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Abstract: We compare the solutions of two systems of partial differential equations (PDEs), seen as
two different interpretations of the same model which describes the formation of complex biological
networks. Both approaches take into account the time evolution of the medium flowing through
the network, and we compute the solution of an elliptic–parabolic PDE system for the conductivity
vector m, the conductivity tensor C and the pressure p. We use finite differences schemes in a uniform
Cartesian grid in a spatially two-dimensional setting to solve the two systems, where the parabolic
equation is solved using a semi-implicit scheme in time. Since the conductivity vector and tensor
also appear in the Poisson equation for the pressure p, the elliptic equation depends implicitly on
time. For this reason, we compute the solution of three linear systems in the case of the conductivity
vector m ∈ R2 and four linear systems in the case of the symmetric conductivity tensor C ∈ R2×2

at each time step. To accelerate the simulations, we make use of the Alternating Direction Implicit
(ADI) method. The role of the parameters is important for obtaining detailed solutions. We provide
numerous tests with various values of the parameters involved to determine the differences in the
solutions of the two systems.

Keywords: elliptic–parabolic system; leaf venation; Darcy’s law; finite differences scheme; semi-
implicit scheme; symmetric ADI method

1. Introduction

We study two elliptic–parabolic systems of partial differential equations (PDEs) de-
scribing the formation of biological network structures. Both systems are derived as
gradient flows of an energy functional, consisting of a diffusive term, activation term and
metabolic cost term. The energy functional can be seen as a continuum version of its dis-
crete counterpart introduced in [1]. Here, the authors consider a total energy consumption
function for a general class of biological transport networks (seen also in [2]), including a
material cost function of the network. In the papers [1,3], the authors adapt the dynamics of
local information for a biological transport network and its relation with the optimization
principle, which is known to be very common in nature.

Assuming the validity of Darcy’s law for slow flow in porous media (see, for in-
stance, [4,5]), the energy functional is constrained by a Poisson equation for the fluid
pressure. We use two modes of description of the network conductivity: first, in terms of a
conductance vector m, and, second, in terms of a symmetric positive definite conductance
tensor C. Taking the L2-gradient flow with respect to m (see, for instance, [6–10]) and, resp.,
with respect to C (see [11]), leads to two structurally similar elliptic–parabolic PDE systems.

In the parabolic equation, a reaction term appears, representing the metabolic cost of
the network, while the diffusion term describes the randomness in the material structure.
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The third term, called the activation term, describes the tendency of the network to align
with the principal direction of the material flow. The elliptic Poisson equation describes
local mass conservation and is equipped with a right-hand side describing the distribution
of sources and sinks of the material. This distribution is supplied as a datum and is
supposed to be time-independent.

The aim of this paper is to present several numerical simulations of both the vector-
valued m model and the tensor-valued C model, with the goal of comparing their solutions
in various parameter settings. The initial datum is chosen such that C = m⊗m, i.e., initially,
the principal direction (the eigenvector corresponding to the largest eigenvalue) of C is
aligned with m. Note that, in the spatially two-dimensional setting, the second eigenvalue
of m⊗ m is zero, with eigenspace orthogonal to m. We shall observe that the two PDE
systems develop structurally and qualitatively similar solutions; however, they differ in
quantitative details, for instance, the number and location of branches.

2. Mathematical Model

We introduce the energy functional Etens for the tensor-valued model,

Etens[C] :=
∫

Ω

D2

2
|∇C|2 + c2∇p[C] · P[C]∇p[C] + M(|C|)dx, (1)

where C = C(x) ∈ R2×2 is the conductivity tensor, the diffusivity parameter D ∈ R
measures the effect of random fluctuations in the network, and the activation parameter
c2 > 0 controls the strength of the network formation feedback loop. The total permeability
tensor is of the form P[C] := rI+C, where the scalar function r = r(x) ≥ r0 > 0 describes
the isotropic background permeability of the medium. The scalar pressure p = p[C] of the
fluid transported within the network is the unique solution (up to an additive constant) of
the Poisson equation

−∇ · (P[C]∇p) = S, (2)

subject to homogeneous Neumann boundary condition on ∂Ω. The source/sink distri-
bution S = S(x) in the mass conservation Equation (2) is to be supplemented as an
input datum and is assumed to be independent of time. The metabolic cost function
M : R+ → R+ describes the dependence of the metabolic expenditure of maintaining the
network on its transportation capacity; see [1]. The expression |C| denotes the Frobenius

norm |C| :=
√

∑2
i=1 ∑2

j=1 C2
ij and |∇C| :=

√
∑2

i=1 ∑2
j=1 ∑2

k=1(∂Cij/∂xk)2.

