
Citation: Nebro, A.J.; Galeano-

Brajones, J.; Luna, F.; Coello Coello,

C.A. Is NSGA-II Ready for

Large-Scale Multi-Objective

Optimization? Math. Comput. Appl.

2022, 27, 103. https://doi.org/

10.3390/mca27060103

Academic Editor: Efrén

Mezura-Montes

Received: 26 October 2022

Accepted: 28 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical

and Computational

Applications

Article

Is NSGA-II Ready for Large-Scale Multi-Objective Optimization?
Antonio J. Nebro 1,2 , Jesús Galeano-Brajones 3 , Francisco Luna 1,2,* and Carlos A. Coello Coello 4

1 ITIS Software, University of Málaga, Ada Byron Research Building, 29071 Málaga, Spain
2 Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, E.T.S. de Ingeniería

Informática, 29071 Málaga, Spain
3 Departamento de Ingeniería de Sistemas Informáticos y Telemáticos, Universidad de Extremadura,

Centro Universitario de Mérida, 06800 Badajoz, Spain
4 Evolutionary Computation Group, CINVESTAV-IPN, Ciudad de México 07360, Mexico
* Correspondence: flv@lcc.uma.es

Abstract: NSGA-II is, by far, the most popular metaheuristic that has been adopted for solving
multi-objective optimization problems. However, its most common usage, particularly when dealing
with continuous problems, is circumscribed to a standard algorithmic configuration similar to the
one described in its seminal paper. In this work, our aim is to show that the performance of NSGA-II,
when properly configured, can be significantly improved in the context of large-scale optimization.
It leverages a combination of tools for automated algorithmic tuning called irace, and a highly
configurable version of NSGA-II available in the jMetal framework. Two scenarios are devised: first,
by solving the Zitzler–Deb–Thiele (ZDT) test problems, and second, when dealing with a binary real-
world problem of the telecommunications domain. Our experiments reveal that an auto-configured
version of NSGA-II can properly address test problems ZDT1 and ZDT2 with up to 217 = 131, 072
decision variables. The same methodology, when applied to the telecommunications problem, shows
that significant improvements can be obtained with respect to the original NSGA-II algorithm when
solving problems with thousands of bits.

Keywords: NSGA-II; auto-configuration and auto-design of metaheuristics; large-scale multi-objective
optimization; real-world problems optimization

1. Introduction

Since the publication of the seminal paper of Deb et al. [1] presenting the Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) over twenty years ago, this algorithm
has become the standard metaheuristic for solving multi-objective optimization problems.
Since then, NSGA-II has been included in a large number of works as a reference against
which newly proposed approaches are compared (e.g., [2–4]). Additionally, it is normally
the first-choice solver for dealing with real-world problems [5–8]. Its popularity can be
easily assessed by looking at the number of citations to [1] (e.g., in Google Scholar or
Clarivate Analytics).

NSGA-II is a generational genetic algorithm characterized by applying a dominance
ranking scheme to foster convergence and the crowding distance density estimator to
promote diversity. These components are used in the replacement step prior to building up
the population for the next generation of the algorithm. In most of the studies involving
NSGA-II, particularly when continuous problems are tackled, it is configured according
to a parameterization mimicking the one used when it was originally introduced in [1],
namely: population and offspring population size of 100, Simulated Binary Crossover
(probability: 0.9, distribution index: 20.0), and Polynomial-based Mutation (probability:
1/L, where L is the number of decision variables of the problem, distribution index: 20.0).

It is well known that the performance of metaheuristics in solving a given problem
depends, to a large extent, on its correct parameter settings [9], so the motivation behind

Math. Comput. Appl. 2022, 27, 103. https://doi.org/10.3390/mca27060103 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca27060103
https://doi.org/10.3390/mca27060103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0001-5580-0484
https://orcid.org/0000-0001-8691-8944
https://orcid.org/0000-0002-0455-7223
https://orcid.org/0000-0002-8435-680X
https://doi.org/10.3390/mca27060103
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca27060103?type=check_update&version=1

Math. Comput. Appl. 2022, 27, 103 2 of 17

this work is to carry out an experimental study to determine to what extent the search
capacity of NSGA-II can be improved if it is properly configured. We focus this study on
the context of large-scale optimization problems, i.e., those problems having more than
100 decision variables.

The methodology that we have applied consists, first, of using a highly configurable
version of NSGA-II, which is available in jMetal, a Java-based optimization framework [10,11].
We assume that any multi-objective genetic algorithm using dominance ranking and the
crowding distance in the replacement step is an NSGA-II variant. That version, referred to
as AutoNSGA-II, has been made more extensible and flexible so that: (i) it can adopt an
external archive to store the non-dominated solutions, (ii) the offspring population size can
be different from the population size, and (iii) the variation operators can be taken from
an extended set of different crossover and mutation operators besides Simulated Binary
Crossover and Polynomial-based Mutation. Second, we use the irace tool [12] to automat-
ically find the best AutoNSGA-II configurations from a set of training instance problems.

