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Abstract: The study is devoted to investigating the effect of an unsteady non-Newtonian Casson
fluid over a vertical plate. A mathematical analysis is presented for a Casson fluid by taking into
consideration Soret and Dufour effects, heat generation, heat radiation, and chemical reaction. The
novelty of the problem is the physical interpretation of Casson fluid before and after adding copper
water-based nanoparticles to the governing flow. It is found that velocity was decreased and the
temperature profile was enhanced. A similarity transformation is used to convert the linked partial
differential equations that control flow into non-linear coupled ordinary differential equations. The
momentum, energy, and concentration formulations are cracked by means of the finite element
method. The thermal and solute layer thickness growth is due to the nanoparticles’ thermo-diffusion.
The effects of relevant parameters such as the Casson fluid parameter, radiation, Soret and Dufour
effects, chemical reaction, and Prandtl number are discussed. A correlation of the average Nusselt
number and Sherwood number corresponding to active parameters is presented. It can be noticed
that increasing the Dufour number leads to an uplift in heat transfer. Fluid velocity increases with
Grashof number and decreases with magnetic effect. The impact of heat sources and radiation is to
increase the thermal conductivity. Concentration decreases with the Schmidt number.

Keywords: Casson nanofluid; copper nanoparticle; Soret and Dufour effects; chemical reaction

1. Introduction

Nanoparticles and nanofluid are both terms for particles with a diameter of less
than one nanometer. Choi [1] is credited with creating the phrase “nanofluid”. Inorganic
compounds typically make up nanoparticles. Compared to conventional heat transfer
fluids, nanofluids exhibit finer heat transfer characteristics. The idea of a nanofluid has
been put forth as a means of improving heat-transfer liquid performance significantly. There
is a good deal of research on convective heat transport in nanofluids and issues related to
stretching surfaces, since nanofluids are becoming more important. Himanshu et al. [2]
reported the magnetohydrodynamics of Ag-water nanofluid over a stretching flat plate in
a porous medium. Mishra et al. [3] unveiled the combined effect of pertinent parameters on
the MHD flow of Ag-H2O nanofluid into a porous stretching/shrinking channel. Stagnation
point flows of upper convex Maxwell fluid past a stretching plate are evaluated by Ibrahim
and Negera [4]. In their valuable work, Kataria et al. [5] originated the concept of heat
generation/absorption magnetohydrodynamic via fluid flow past a porous vertical plate.
The problem is solved by employing the Laplace transform technique, and the physical
significance of pertinent parameters is tested. Kumar et al. [6] analyzed the performance
of Casson and Maxwell fluids past a stretching sheet with an internal heat source and
sink. It was reported that the thermal and concentration fields of Maxwell fluid are highly
influenced by the non-dimensional parameters, compared to Casson fluid. Swain et al. [7]
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surveyed the incompressible Newtonian fluid over a porous stretching sheet. The impact
of the porous parameter acting as an aiding force is reported in this study. Muhammed
et al. [8] analyzed the 3D stretched flow of viscous dissipation with prescribed heat and
concentration fluxes. In this research study, a withal magnetic field is applied in the flow
region, and mathematical equations with physical quantifiers are formulated. Jithender
et al. [9] demonstrated unsteady MHD Casson flow for the geometrical model of a plate in
oscillation motion vertically, and the numerical outputs were obtained by computing the
finite element method. Basant et al. [10] used two concentric cylinders to model a vertical
annular micro-channel under the influence of a radial magnetic field. Amira et al. [11]
improved the idea of hybrid nanofluids expressing mathematical models of stretching
and shrinking sheets, and flow equations were solved by means of appropriate similarity
transformations. Jawad et al. [12] investigated heat transfer in a semi-porous channel with
stretching walls using MHD nanofluids. The channel was filled with an incompressible
copper–water nanofluid and the outputs were revealed graphically. Gireesha et al. [13]
examined the rate of nanoparticle injection and chemical reaction from steady planar
Couette flow through a permeable micro-channel using the Runge–Kutta–Fehlberg fourth
order. Recently, an increasing number of studies concerning nanofluids have been described
in [14–18]. The impression of Soret and Dufour effects boosts the transmission of heat
and mass. These effects play an important role when there are density differences in the
flow. Hayat et al. [19] generalized three-dimensional radiative flow with Soret and Dufour
effects. Saritha et al. [20] analyzed Soret and Dufour combined impact on the MHD flow of
a power-law fluid across a flat plate. On a flat plate, MHD boundary-layer slip flow with
Soret and Dufour implications was reported by Reddy and Saritha [21]. The investigation
flow model is filled with second grade fluid, electrically conducting through a magnetic
field. Jyotsa et al. [22] have identified an advanced mathematical model of exponentially
accelerated inclined plates and dimensionless quantifiers that are tested for radiation and
magnetic strength. [23]. Rashidi et al. [24] conveyed a buoyancy effect on the MHD flow of
nanofluid over a stretching sheet. Studies on how different MHD nanofluids transmit heat
differently due to differences in shape were carried out by [25–28].