Taking the L2-gradient flow of the energy (1) constrained by (2), we obtain the
parabolic–elliptic system

−∇ · ((rI+C)∇p) = S (3)

∂C
∂t
− D2∆C− c2∇p⊗∇p +

M′(|C|)
|C| C = 0; (4)

see [11] for details of the derivation. In our paper, we shall make the generic choice for the
metabolic cost function (see, e.g., [6–9]),

M(s) :=
α

γ
sγ for s ≥ 0, (5)

where α > 0 is the metabolic constant and γ > 0 the metabolic exponent. For instance,
to model leaf venation in plants, one chooses 1/2 < γ < 1; see [1]. Then, Equation (4)
becomes

∂C
∂t
− D2∆C− c2∇p⊗∇p + α|C|γ−2C = 0 (6)
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To derive the vector-valued model, we make the ansatz C := m⊗m. Inserting this
into (1) with D = 0 and noting that |C| = |m|2, we obtain

E =
∫

Ω
c2∇p[m] · P[m]∇p[m] + M

(
|m|2

)
dx

with P[m] = rI+ m⊗m and, with a slight abuse of notation, we now denote by p = p[m]
the solution of the Poisson Equation (2) with P[C] replaced by P[m⊗m]. Re-introducing
the Dirichlet integral D2

∫
Ω |∇m|2dx, we arrive at the energy functional

Evect[m] :=
∫

Ω
D2|∇m|2 + c2∇p[m] · P[m⊗m]∇p[m] + M(|m|2)dx. (7)

Note that this functional is different from the one obtained by replacing C = m⊗m
in Equation (1), with the two functionals mainly differencing in the contribution of the
diffusion term. As we shall see, we are mainly interested in studying the behavior of the
system for very small diffusion coefficients, so that we expect such difference to not be
so crucial.

Taking the L2-gradient flow with respect to the vector variable m and using the explicit
form (5) for the metabolic function, we obtain the system

−∇ · ((rI+ m⊗m)∇p) = S (8)
∂m
∂t
− D2∆m− c2(∇p⊗∇p)m + α|m|2(γ−1)m = 0. (9)

From now on, we denote system (3) and (6) as the C system (or model), while we call
(8) and (9) the m system (or model). Let us now shortly discuss the differences between the
two systems. First, the activation term c2∇p⊗∇p in (4) is quadratic and depends on C
only through the solution p = p[C] of the Poisson Equation (3). In contrast, the activation
term c2(∇p⊗∇p)m in (9) is cubic. Moreover, the metabolic term α|C|γ−2C in (4), which
comes from the gradient flow, where the gradient of the functional defined in Equation (1)
is taken with respect to C, becomes singular at C = 0 if (and only if) γ < 1. This obviously
causes difficulties for both the analytical treatment of the system (see [11] for details) and
its numerical resolution. We discuss in Section 3.2.1 how the numerical difficulties can
be overcome. In contrast, the metabolic term α|m|2(γ−1)m in (9) only becomes singular
at m = 0 if γ < 1/2. Taking into account the fact that for typical applications in biology,
only the parameter range γ ≥ 1/2 is relevant (see [1]), the metabolic term in (9) does not
require any special treatment for the m system. We point out that the different expressions
for the metabolic terms, in the C and the m models, come from the fact that in defining
the gradient flows, we differentiate the energy functionals defined in Equations (1) and (7)
with respect to C and m, respectively.

We define the equations on a domain Ω ⊂ R2, and we define the boundary conditions
on ∂Ω for the pressure and the conductivity. We choose homogeneous Dirichlet boundary
conditions for m and C and homogeneous Neumann conditions for p.

m(t,~x) = 0, C(t,~x) = 0, P[C]∇p(t,~x) · ν = 0, ~x ∈ ∂Ω, t ≥ 0 (10)

where ν is the outgoing normal vector to ∂Ω. In all our numerical tests, the numerical
support of C or m, after a long time, is well within Ω; therefore, the solution should not be
particularly sensitive to the boundary conditions on the two variables. In any case, different
boundary conditions for m and C are currently under investigation.

To close the system, we prescribe an initial condition for the conductivity vector
and tensor

m(t = 0,~x) = m0(~x), C(t = 0,~x) = C0(~x), in Ω. (11)
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A direct consequence of the boundary condition defined for the pressure, which is
also a necessary condition for the solvability of the Poisson equation, is that the source

function has to be the vanishing mean, i.e.,
∫

Ω
S(~x)dΩ = 0.

3. Numerical Schemes

In this section, we define the numerical schemes used to discretize Equations (3), (4),
(8) and (9) in space and time. We adopt semi-implicit second-order schemes.