We are going to consider two scenarios, one consisting of solving the Zitzler–Deb–
Thiele (ZDT) [13] test suite, starting with 2048 decision variables and another one dealing
with a real-work binary telecommunication problem where the solutions can have thou-
sands of bits, which aims to minimize the energy consumption and increase the provided
bandwidth in an ultra-dense 5G (fifth generation) network. It is important to emphasize
that the purpose of this work is not to compare NSGA-II against state-of-the-art algorithms
designed to solve large-scale multi-objective problems but to empirically assess up to what
extent the performance of NSGA-II can be enhanced when properly configured in the two
scenarios previously considered.

The rest of this paper is organized as follows. The next section reviews the related
literature and identifies the research gap covered in this work. Section 3 elaborates on
the components required to auto-configure NSGA-II with irace, as well as the two target
scenarios used to assess the performance of AutoNSGA-II. The results obtained in the
experiments conducted are analyzed in Section 4. Finally, Section 5 discusses the main
conclusions drawn and proposes some lines for future research.

2. Related Work

The auto-configuration (or auto-tuning) of metaheuristics is an open research field
that studies the design of tools that follow the machine learning approach of, given a set
of problems used as a training set, automatically finding an accurate parameterization
of the algorithm that it is expected to work well on a validation test and, consequently,
on similar problems. A further step is the auto-design of metaheuristics, which, given a
set of components, is able to create a full algorithm specifically tailored to the training and
validation sets. In the field of multi-objective metaheuristics, these issues have been studied
in several papers, such as in [14–16].

Focusing on NSGA-II, the idea of auto-tuning a configurable version of it by combining
jMetal and irace was presented in [17], where the Walking Fish Group (WFG) [18] test
suite was used as the training set, and the resulting NSGA-II variant was validated with the
same problems plus the Deb–Thiele–Laumanns–Zitzler (DTLZ) [19] test suite. The reported
results showed that that version globally outperformed the original NSGA-II in most of the
problems when applying four quality indicators. A similar approach has been used in this
paper to address large-scale multi-objective optimization problems.

Indeed, the context of large-scale multi-objective optimization is a hot research topic
that is mainly motivated because many real-world problems contain hundreds or even
thousands of decision variables (e.g., the training of deep neural networks). Consequently,
the search space becomes huge and traditional metaheuristics have difficulties finding
accurate solutions. One of the first works in this line is [20], where eight multi-objective
metaheuristics, including NSGA-II, were tested on the ZDT problems scaling the variables
up to 2048. Paper [21] presents a survey of recent proposals, but none of them is based on
applying auto-configuration to an existing algorithm.

Math. Comput. Appl. 2022, 27, 103 3 of 17

3. Materials and Methods

In this section, we describe the configurable version of NSGA-II available in jMetal
and the experimental methodology adopted, which includes the two scenarios considered,
the auto-configuration process with irace, and the computing environments.

3.1. Component-Based NSGA-II

The implementations of NSGA-II in jMetal have evolved over time. Keeping as a
reference the behavior of a generic evolutionary algorithm, following the pseudo-code
included in Algorithm 1, the first implementation provided by the release presented in [10]
was based on a single and large method (130 lines of Java code) that contained all the steps
of the algorithm. In the jMetal 5 release [11], this approach was replaced by an abstract class
that closely mimicked the pseudo-code, which improved the modularity and reusability
of the code. The last implementation, presented in [17], is based on a component-based
architecture, where all the steps of an evolutionary algorithm are objects; this scheme offers
an enhanced degree of flexibility that allows the generation of evolutionary algorithms
in a dynamic way from a repository of components. This architecture is the basis of the
AutoNSGA-II algorithm that we will use in this work.

Algorithm 1 Pseudo-code of an evolutionary algorithm.

1: P(0)← GenerateInitialSolutions()
2: t← 0
3: Evaluation(P(0))
4: while not TerminationCriterionIsMet() do
5: P′(t)← Selection(P(t))
6: Q(t)← Variation(P′(t))
7: Evaluate(Q(t))
8: P(t + 1)← Replacement(P(t), Q(t))
9: t← t + 1

10: end while

The component types and some of the available instances are shown in Table 1.
Therefore, we see that there are three strategies to create a population of solutions: random,
Latin hypercube sampling, and the strategy used in some scatter search algorithms (e.g.,
AbySS [22]). The evaluation of a population can be performed sequentially or in parallel
using the processor cores (multithreaded evaluation). We can observe that there are four
components to indicate the stopping condition, ranging from the typical computation of a
maximum number of evaluations to reach a certain level in a quality indicator; in the latter
case, a maximum number of evaluations must also be set to cope with situations where the
stopping condition is never fulfilled. The most commonly used selection scheme in NSGA-
II is a binary tournament, but we have generalized it to an n-ary tournament and added
a random selection. As NSGA-II is a genetic algorithm, the variation component applies
both crossover and mutation, and the replacement component characterizing NSGA-II is
the one based on ranking and a density estimator.