Anil Kumar et al. [29] studied how a transient convective nanofluid that streams along
a vertical plate is affected by radiation and magnetic fields. In the literature on studies of
nanofluids, the impact of Soret–Dufour is mostly neglected. Casson fluid is a shear-thinning
fluid, that is assumed to have an infinite viscosity at zero rate of shear. Chang et al. [30]
investigated the rheology of CuO nanoparticles. This study aims to compare Casson and
Casson nanofluid and to investigate the chemical effects of Soret and Dufour on the fluid
domain surface.

2. Problem Formulation

We will now explain the physical problem at hand by assuming an unsteady viscous
nanofluid flowing through a suddenly initiated vertical plate. The coordinate model is
chosen [31,32] so that the x and y axes are parallel and normal to the plate, respectively.
The plate and the nanofluid were initially fixed at the same temperature, T′∞. A transverse
magnetic field that is perpendicular to the plate and has an intensity, B0, that is constant, is
meant to be applied. When the magnetic Reynolds number is low, the result of the induced
magnetic field, which is significant, is irrelevant. The fluid is assumed to contain water-
based magnetic nanoparticles such as aluminum oxide Al2O3 and cupper Cu. Figure 1
represents the physical model, Table 1 lists the thermophysical attributes of nanoparticles
and thermal conductivity for spherical shaped nanoparticles are tabulated in Table 2.
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Figure 1. The physical model and coordinate system [29].

Table 1. Thermophysical properties of H2O, Al2O3, and Cu.

H2O Al2O3 Cu

cp

(
JKg−1K−1

)
4179 765 8993

ρ
(

Kgm−3
)

997.1 3970 385

k
(

Wm−1K−1
)

0.613 40 401

β× 10−5
(

K−1
)

21 401 1.67

Cauchy tensor rheological state equation of Casson fluid [9] as follows:

τ = τ0 + µγ′

τi,j =

2
(

µB +
Py√
2π

)
ei,j; π > πc

2
(

µB +
Py√
2π

)
ei,j; π < πc


Here, µB is the dynamic viscosity plastic of Newtonian fluid, Py is the fluid stress yield,

π = ei,jei,j and ei,j are the components of the deformation rate, and πc is critical value. This
analysis is carried out under the following assumptions: the fluid is incompressible, non-
Newtonian and the unconfined convection flow is unsteady and one-directional, the plate
is rigid, and the vertical plate is oscillating, viscous dissipation terms in the energy equation
are neglected. Then, the following set of governing equations and flow configuration of the
problem are as follows:

Using the conventional Boussinesq approximation, the momentum, energy, and mass
equations controlling the flow are as follows [29,33], taking into account the aforemen-
tioned assumptions:

∂v∗

∂y∗
= 0 (1)

∂u∗

∂t∗
+ v

∂u∗

∂y∗
= υn f

(
1 +

1
β

)
∂2u∗

∂y∗2 −
σn f

ρn f
B0

2u∗ +
g(ρβ)n f

ρn f
(T∗ − T∗∞) (2)