3.1. Space Discretization

In space, we consider the square domain Ω = [0, 1] × [0, 1], which we discretize
by a uniform Cartesian mesh with spatial step h := ∆x = ∆y. We call Ωh the dis-
crete computational domain. The two variables of conductivity and the pressure are
Cij ≈ C(xi, yj), mij ≈ m(xi, yj) and pij ≈ p(xi, yj), defined at the center of the cell (i, j);
therefore, the set of grid points is xi = (i − 1/2)h, yj = (j− 1/2)h, (i, j) ∈ {1, . . . , N}2,
hN = 1.

In order to obtain second-order accuracy in space, we use central differences for the
computation of the space derivatives [12]. Discretizing Equation (9) in space, we have:

∂m(1)

∂t
= D2Lm(1) + c2(Dx p)2 m(1) + c2Dx pDy p m(2) − α|m|2(γ−1)m(1) (12)

∂m(2)

∂t
= D2Lm(2) + c2(Dy p

)2 m(2) + c2Dx pDy p m(1) − α|m|2(γ−1)m(2) (13)

while the semi-discrete version of Equation (4) is

∂C(1,1)

∂t
= D2LC(1,1) + c2(Dx p)2 − α|C|γ−2C(1,1) (14)

∂C(1,2)

∂t
= D2LC(1,2) + c2Dx pDy p− α|C|γ−2C(1,2) (15)

∂C(2,2)

∂t
= D2LC(2,2) + c2(Dy p

)2 − α|C|γ−2C(2,2) (16)

where L is the discrete Laplacian operator and Dx and Dy are, respectively, the discrete x
and y first derivative operators, both using central difference approximation. The norm | · |
we use is the Frobenius one. In this case, we have three equations instead of four, because C
is symmetric.

In order to have a fully implicit scheme, we define a compact form of the semi-discrete
Equations (12) and (13) and Equations (14) and (16), as follows:

∂mcomp

∂t
= D2Lmcomp + c2P mcomp − αQm(m)mcomp (17)

∂Ccomp

∂t
= D2LCcomp + c2P − αQc(C)Ccomp (18)

where mcomp = [m(1), m(2)]T , Ccomp = [C(1,1), C(1,2), C(2,2)]T and P = Dβ pDη p, with the
suitable choice of β, η ∈ {x, y}. For the metabolic terms, we have

Qm(m) = |m|2(γ−1) (19)

Qc(C) = |C|γ−2. (20)
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Here, we discretize the Poisson equation for the pressure. To obtain a conserva-
tive scheme, we consider the following discretization: first, we extend the formula in
Equation (3), which becomes

∂x

((
r + C(1,1)

)
∂x p
)
+ ∂x

(
C(1,2)∂y p

)
+ ∂y

(
C(1,2)∂x p

)
+ ∂y

((
r + C(2,2)

)
∂y p
)
= −S (21)

where we use the symmetry C(1,2) = C(2,1).
Now, we discretize the components of the formula, one by one, since we use different

discretizations. For simplicity, we pose C1,1 = r + C(1,1):

∂x

(
C1,1∂x p

)
i,j
≈ 1

∆x

(
C1,1

i+1/2,j∂x pi+1/2,j − C1,1
i−1/2,j∂x pi−1/2,j

)
=

1
2∆x2

((
C1,1

i+1,j + C
1,1
i,j

)
pi+1,j +

(
C1,1

i−1,j + C
1,1
i,j

)
pi−1,j

)
− 1

2∆x2

(
C1,1

i+1,j + C
1,1
i−1,j + 2C1,1

i,j

)
pi,j (22)

where, in the last line, we consider the following approximations:

∂x pi+1/2,j ≈
pi+1,j − pi,j

∆x
, C1,1

i+1/2,j ≈
C1,1

i+1,j + C
1,1
i,j

2
.

We omit the term with both y derivatives because it is analog to the one with x
derivatives. Now, we discretize the term with mix derivatives.

∂x

(
C(1,2)∂y p

)
i,j
≈ 1

∆x

(
C(1,2)

i+1/2,j∂y pi+1/2,j − C(1,2)
i−1/2,j∂y pi−1/2,j

)
(23)

=
1

8∆x2

(
C(1,2)

i+1,j + C(1,2)
i,j

)
(pi+1,j+1 − pi+1,j−1)

− 1
8∆x2

(
C(1,2)

i−1,j + C(1,2)
i,j

)
(pi−1,j+1 − pi−1,j−1) (24)

+
1

8∆x2

(
C(1,2)

i+1,j − C(1,2)
i−1,j

)
(pi,j+1 − pi,j−1) (25)

Again, we omit the term with y, x derivatives because it is analog to the one with x, y
derivatives.

3.2. Time Discretization: Symmetric ADI Method

At this stage, we describe the time discretization that we apply to the model. Since sys-
tems (3), (4), (6) and (8) are stiff in all their components, the choice of the time discretization
is crucial for the efficiency.

