, in agreement with what was
already presented in the analysis of the full year. Aveiro is the municipality that most serves
as a link between municipalities when it comes to the transmission of COVID-19 throughout
the year, regardless of the seasons. This is also applicable to the degree centrality, since
Aveiro is the municipality with the highest values for this measure throughout the time
intervals. This would be expected since Aveiro is the district capital and therefore it has
connectivity with almost other municipalities throughout the year.

Analogously to the previous study, the transmission ratio regarding the municipality
data for Jan–Jun, Jul–Sept and Oct–Dec time intervals (Figure 3), we observe low level of
transmission ratios, ranging between 0.88 and 1.08. In this case, Murtosa, O. Bairro stand
out from the other ones, regarding Jan–Jun vs. Jul–Sept.
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50–59  93  77  11  12  18  18  0  3 
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Figure 3. Transmission ratio regarding the municipality data for Jan–Jun, Jul–Sept and Oct–Dec
time intervals.

3.2.3. Age Groups Analysis in 2020–2021

Table 5 shows that the centrality measures for the age group data for 2020 and 2021.
Globally, the behavior, along the age groups, of the centrality measures is similar. The age
group 40–49 is highlighted since it presents the highest values of closeness and betweenness
centrality measures. The highest value on closeness means the effectiveness of virus
transmission by this age group and the highest value of betweenness means that the node
40–49 lies on the shortest path between other nodes, showing that this age group is a
‘bridge’ between nodes on the network.

Considering the degree centrality measure, the values are identical, given that all age
groups interact with each other.

Table 5. Centrality measures of the digraph related to the age groups data for 2020–2021.

Closeness Betweenness Degree Eigen
2020 2021 2020 2021 2020 2021 2020 2021

00–9 69 13 0 0 17 18 77 89
10–19 73 53 0 0 18 18 32 56
20–29 85 79 0 0 18 18 33 12
30–39 86 87 7 13 18 18 24 10
40–49 100 100 21 20 18 18 7 0
50–59 93 77 11 12 18 18 0 3
60–69 70 67 15 9 18 18 0 1
70–79 39 36 0 0 18 18 17 27
80–89 28 23 0 0 18 18 41 39
90+ 0 0 0 0 17 18 100 100
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In the eigencentrality measure, the ages between 00–09 and above 90+ were the ones
that showed the highest values. Although they are not super spreader age groups, they
have contact with age groups that are more responsible for the disease transmission, such
as those presented in the closeness centrality measure. We may associate this fact with the
extra need for attention and care required by children and elderly people.

The transmission ratios for both years are depicted in Figure 4. In the first year, the
age groups with values greater than 1 are those between 20 and 59 years old, showing that
each infected person in this group, on average, infected more than one person, and thus
these ages are the most responsible for the spread of the disease. However, in the second
year, the age range with the highest values reduces to 20 to 49 years old.
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Figure 4. Transmission ratio for the age group in 2020–2021.

3.2.4. Age Group Analysis in 2021

Table 6 presents the centrality measures for age group in 2021. In terms of closeness
centrality, the Jan–Jun and Oct–Dec presents consistent values against the Jul–Sept period.
Note that in the Jul–Sept period the 20–29 age group has the highest value in opposition to
40–59 in the other two periods. In terms of the betweenness centrality measure, the age
groups with higher values are the same for the first and third time intervals, but different
for the second interval, which corresponds to the summer months. This shows that during
the summer, the age group most likely to spread this disease from one age group to another
changed from 40–59 to 20–29. Regarding eigencentrality, the same can be said as with the
full-year assignment: older ages have high values in all intervals.

Table 6. Centrality Measures of the digraph related to the Age groups Jan–Jun, Jul–Sept and Oct–Dec
time intervals of 2021.

Closeness Betweenness Degree Eigen
Jan–
Jun

Jul–
Sept

Oct–
Dec

Jan-
Jun

Jul–
Sept

Oct–
Dec

Jan–
Jun

Jul–
Sept

Oct–
Dec

Jan–
Jun

Jul–
Sept

Oct–
Dec

00–9 25 67 85 0 0 3 16 15 17 65 16 45
10–19 44 73 88 0 0 0 18 17 16 70 32 40
20–29 74 100 93 0 25 0 18 17 15 40 39 0
30–39 80 86 87 9 9 2 18 17 18 45 10 54
40–49 98 79 94 19 11 18 18 18 18 9 58 44
50–59 100 71 100 22 10 23 18 16 18 0 0 14
60–69 65 62 79 7 9 15 18 18 18 7 35 10
70–79 33 31 54 0 0 1 18 16 18 44 43 20
80–89 29 21 26 0 8 0 18 17 16 100 65 73
90+ 0 0 0 0 0 0 16 9 14 97 100 100



Math. Comput. Appl. 2022, 27, 86 9 of 11

In Figure 5, we observe peaks on the transmission ratios and there is a translation of
the ages that transmit the most per person and a funneling of the age range with a ratio
greater than 1. The age class with the highest transmission ratio was 40–49 between Jan-Jun
and between Jul–Dec was 20–29. Furthermore, the transmission ratio associated with the
70+ age classes is lower than one for the all-time periods.
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4. Discussion

Considering the results, we can first say that, based on the contact matrices, trans-
missions tend to happen most often within the most similar social groups, whether those
groups are based on where they live or on their age.

In relation to the ratios, the results of these showed the effectiveness of the vaccination
since, referring now to the municipalities, the values of the ratio are lower in 2021 than in
2020. However, this conclusion is more direct in the transmission ratio relative to the year
2021 subdivided of the age groups since, in addition to a translation of the age groups that
are most transmitted to the left (younger ages), a funneling of the age group intervals that
were most dangerous is achieved. This is in line with the 2021 vaccination, which started
with older people at the beginning of the year and then moved on to younger people.

Regarding the measures of centrality, the results of the municipalities showed that the
municipality of Aveiro, as expected for being the capital of the city, is the municipality that,
in addition to presenting more connections, presents itself with the highest transmission
speed as well as the one that serves as a transmission bridge between municipalities.
Looking at the results of the subdivided year, it is proved that in the summer practically all
municipalities increase their transmission speed, possibly due to the holidays. In addition,
the results related to the data of the municipalities also showed possible reasons for Ovar’s
2020 prophylactic isolation, seeing that Ovar is a municipality with a high transmission
speed and it is connected to municipalities who themselves have high transmission speeds.

As for the centrality measure results concerning the data related to the age groups,
with the subdivision of the year and with the arrival of summer, there was a worsening
of the metrics for the 20–29 age group. In fact, we observed a change in the values of the
betweenness and closeness centrality measures in this age group.
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