∂T∗

∂t∗
+ v

∂T∗

∂y∗
=

kn f(
ρcp
)

n f

∂2T∗

∂y∗2 −
1(

ρcp
)

n f

∂qr

∂y∗
+

Q1(
ρcp
)

n f
(C∗ − C∗∞) +

µn f(
ρcp
)

n f

(
∂u∗

∂y∗

)2
+

DmKn f(
ρcp
)

n f cs

∂2C∗

∂y∗2 (3)

∂C∗

∂t∗
+ v

∂C∗

∂y∗
= D

∂2C∗

∂y∗2 − K∗(C∗ − C∗∞) + DT
∂2T∗

∂y
(4)
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The subjected initial and associated boundary flow region circumstances are

u∗ = 0 , T∗ = T∗∞, C∗ = C∗∞ at t∗ = 0 for all y∗ ≥ 0,

u∗ = u0, T∗ = T∗w, C∗ = C∗w at t∗ > 0, y∗ = 0,

u∗ → 0, T∗ → T∗∞, C∗ → C∗∞, t∗ > 0 as y∗ → ∞

 (5)

Table 2. Thermal conductivity for spherical shaped nanoparticles [34].

Model Shape of Nanoparticles Thermal Conductivity

I Spherical kn f = k f

(
ks+2k f−2ϕ(k f−ks)
ks+2k f +ϕ(k f−ks)

)
II Spherical kn f = k f

(
ks+2k f−2ϕ(k f−ks)
ks+2k f +ϕ(k f−ks)

)

Equation (1) gives
v∗ = −v0(v0 > 0)

Here, suction velocity v0 is thought to be constant, and the plate is indicated by the
negative sign.

The important attributes of nanofluid are

µn f =
µ f

(1−ϕ)2.5 , ρn f = (1− ϕ) ρ f + ϕ ρs(
ρcp
)

n f = (1− ϕ)
(
ρcp
)

f + ϕ
(
ρcp
)

s

(ρβ)n f = (1− ϕ)(ρβ) f + ϕ(ρβ)s

σn f = σf

(
1 + 3(σ−1)ϕ

(σ+2)−(σ−1)ϕ

)
, σ = σs

σf

(6)

The radiation heat flux is expressed as

qr = −
4σ∗

3k∗
∂T∗4

∂y
(7)

The symbol T∗4 is termed as a linear function, expanded using Taylor series regarding
free-stream velocity.

The specification of T∗4 is that the difference of temperature (T∗ − T∗∞) is sufficiently
small, and we have

T∗4 = T∗∞
4 + 3T∗∞

3(T∗ − T∗∞) + 6T∗∞
2(T∗ − T∗∞)2 + . . . (8)

In Equation (8), omitting higher order terms, we obtain

T∗4 = 4T∗3∞ T∗ − 3T∗4∞ (9)

Using Equations (7) and (9), Equation (2) is transformed as

∂T∗

∂t∗
+ v

∂T∗

∂y∗
=

1(
ρcp
)

n f

(
kn f +

16σ∗T∗∞3

3k∗

)
∂2T∗

∂y∗2 + Q1(C∗ − C∗∞) + µn f

(
∂u∗

∂y∗

)2
+

DmKn f(
ρcp
)

n f cs

∂2C∗

∂y∗2 (10)

3. Numerical Procedure

The non-dimensional quantifiers [27] are
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η = y = u0y∗
υ f

, t = u0
2t∗

υ f
, U = u∗

u0
, θ = T∗−T∗∞

T∗w−T∗∞
, φ = C∗−C∗∞

C∗w−C∗∞
, M2 =

σ1B0
2υ f

ρ f
, Nr = 16σ∗T∗3∞

3k f k∗ ,

Pr =
µ f cp

k f
, Gr =

gβ f υ f (T∗w−T∗∞)

u0
3 , Sc = υ

D , Q =
Q1υ f (C∗w−C∗∞)

u0
2(T∗w−T∗∞)

, Du = DmKT(C∗w−C∗∞)

υcs(ρcp) f (T
∗
w−T∗∞)