We also need a high-performing scheme in time, since at each time step, we compute
the solution of seven linear systems (two for the conductivity vector m, three for the
conductivity tensor C and two Poisson equations for the pressure p).

As we shall see, for some values of the parameters, the well-posedness of the problem
becomes weaker, which reflects the bad conditioning of the numerical problem. For such
a reason, we adopt a symmetric scheme, which better preserves possible symmetries of
the solution. In particular, we adopt a symmetric ADI scheme for both the conductivity
variables, which guarantees efficiency, second-order accuracy and spatial symmetry.

Anyway, the scheme is not strictly second-order accurate in time for two reasons.
First, the pressure is computed at time n rather than at an intermediate time n + 1/2.
Second, the metabolic term is treated partially explicitly and partially implicitly, thus
destroying second-order accuracy. Improvements in the order of accuracy in time are
currently under investigation.
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3.2.1. Time Discretization for the Conductivity Vector

Here, we focus on the time discretization for Equations (8) and (9).
Given mn ≈ m(tn), we compute pn by solving the Poisson equation

−L(mn ⊗mn) pn = S, (26)

where L(mn ⊗mn) ∈ RN2×N2
is the discrete elliptic operator, in both directions (x and y),

with variable coefficients and corresponding to zero Neumann conditions.
The symmetric ADI method to solve the Equation (17) works as follows. We start with

the y-direction implicit and x-direction explicit, and then, we consider the opposite order
in the second step of the ADI scheme

(y− impl, x− expl) m̃ = mn +
∆t
2
Lym̃ +

∆t
2
Lxmn + ∆t c2Pn

xy(m
n)

and we solve for m̃,

(x− impl, y− expl) mn+1
y = m̃ +

∆t
2
Lxmn+1

y +
∆t
2
Lym̃− ∆t αQm(mn)mn+1

y

+∆t c2Pn
y mn+1

y

and we solve for mn+1
y .

The second time we apply the ADI method, we first consider the x-direction implicit
and y explicit, and then, we exchange the order. Thus, we have

(x− impl, y− expl) m̂ = mn +
∆t
2
Lxm̂ +

∆t
2
Lymn + ∆t c2Pn

xy(m
n)

Here, we solve for m̂,

(y− impl, x− expl) mn+1
x = m̂ +

∆t
2
Lymn+1

x +
∆t
2
Lxm̂− ∆t αQm(mn)mn+1

x

+∆t c2Pn
x mn+1

x

and now, we solve for mn+1
x , where Qm(mn) = |mn|2(γ−1) and Lβ, with β = x, y, which

are the discrete operators for the second derivatives in the x and y directions, respectively,
with Lβ ∈ RN×N . For the pressure term, we have Pn

x = (Dx pn)2 for the first component of
the vector m(1), and Pn

y = (Dy pn)2 for the second component m(2). Meanwhile, the force
term is Pn

xy(mn) = [Dx pnDy pn m(2)n,Dx pnDy pn m(1)n]T .
At the end, we calculate the average of the two solutions mn+1

y and mn+1
x to obtain the

conductivity vector at time tn+1

mn+1 =
1
2

mn+1
x +

1
2

mn+1
y . (27)

3.2.2. Time Discretization for the Conductivity Tensor

As we said in the description of the two systems, for the conductivity tensor C,
the reaction term is very stiff because of the exponent γ that belongs to the interval (0.5, 1).
After a finite time, we are basically dividing by zero at each time step. For this reason, we
introduce a small regularizing parameter ε in the equation, as follows:

Qc(C) = |C+ ε|γ−2C (28)

and we study the behaviour of the system as ε becomes smaller and smaller.
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Given the pressure at time tn from Equation (26), we apply the symmetric ADI method
to solve the Equation (18). As explained before, we first choose the y-direction implicit, and
then, we exchange the two directions. The scheme reads

(y− impl, x− expl) C̃1 = Cn +
∆t
2
LyC̃1 +

∆t
2
LxCn + ∆tPn

and we solve for C̃1,

(x− impl, y− expl) Cn+1
y = C̃1 +

∆t
2
LxCn+1

y +
∆t
2
LyC̃1 − ∆t αQc(Cn)Cn+1

y

and we solve for Cn+1
y .

Now, as before, we apply the ADI method for the second time for C starting with the
x-direction implicit, and we have

(x− impl, y− expl) C̃2 = Cn +
∆t
2
LxC̃2 +

∆t
2
LyCn + ∆tPn

Here, we solve for C̃2,

(y− impl, x− expl) Cn+1
x = C̃2 +

∆t
2
LyCn+1

x +
∆t
2
LxC̃2 − ∆t αQc(Cn)Cn+1

x

and here, we solve for Cn+1
x .

Finally, we calculate Cn+1 from the two solutions Cn+1
y and Cn+1

x

Cn+1 =
1
2
Cn+1

x +
1
2
Cn+1

y .