Math. Comput. Appl. 2022, 27, 103 4 of 17

Table 1. Component catalog in jMetal for evolutionary algorithms.

Solutions Creation Evaluation Termination

- Random
- Latin hypercube sampling
- Scatter search

- Sequential
- Multithreaded

- By evaluations
- By time
- By keyboard
- By quality indicator

Selection Variation Replacement
- N-ary tournament
- Random
- Neighbour
- Differential evolution

- Crossover and mutation
- Differential evolution

- Ranking and density estimator
- (µ + λ)

- (µ, λ)

3.2. Parameter Space for Auto-Configuring NSGA-II

The automatic configuration of our AutoNSGA-II is based on a parameter space that
is composed of several elements coming both from the particular selected components
and from specific algorithmic parameters. We have to take into account that a number
of components are fixed: the evaluation is sequential, the termination is by evaluations,
and the replacement is performed based on a ranking procedure (non-dominated sorting)
and the use of a density estimator (crowding distance).

Currently, the implementation of AutoNSGA-II can deal with both continuous and
binary problems. The full parameter space for solving both types of problems is detailed
in Table 2. There is a first group of common parameters that is not dependent on the
encoding, and then we include those that are specific for either continuous or binary
decision variables.

Given a population size, which we have fixed to 100 solutions, the algorithm can
optionally use an external archive to store the non-dominated solutions of capacity 100;
in that case, the result of the algorithm will be either the external archive or, otherwise,
the population. Furthermore, when using an archive, the population size can vary from 10
to 200, and the crowding distance estimator is used to promote diversity when the archive
is full (i.e., the solution having the lowest crowding distance value is removed). While the
standard NSGA-II is a generational evolutionary algorithm, we can configure the offspring
population size from 1 (i.e., steady-state) to a maximum of 400 solutions.

Next, we describe the parameters for real-coded multi-objective optimization problems.
As commented in the previous section, there are three possible strategies for creating the
initial population (random, Latin hypercube sampling, and scatter search). The variation
component can choose between two crossover operators (SBX and BLX_ALPHA) and
four mutation operators (uniform, polynomial, linked polynomial, and non-uniform).
The operators can have common parameters (e.g., the crossover probability) and specific
parameters (e.g., the distribution index for the SBX crossover is a value in the range [5.0,
400.0]). The mutation probability is problem-dependent, usually set to 1/n (where n is
the number of decision variables), so we consider a mutation probability factor, which is a
value between 0.0 and 2.0, in such a way that the effective mutation probability will be the
multiplication of that factor and 1/n. The repair strategies (random, round, bounds) are
applied when a variation operator produces values out of bounds:

• random: the variable takes a random value within the bounds.
• bounds: if the value is lower/higher than the lower/upper bound, the variable is

assigned the lower/upper bound.
• round: if the value is lower/higher than the lower/upper bound, the variable is

assigned the upper/lower bound.

Math. Comput. Appl. 2022, 27, 103 5 of 17

Table 2. Parameter space of AutoNSGA-II for real- and binary-coded problems.

Parameter Domain

algorithmResult {externalArchive, population}
populationSizeWithArchive [10, 200] s.t. algorithmResult == externalArchive

externalArchive crowdingDistanceArchive s.t. algorithmResult == externalArchive
offspringPopulationSize [1, 400]

selection {tournament, random}
selectionTournamentSize (2, 10) s.t. selection == tournament

Real-coded variables

createInitialSolutions {random, latinHypercubeSampling, scatterSearch}

variation crossoverAndMutationVariation
crossover {SBX, BLX_ALPHA}

crossoverProbability [0.0, 1.0]
crossoverRepairStrategy {random, round, bounds}

sbxDistributionIndex [5.0, 400.0] s.t. crossover == SBX
blxAlphaCrossoverAlphaValue [0.0, 1.0] s.t. crossover == BLX_ALPHA

mutation {uniform, polynomial, linkedPolynomial, nonUniform}
mutationProbabilityFactor [0.0, 2.0]

mutationRepairStrategy {random, round, bounds}
polynomialMutationDistributionIndex [5.0, 400.0] s.t. mutation ∈ {polynomial, linkedPolinomial}

uniformMutationPerturbation [0.0, 1.0] s.t. mutation == uniform
nonUniformMutationPerturbation [0.0, 1.0] s.t. mutation == nonUniform

Binary-coded variables

createInitialSolutions random

variation crossoverAndMutationVariation
crossover {singlePoint, HUX, uniform}

crossoverProbability [0.0, 1.0]
mutation {bitflip}

mutationProbabilityFactor [0.0, 2.0]

The operators and parameters used to solve binary problems include single-point,
HUX, and uniform crossover, while the mutation operator is bit-flip. We have also used
here a mutation factor between 0.0 and 2.0 to modulate the effect of the mutation operator.