Ec = u2
0

(cp) f (T
∗
w−T∗∞)

, Kr =
K(C∗w−C∗∞)υ f

u2
0

, Sr = DT(T∗w−T∗∞)
υ f (C∗w−C∗∞)

, λ = − v
u0

Equations of fluid flow have been rewritten as

∂U
∂t
− λ

∂U
∂y

= a1

(
1 +

1
β

)
∂2U
∂y2 −Ma3U + Gr a2 θ (11)

∂θ

∂t
− λ

∂θ

∂y
= a4

∂2θ

∂y2 + a5Ec
(

∂U
∂y

)2
+ Qφ + Du

∂2φ

∂y2 (12)

∂φ

∂t
− λ

∂φ

∂y
=

1
Sc

∂2φ

∂y2 − Krφ + Sr
∂2θ

∂y2 (13)

The initial values and related boundary conditions are

U = 0 , θ = 0, φ = 0, at t = 0 for all y ≥ 0,
U = 1, θ = 1, φ = 1 , at t > 0, y = 0,
U → 0, θ → 0, φ→ 0, t > 0 as y→ ∞

 (14)

Equation (11) is expressed using the Galerkin equation as∫ yk
yj

N(e)T
[

a1

(
1 + 1

β

)
∂2U
∂y2 − ∂U

∂t + λ ∂U
∂t − a3U + R

]
dy

where R = Gra2θ
(15)

The approximate piecewise linear solution is

U(e) =
(

Nj(y)Uj(t)
)
+ (Nk(y)Uk(t))

Nj

(
= yk−y

yk−yj

)
, Nk

(
=

y−yj
yk−yj

)
a1

(
1 + 1

β

)
N(e)T ∂U(e)

∂y

]yk

yj
−
{∫ yk

yj
a1

(
1 + 1

β

)
∂N(e)T

∂y
∂U(e)

∂y + N(e)T
(

∂U(e)

∂t − λ ∂U(e)

∂y + a3MU(e) − R
)}

dy = 0

(16)

From Equation (16) we obtain, by neglecting first term{∫ yk
yj

a1
∂N(e)T

∂y
∂U(e)

∂y + N(e)T
(

∂U(e)

∂t − λ ∂U(e)

∂y + a3MU(e) − R
)}

dy = 0

1
le

[
1 −1
−1 1

][
Uj
Uk

]
+ le

6

[
2 1
1 2

][ .
Uj.
Uk

]
+ a3 M le

6

[
2 1
1 2

][
Uj
Uk

]
− λ

2

[
−1 1
−1 1

][
Uj
Uk

]
= R le

2

[
1
1

]
where le = yk − yj = h and dot associates to the first derivative of t.

The element equations are

a1

(
1 + 1

β

)
le

 1 −1 0
−1 2 −1
0 −1 1

Ui−1
Ui

Ui+1

+
le

6

2 1 0
1 4 1
0 1 2




.
Ui−1.

Ui.
Ui+1

+ a3
M le

6

2 1 0
1 4 1
0 1 2

Ui−1
Ui

Ui+1

− λ

2

−1 1 0
−1 0 1
0 −1 1

Ui−1
Ui

Ui+1

 = R
le

2

1
2
1

 (17)

In Equation (17), the row corresponding to node i is equated to zero to obtain b

a1

(
1 + 1

β

)
l(e)

2 [−Ui−1 + 2Ui + Ui+1] +
1
6

[ .
Ui−1 + 4

.
Ui +

.
Ui+1

]
+ a3

M
6
[Ui−1 + 4Ui + Ui+1]−

λ

2le [−Ui−1 + Ui+1] = R
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To the above equation, utilizing the Crank–Nicholson method, we obtain

A1U j+1
i−1 + A2U j+1

i + A3U j+1
i+1 = A4U j

i−1 + A5U j
i + A6U j

i+1 + R∗ (18)

B1θ
j+1
i−1 + B2θ

j+1
i + B3θ

j+1
i+1 = B4θ

j
i−1 + B5θ

j
i + B6θ

j
i+1 + Q∗ (19)