The quantities above have the following expressions: Qc(Cn) = |Cn + ε|γ−2, and for
the pressure, Pn = Dβ pnDη pn, with the suitable choice of β, η ∈ {x, y} for the four
components of the conductivity tensor.

4. Numerical Results

In this section, we perform several simulations with the aim of studying the effect of
the various parameters. In particular, we check the agreement of the two models for the m
system in Equations (8) and (9) and for the C system in Equations (3) and (6).

4.1. Accuracy Tests and Qualitative Agreements

In Table 1, we define the tests we want to show in this paper, varying the parameters
of the systems. For this choice of parameters, a typical time scale is of the order of unit,
while after time 15, the solution reaches the steady state.

First, we check the accuracy of the schemes adopted. In Tables 2 and 3, we see the error
for the conductivity variables, calculated with Richardson extrapolation (see, e.g., [13]). We
show the error for the module of the vector and of the tensor, and the parameters chosen
are defined in TESTA, TESTB and TESTC.

Here, we define the initial conditions m0
comp(~x) and C0

comp(~x), and the source function
S(~x)

m0
comp(~x) = [1, 1]T , C0

comp(~x) = [1, 0, 1]T , S(~x) = E− Ē (29)

E = exp(−σ(~x−~x0)
2), σ = 1000, ~x0 = (0.1, 0.1) (30)

where I is the identity matrix and Ē = mean(E).
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Table 1. In this table, we define all the tests that we show in Section 4.1. The first three rows show
the parameters for the accuracy tests for m and C, and the results are summarized in Tables 2 and 3.
The second three rows define the parameters that we use in Figure 2, where we compare the results
of changing the diffusivity. The third three rows are the tests showed in Figure 3, varying gamma,
and the results of the last three rows are in Figure 4, where we change the stabilization parameter ε.
For the accuracy tests, the number of points of the discretization is specified in Tables 2 and 3, while
for all the other tests, the number of points is fixed, and it is N = 600.

α c D ε γ r tfin

Accuracy m TESTA: 0.5 1 0.01 - 0.75 0.1 1

Accuracy C TESTB: 1 1 0.01 0.1 1.75 0.1 1

Accuracy m TESTC: 0.5 5 0.01 - 0.75 0.01 1

D = 0.05 TESTG: 0.75 5 0.05 10−3 0.75 0.005 15

D = 0.01 TESTD: 0.75 5 0.01 10−3 0.75 0.005 15

D = 0.001 TESTE: 0.75 5 0.001 10−3 0.75 0.005 15

γ = 1 TESTH: 0.75 5 0.01 10−3 1 0.005 15

γ = 0.75 TESTD: 0.75 5 0.01 10−3 0.75 0.005 15

γ = 0.5 TESTF: 0.75 5 0.01 10−3 0.5 0.005 15

ε = 10−2 TESTI: 0.75 5 0.01 10−2 0.75 0.005 15

ε = 10−3 TESTD: 0.75 5 0.01 10−3 0.75 0.005 15.

ε = 10−4 TESTL: 0.75 5 0.01 10−4 0.75 0.005 15

Table 2. Accuracy test of the m system (8) and (9): we show the L2-norm of the relative error for |m|,
with the parameters defined in TESTA (left) and TESTC (right).

N Error Order N Error Order

20 - - 20 - -

40 0.036030 - 40 0.036012 -

80 0.0492860 −0.4520 80 0.0493010 −0.4531

160 0.01454106 1.7610 160 0.01456192 1.7594

320 0.00690830 1.0737 320 0.00691103 1.0752

640 0.001529779 2.1750 640 0.001528055 2.1772

Table 3. Accuracy test of the C system (3) and (4): we show the L2-norm of the relative error for |C|,
with the parameters defined in TESTB.

N Error2 Order

25 - -

50 9.066× 10−2 -

100 4.625× 10−2 0.97

200 1.571× 10−2 1.56

400 4.149× 10−3 1.92

800 7.347× 10−4 2.50

In Figure 1, we show three different quantities of TESTD: the module of the variables
at the final time (first column), the two components of the flux |C∇p| at the final time
(second column) and the energy as a function of time (third column). In the first row, we
have the results for the variable m, and in the second row, the results for the variable C are
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shown. As expected, the energy decays in time for both variables, and it is very small at the
final time, which indicates that we are close to the steady state of the systems. The main
difference between the two variables is the shape of the network, with a Y shape for the
conductivity vector and a V shape for the tensor.

Figure 1. In this figure, we show three different quantities of the same computations, with the
parameters defined in TESTD: the module of the variables at final time (left panels), the flux also at
final time (central panels) and the energy as a function of time (right panels). The first row concerns
variable m, and the second one is for variable C.