D1φ
j+1
i−1 + D2φ

j+1
i + D3φ

j+1
i+1 = D4φ

j
i−1 + D5φ

j
i + D6φ

j
i+1 + P∗ (20)

A1 = 2− 6a1

(
1 + 1

β

)
r + M ∗ k + (3λrh), A2 = 8 + 12a1

(
1 + 1

β

)
r + 4M ∗ k ,

A3 = 2− 6a1

(
1 + 1

β

)
r + M ∗ k− (3λrh), A4 = 2 + 6a1

(
1 + 1

β

)
r−M ∗ k− (3λrh),

A5 = 8− 12a1

(
1 +

1
β

)
r− 4M ∗ k, A6 = 2 + 6a1

(
1 +

1
β

)
r−M ∗ k + (3λrh)

R∗ = 12(kGrTi)

The values of ai are given in Appendix A.
Applying analogous method to Equations (8), (9), and (12), we obtain

B1 = 2− 6a4 ∗ r + (3λrh) ∗ Pr, B2 = 8 + 12 ∗ r + k, B3 = 2− 6 ∗ r + k− (3λrh) ∗ Pr,

B4 = 2 + 6a4 ∗ r− (3λrh) ∗ Pr, B5 = 8− 12a4 ∗ r, B6 = 2 + 6a4 ∗ r + (3λrh) ∗ Pr,

Q∗ = 12kEca5Pr
(

∂ui
∂y

)2
+ 12kPrQCi + Dua5

∂2Ci
∂y2 ,

D1 = (2Sc)− (6r) + δSck + (3λrh) ∗ Sc, D2 = (8Sc) + (12r) + 4δSck, D3 = (2Sc)− (6r) + δSck− (3λrh) ∗ Sc,

D4 = (2Sc) + (6r)− δSck− (3λrh) ∗ Sc, D5 = (8Sc)− (12r)− 4δSck, D6 = (2Sc) + (6r)− δSck + (3λrh) ∗ Sc,

P∗ = So ∂2Ti
∂y2

r = k
h2 , h, k are the sizes of mesh points connected to the direction of y and parameter of

time t. In Equations (15)–(18), taking i = 1 to n and using initial and boundary conditions
(Equation (11)), the following system of equations in the matrix notation are obtained:

AiXi = Bi i = 1, 2, 3 (21)

The solutions of the above equations, obtained by employing Galerkin FEM, lead to
stable and convergent numerical results, presented graphically using MATLAB Software.

4. Findings and Discussion

In order to determine the problem’s physical significance, mathematical forecasts
of concentration, temperature, and velocity have been made for a variety of guesses of
suitable non-dimensional flow parameters. The effect of the heat source, Dufour effect,
and viscous dissipation on Nusselt number are illustrated in Table 3. It is evident that the
Nusselt number drops with heat generation and the Eckert number, whereas it elevates
with the Dufour number. The distribution of skin friction and the Nusselt number for
the Cu–water nanofluid are listed in Table 4. The skin-friction coefficient is observed to
decrease with increasing values of M and λ, but to increase with increasing estimates of Gr
and R. Additionally, it is found that Nusselt number values drop as M and R values rise.
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Table 3. The Nusselt number Nu = − Kn f
K f

(
∂θ
∂y

)
y=0

, Pr = 7.

Q Du Ec Nu

0.2 0.5 0.01 0.5765

0.5 0.2624

1.0 −0.4015

1.0 0.5721

1.5 0.5701

0.02 0.5677

0.03 0.5601

Table 4. Numerical values of Skin friction (Cf) and Nusselt number (θ′(0)) with Pr = 6.2, ϕ = 0.05 and
Ec = 0.01 for Cu-water nanofluid as β→ ∞ .