In Figure 2, we show the results obtained when varying parameter D in Equations (8)
and (9) and in Equations (3)–(6). The tests we consider are: TESTG (first column), TESTD
(second column) and TESTE (third column), with D ∈ {0.05, 0.01, 0.001} for variable m in
the first row and for C in the second row. The ramifications become more evident when
decreasing the diffusivity, and they become thinner and thinner. For the first parameter
chosen, D = 0.05, we are not able to see those ramifications for vector m because the time
scale associated with the diffusion is too fast to capture the details.

Figure 2. In this figure, we show the difference in the results on varying the diffusivity D. In the first
column, we have the results of TESTG (D = 0.05); in the second column, we choose the parameters
of TESTD (D = 0.01), and in the third one, TESTE (D = 0.001). The first row shows the results of
variable m, and the second row shows those of variable C.
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In Figure 3, we observe the dependence on the relaxation exponent γ. In the first
column, we report the results of TESTH; in the second, those corresponding to TESTD; and
in the third one, those corresponding to TESTF. Again, in the first row, we show the results
for variable m, and in the second row, those for variable C. If γ = 1, the results do not show
the details of the network, and it seems that γ = 0.75 is the parameter that better represents
the leaf network.

Figure 3. In this figure, we show the difference in the results on varying the relaxation exponent
γ. In the first column, we have the results of TESTH (γ = 1); in the second column, we choose the
parameters of TESTD (γ = 0.75); and in the third one, TESTF (γ = 0.5). The first row shows the
results of variable m, and the second row, variable C.

In Figure 4, we show the behavior of solution C when ε → 0. We see the results for
ε ∈ {10−2(left), 10−3(center), 10−4(right)}, and again, we notice that for the largest value
of ε, we are not able to see any ramification. Meanwhile, we see that for ε smaller than 10−3,
we are close to asymptotic behavior.

Figure 4. In this figure, we show the results for variable C varying the parameter ε. On the left, we
have the results of TESTI (ε = 10−2), in the central panel, TESTD (ε = 10−3), and on the right, TESTL
(ε = 10−4).

4.2. Quantitative Agreement

In this section, we show some quantitative comparisons between the two models. For
this reason, we consider well-prepared initial data, and we look for compatible parameters.

The goal of this part is to choose a convenient set of parameters in order to compare the
two systems, trying to make them as close as possible. Now, we distinguish the parameters
(Dl , cl , αl , γl) with l = 1 for the C model, and l = 2 for the m model.
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For simplicity, the choice of parameter is performed by comparing the two models in
one space dimension. In 1D, the systems (3), (6), (8) and (9) read

Ct − D2
1 Cxx − c2

1 p2
x + α1|C|γ1−2C = 0 (31)

mt − D2
2 mxx − c2

2 p2
x m + α2|m|2(γ2−1)m = 0. (32)

Now, we suppose that C has the following form:

C = m2 + B, (33)

where B is a measure of the discrepancy between the two models, and we set the initial
conditions so that B(t = 0) = 0. If we substitute Equation (33) in Equation (31), we have

(m2)t − D2
1(m

2)xx − c2
1 p2

x + α1|m2 + B|γ−2m2 = −Bt + D2
1Bxx − α1|m2 + B|γ−2B. (34)

At this point, we multiply Equation (32) by a factor (2m), and we obtain

2m mt − 2D2
2m mxx − 2 c2

2 p2
x m2 + 2α2|m|2(γ2−1)m2 = 0. (35)

After some manipulation, Equations (34) and (35) become:

2m mt − D2
1(m

2)xx − c2
1 p2

x + α1 (m2)γ−1 = −Bt + D2
1Bxx − α1|m2|γ−2B︸ ︷︷ ︸

:=R

(36)

2m mt − D2
2(m

2)xx + 2D2
2(mx)2 − 2 c2

2 p2
x m2 + 2α2(m2)γ2 = 0 (37)

whereR is the residual. We made use of the following identity in the equation for m

(m)2
xx = 2m mxx + 2

(
(mx)

2
)

. (38)

Now, we consider the difference between Equations (36) and (37), and we obtain

(D2
2 − D2

1)(m
2)xx − 2D2

2(mx)
2 + (2 c2

2m2 − c2
1)p2

x + α1 (m2)γ−1 − 2α2(m2)γ2 = R (39)

Since we want the residual to be small, in absolute value, a convenient choice for the
sets of variables is the following:

D1 = D2, α1 = 2α2, γ1 = γ2 + 1, c1 =
√

2 c2|m| (40)

and for the initial conditions, we choose m0 and C0 such that, initially, we have

C0 = (m0)2 = const.

In this way, the first derivative in space mx is also equal to 0 after one time step.
In order to show some results in 2D, we need to define the initial conditions for m0

comp

and C0
comp such that, at the initial time, we have again

C0 = m0 ⊗m0,

with m0
comp = [

√
2/2,
√

2/2]T and C0
comp = [0.5, 0.5, 0.5]T , while the values of the parame-

ters are defined in TESTM in Table 4. In 2D, the equivalent expression of (33) is

C = m⊗m +B.

In this subsection, we comment on the solutions of the following tests:
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Table 4. In this table, we define the two sets of parameters in Equation (40).

α1, α2 c1, c2 D1 = D2 ε γ1, γ2 r N

set of parameters TESTM: 1, 0.5
√

2, 1 0.1 10−1 1.75, 0.75 0.1 600

In Table 5, we show the time evolution of the norm of the difference between C and
m⊗m, to see how they move away from each other when we increase the time. In this
table, we see that the two solutions are very different, even after few time steps, and for
this reason, they are difficult to compare. The definition of ||B|| is the following:

||B|| :=

∣∣∣∣∣∣|C| − |m⊗m|
∣∣∣∣∣∣∣∣∣∣∣∣|m⊗m|

∣∣∣∣∣∣
after nt time steps, with time = nt∆t, such that nt = 6(2k), k = 0, 1, 2, 3, 4, 5, 6, where

|C| :=
√
C2

11 + 2C2
12 +C2

22 and |m⊗m| :=
√
(m2

1)
2 + 2 (m1 m2)2 + (m2

2)
2.

Table 5. Here, we show the values of B, after nt time steps, where nt = 2k, k = 0, 1, 2, 3, 4, 5, 6.

Time 0.01 0.02 0.04 0.08 0.16 0.32 0.64

||B|| 0.0348 0.0538 0.0697 0.0982 0.1509 0.2611 0.5320

As it appears from the table, the two models move quickly far apart from each other,
suggesting intrinsically different behavior.

Now, we are interested in showing the solution of the C model, in the case of zero-
diffusivity. Since the randomness of the network is common in nature but is also very
effective in stabilizing the equations, we want to see if there is some analogy in considering
the cases D = 0 and D � 1. We call C(D) the solution with D = 10−5 and C(0) when
D = 0. In Figure 5, we show the agreement of the two solutions, with D = 0 (left panel)
and D = 10−5 (right panel). The other parameters are defined in TESTN and TESTO in
Table 6, while the initial condition is defined in Equation (29) for Figure 5.

Table 6. In this table, we define the two tests showed in Figures 5 and 6, with D = 0 (TESTN) and
D = 10−5 (TESTO).

α c D ε γ r tfin N

D = 0 TESTN: 0.75 5 0 10−3 0.75 0.005 15 600

D = 10−5 TESTO: 0.75 5 10−5 10−3 0.75 0.005 15 600

Figure 5. Comparison between TESTN and TESTO, with initial condition defined in Equation (29).
The main difference is that on the left, we have D = 0, while on the right, we have D = 10−5.
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In Figure 6, we illustrate the long time solution for the C model obtained with the
following space-dependent initial condition:

C0 = f (x, y)I, f (x, y) = (2− |X + Y|) exp(−10(|X−Y|)) (41)

Figure 6. Comparison between TESTN and TESTO. Here, the initial condition is defined in Equa-
tion (41), with D = 0 on the left and D = 10−5 on the right.

In order to show some quantitative comparison between the results, we calculate the
difference in the solutions, at the final time, with the following expression:

diff =

∣∣∣∣∣∣ |C(D)| − |C(0)|
∣∣∣∣∣∣∣∣∣∣∣∣ |C(0)|

∣∣∣∣∣∣ .

This value, for the comparison shown in Figure 5, is diff = 4.81× 10−3, and that for
Figure 6 is diff = 2.37× 10−4. If we consider that the spatial step is ∆x = 1.66× 10−3,
the resulting values of this difference are not surprising because they are both of the order
of ∆x.

As we explain in the Section 2, the Dirichlet integral is important to describe the
randomness of the network, and it is essential for the Evect[m], because, without that term,
there is no network formation for the m model. In particular, if the initial condition for m
has a support Ω0 ⊂ Ω, there is no mechanism that extends the support, since m will remain
a zero vector in the whole Ω \Ω0. From the analytical point of view, it is also necessary
to regularize the model, and this is the main reason why we have a diffusion term (with
D 6= 0), coming from the gradient flow of that Dirichlet integral.

We also note that, if we set the diffusion coefficient equal to zero, the model for m
reduces to a reaction equation for the conductivity. This means that if γ > 1/2, the support
of the unknown m remains unchanged. In particular, it cannot extend, while in some
regions, the numerical support (i.e., the region in which |m| becomes lower than a given
small threshold) may shrink.

Alternative Boundary Conditions

Furthermore, in the case of zero-diffusivity for the m model, we observe anomalous
behavior of the solution near the boundaries. In order to overcome such a problem, we
propose an ad hoc boundary condition as illustrated below.