Gr M λ R
Present Previous

(Khan et al. [27])

Cf −θ′ (0) Cf −θ
′
(0)

5 1 0.2 1 0.7295 1.1654 0.7296 1.1653

10 2.6396 2.6395

3 −0.2742 1.0512 −0.2741 1.0511

5 −0.9281 1.0488 −0.9283 1.0488

0.3 0.586 0.5867

0.4 0.4377 0.4378

2 1.0480 0.7974 1.0479 0.7973

3 1.2629 0.6620 1.2629 1.2630

The fluid velocity uplift as the Gr increases is shown in Figure 2. The Gr is the ratio of
buoyancy force to viscous force. When Gr < 1, the viscous force takes over the buoyancy
and causes an uptick in the nanofluid, which causes increased movement. The effect
of the magnetic field on the velocity profile of the Cu nanofluid is depicted in Figure 3.
The fluid flow is opposed by the Lorenz force, which is produced by the existence of
a magnetic field. This force’s amplitude is directly proportional to the magnitude of M.
Therefore, the Lorentz force is strengthened as M increases. Thus, the momentum is ob-
served to diminish with higher values of M. This, in turn, increases the fluid
flow’s resistance.
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The consequence of viscous dissipation on velocity and temperature is demonstrated
in Figures 4 and 5. Due to the relationship between kinetic energy and enthalpy difference,
velocity and temperature are boosted when Ec increases.
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Heat and mass are more effectively transmitted as a result of Soret and Dufour im-
pressions. Figures 6 and 7 are shown to demonstrate the Dufour effect on velocity and
temperature. The ratio of concentration difference to temperature is called Soret. It is
perceived that velocity and temperature are boosted with growing values of Dufour and,
hence, heat transfer escalates. Figures 8–10 present the impact of Soret on velocity, tempera-
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ture, and concentration. The velocity and temperature of the fluid decrease as Sr increases,
while mass transfer accelerates.
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Figure 10. Effect of Sr on concentration.

Figures 11 and 12 are illustrated to demonstrate the variation of heat source and sink on
fluid velocity and temperature. It is evident from the profiles that the thermal conductivity
increases with the enhancement of the heat source (Q); this is because of enrichment in the
thermal boundary layer thickness. Physically, dominant values of the Q contribute more
heat to the working fluid, causing the thermal profile to accelerate. Hence, the velocity
and temperature of the fluid are boosted. Figures 13 and 14 depict the effects of radiation
on velocity and temperature. The random movement of nanoparticles is enhanced by the
addition of R to the temperature field. Therefore, the constant collision causes additional
heat to be produced. Consequently, a rise in temperature and velocity is noted. Changes in
fluid concentration due to the chemical reaction parameter K are displayed in Figure 15. It
explains that as the value of Kr increases, the concentration of nanoparticles decreases.
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Figure 14. Effect of Nr on temperature.
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Figure 15. Effect of Kr on concentration.

Figure 16 explains the influence of the Schmidt number on concentration. As we know,
the Schmidt number is the ratio of kinematic viscosity and mass diffusivity. Due to the
enhancement of the Schmidt number, mass diffusivity dominates the kinematic viscosity,
which leads to a depreciation of the concentration. Volume fraction effects on temperature
are observed in Figure 17. The interaction between particles in base fluids, which is brought
on by the random movement of particles, increases as the volume fraction of nanoparticles
in the fluid increases.
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Figure 16. Effect of SC on concentration.

Math. Comput. Appl. 2022, 27, x FOR PEER REVIEW 13 of 18 
 

 

 

Figure 16. Effect of SC on concentration. 

 

Figure 17. Effect of ϕ on temperature. 

Figures 18a and 18b show a comparison of the effects of fluid and (Cu-water-based) 

nanofluid on velocity and temperature. It is clear from the profiles that the velocity de-

creases and the temperature of the nanofluid is higher than that of the Casson fluid. 

Compared to Casson fluid, thermal boundary thickness is increased in Casson nanofluid 

due to the temperature distribution being higher and the velocity profile being lower. 

 
 

(a) (b) 

Figure 18. Comparisons of Casson fluid with Casson nanofluid (a) Velocity (b) Temperature 

 

0 2 4 6 8 10 
y 

0 

0.2 

0.4 

0.6 

0.8 

1 

Sc=0.4,0.6,0.8,1.0 

Figure 17. Effect of φ on temperature.