Let us consider the equations for m with D = 0 and in the limit of steady state.
We have

c2∇p⊗∇p m− α|m|2(γ−1)m = 0 in ∂Ω
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which we can write as follows:

(m · ∇p)∇p =
α

c2 |m|
2(γ−1)m in ∂Ω (42)

Thus, we can deduce that m ∝ ∇p. This means that there exists a constant β, such that,

m = β∇p. (43)

If we substitute Equation (43) in Equation (42), we obtain

β|∇p|2∇p =
α

c2 β2(γ−1)|∇p|2(γ−1)β∇p (44)

and if we solve it for β, we have the boundary condition for m

m|∂Ω =

(
c2

α
|∇p|4−2γ

) 1
2(γ−1)

︸ ︷︷ ︸
β

∇p. (45)

Analogously, we can also find a boundary condition for vector C. Again, starting with
zero-diffusivity and at steady state, we have

∇p⊗∇p =
α

c2 |C|
γ−2C in ∂Ω (46)

which means that the conductivity is proportional to the tensor product of the pressure
gradient, i.e., C ∝ ∇p⊗∇p. Again, we look for a constant β̃, such that,

C = β̃∇p⊗∇p. (47)

Now, we substitute Equation (47) in Equation (46), and we solve this for β̃. In this
way, as before, we find the expression for the conductivity tensor at the boundary

C|∂Ω =

(
c2

α
|∇p|−2(γ−2)

) 1
γ−1

︸ ︷︷ ︸
β̃

∇p⊗∇p. (48)

Conditions (45) and (48) might be a reasonable choice in the case of zero diffusivity.
This treatment has the drawback of introducing additional non-linearity to the system.
Alternative boundary conditions are currently under investigation.

Another aspect we want to focus on is the steady state for the m model in two different
cases: γ < 1 and γ > 1 (as the authors show in [7]). For this reason, we define different
initial conditions for the vector m, such that

m0,1
1 = 1, m0,1

2 =
√

2; m0,2
1 = 5, m0,2

2 = 5;

m0,3
1 = (2− |X + Y|) exp (−10|X−Y|), m0,3

2 = m0,3
1 ;

and in Figure 7, we plot the following quantity:

diff =
||mβ −mη ||
||mη || (49)

where || · || is the Frobenius norm, and β, η ∈ {1, 2, 3}. In this way, we see the difference
between the solutions (with the initial condition m0,1 and m0,2 in the left panel and with m0,1

and m0,3 in the right panel) as a function of time. In this way, we support with numerical
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evidence that, for the m model and for γ > 1, the steady state is unique and it does not
depend on the initial conditions, as expected (see e.g., [7]).

Figure 7. In this figure, we show the difference between two different solutions choosing, as initial
conditions, m0,1, m0,2 (left) and m0,1, m0,3 (right). We plot the expression defined in Equation (49) as a
function of time, with γ = 1.75 > 1, and the others parameters are defined in TESTD.

In Figure 8, which is the case for γ < 1, we see that we reach two different steady states
when choosing two different initial conditions, suggesting that the steady state solution is
not unique when γ < 1.

Figure 8. In this figure, we show the steady states when γ = 0.75 < 1. On the left, the initial condition
is m0 = m0,1 = 1 while on the right, the initial condition is a function of space, m0 = m0,3, and the
parameters are defined in TESTD.

5. Conclusions

In this paper, we use an elliptic–parabolic model to study the formation of a biological
network, and, in particular, of leaf venation networks. Throughout the paper, we compare
the solutions of two different systems, which derive from the Cai–Hu model, one for the
conductivity vector and one for the conductivity tensor, and we explore the dependence of
the solution on the parameters of the two models.

As we said before, all the components of the two systems are very stiff. In particular,
the C system is more challenging because of the negative exponent in the reaction term.
For this reason, we add a regularization parameter ε, and we compute numerical solutions
for smaller and smaller values of ε. This parameter prevents the instability coming from
the division by zero in the reaction term.
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We make use of the finite differences scheme to compute the two solutions, with cen-
tral differences for the space discretization and a symmetric ADI method in time. The
convergence rate is calculated numerically and denotes the second-order accuracy.

At the end, we add some quantitative comparisons between the two systems, choosing
more suitable sets of parameters. We see that the two solutions differ significantly, even
after few time steps. This aspect makes any kind of direct comparison between the two
systems problematic.

Then, we show some results in the case of zero diffusivity for the conductivity tensor.
The last tests we consider in this paper are in agreement with the results achieved in [7],
where the authors prove that there is a unique steady state for the m system when the
metabolic exponent γ is greater than 1 and provide evidence that indeed this is not true
when γ < 1.
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