Figure 18a,b show a comparison of the effects of fluid and (Cu-water-based) nanofluid
on velocity and temperature. It is clear from the profiles that the velocity decreases and the
temperature of the nanofluid is higher than that of the Casson fluid. Compared to Casson
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fluid, thermal boundary thickness is increased in Casson nanofluid due to the temperature
distribution being higher and the velocity profile being lower.
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Figure 18. Comparisons of Casson fluid with Casson nanofluid (a) Velocity (b) Temperature.

In Figure 19a,b, the Casson parameter’s influence on the velocity and temperature
profiles is presented. As a result, as the Casson parameter increases and the nanofluid flow
decelerates away from the surface, resulting in a smaller boundary layer. Temperature
distributions are greater in the event of a large Casson parameter than in the case of a small
Casson value.
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Figure 19. (a) Effect of β on velocity; (b) Effect of β on temperature.

The impact of the Dufour effect on the Nusselt number Nu for distinct values of
nanoparticle volume fraction ϕ is portrayed in Figures 20 and 21. It can be understood
from the figures that the heat transfer gradually increases with Du while it comes down
with the rise in Q, while Nu is constant with Sr for different values of Radiation param-
eter, as noted in Figure 22. According to Figure 23, skin friction gradually decreases as
Gr increases.
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5. Conclusions

This paper examined the transient MHD free-convection flow and heat transfer of
a nanofluid past a vertical plate in the presence of Soret and Dufour effects. Numerical
calculations are carried out for various values of the dimensionless parameters. The effects
of different physical parameters on the mass, heat, and flow characteristics of nanofluids
were investigated.

â Fluid velocity rises with the Grashof number while it falls in the magnetic field.
â The effects of Prandtl number and viscous dissipation are to improve the velocity

and temperature.
â The Dufour effect raises the velocity and temperature while reducing due to the

Soret effect.
â Thermal conductivity is enhanced by heat sources and radiation.
â With chemical reaction and Schmidt number, concentration decreases.
â Rate of heat transfer accelerated with Du values and retards with the values of Q

and Ec.
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Nomenclature

B0 Applied magnetic field
C Non-dimensional concentration
Cp Specific heat (constant pressure)
C* Species concentration
C∞

* Free stream concentration
Cw

* Species concentration at wall
Du Dufour number
g Acceleration due to gravity
Gr Grashof number
K Permeability parameter
kf Thermal conductivity of the base fluid
ks Thermal conductivity of the nanoparticles
knf Thermal conductivity of the nanofluid
k* Mean absorption coefficient
M Magnetic field parameter
Nr Radiation parameter
Pr Prandtl number
Q Heat generation parameter
T Non-dimensional temperature
T* Temperature
T∞

* Free-stream temperature
t* Time
Tw

* Temperature at wall
Sc Schmidt number
Sr Soret number
ϕ Solid volume fraction of the nanoparticle
δ Chemical reaction parameter
λ Buoyancy parameter
u* Velocity components along x*−y* direction
u0 Initial velocity
nf Nanofluid
qr Radiative heat flux
σnf Electrical conductivity of the nanofluid
βnf Thermal expansion coefficient of the nanofluid
(x*, y*) Dimensional co-ordinates
ρnf Nanofluid density
µf Viscosity of the base fluid

Appendix A

a1 = 1

(1−ϕ)2.5
(
(1−ϕ)+ϕ

(ρs)
(ρp)

) , a2 =

(
(1−ϕ)+ϕ

(ρβ)s
(ρβ) f

)
(
(1−ϕ)+ϕ

(ρs)
(ρp)

) , a3 = 1(
(1−ϕ)+ϕ

(ρs)
(ρp)

) ,

a4 =
K f

(
ks+2k f −2ϕ(k f −ks)
ks+2k f +ϕ(k f −ks)

)
+Nr(

(1−ϕ)+ϕ
(ρcp)s
(ρcp) f

) , a5 = 1

(1−ϕ)2.5

(
(1−ϕ)+ϕ

(ρcp)s
(ρcp) f

)
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