3.3. Experimental Methodology

Our aim in this paper is to carry out an empirical study to determine if NSGA-II
can address large-scale multi-objective optimization problems if it is properly configured.
To this end, we designed two trial scenarios (a real-coded benchmark problem and a
binary-coded real-world problem) and conducted a set of experiments divided into two
phases, namely, auto-configuring NSGA-II with irace with a simple set of instances
and performance assessment over a wider testbed.

3.3.1. Scenarios

The first scenario faces continuous benchmark problems; concretely, we have chosen
the ZDT instances. These problems were used in the scalability study presented in [20],
where a number of algorithms, including NSGA-II, were applied to optimize the problem
family configured with up to 2048 variables. In that work, the solvers stopped the search
when they found an approximated front whose Hypervolume (HV) was higher than
95% of the HV of the front used as reference. Those algorithms requiring the fewest
number of evaluations to fulfill that condition were considered the fastest. A limit of
ten million evaluations was also set so that an algorithmic execution reaching such a
limit before obtaining an acceptable front was considered unsuccessful. In our scenario,
we keep the same stopping condition, but the limit for failed executions is raised to

Math. Comput. Appl. 2022, 27, 103 6 of 17

25 million evaluations and we configure ZDT instances starting from 2048 variables until
131,072 variables.

The second scenario considers a binary real-world problem from the domain of
telecommunications, specifically in the context of 5G networks. A key enabling tech-
nology for these networks to meet their expected performance in terms of data rates,
latency, etc. [23], lies in deploying many small base stations (SBS) close to end-users, which
allows better re-use of the electromagnetic spectrum, as well as improving the signal quality
and reducing the communication latency [24]. They are known as Ultra-Dense Networks
(UDNs). Dimensioned to satisfy a given demand, UDNs incur considerable power con-
sumption because of the number of SBSs that are operating. If no action is taken, this
energy consumption also appears even in periods of low demand (e.g., commercial centers,
office buildings, out of business hours, etc.). A well-known and standardized approach to
reducing the electricity bill is to switch off a subset of the SBSs when they are underutilized.
This poses a multi-objective optimization problem, named CSO (cell switch-off), which,
given a set of SBSs, has to determine which subset must be turned on/off (binary decision)
in order to minimize the power consumption and maximize the capacity provided to the
users [25–27]. A detailed definition of the problem can be found in Appendix A. Recall
that this is a large-scale multi-objective optimization problem, as seminal studies have
anticipated that deployments with SBS every few meters might be required [24]. We have
scaled up to about 12,000 cells per km2 in this work. Figure 1 shows an example of a UDN
deployment with macro and micro base stations and small cells, where the on-off state of
each one corresponds to one bit of the solutions.

Macro and Micro Base Stations

Small Base Stations

User Equipment

Wireless link

Figure 1. An example of a UDN.

3.3.2. Auto-Configuration and Performance Assessment

We now describe the phases of the experiments, namely, the use of irace to approxi-
mate the best configurations of AutoNSGA-II and the comparison of the obtained NSGA-II
versions with the original one. We would like to point out that irace uses an iterative
approach that samples the space of all possible configurations defined in Table 2 according
to a particular distribution, selects the best configurations from the newly sampled ones
by means of racing, and updates the sampling distribution to bias the sampling towards
the best configurations. Therefore, it is a heuristic algorithm that does not guarantee the
global optimal algorithmic configuration is found, as the sampling is limited to a maximum
number of evaluations for which the algorithm is run with the sampled configuration on a
given instance.

In order to use irace, a number of inputs are required:

• A file describing the parameter space included in Table 2.
• A set of problems used for training.

Math. Comput. Appl. 2022, 27, 103 7 of 17

• An executable program that, for each combination of problem and configuration
selected by irace, returns an indicator value so that irace can compare different
configurations.

• The total number of different configurations to generate. The default value is 100,000.

In the continuous benchmark problem scenario, common parameters for real-coded
variables are used. The training set consists of five ZDT problems with their default
number of decision variables: 30 for ZDT1, ZDT2, and ZDT3, and 10 for ZDT4 and
ZDT6. The executable is a jar file including jMetal code that, after solving a problem
with a particular AutoNSGA-II configuration, applies the hypervolume quality indicator
by using a reference front for the problem (as the ZDT are synthetic problems, reference
fronts representing a subset of the Pareto fronts are available). Once irace has found a
compromised configuration for AutoNSGA-II for the training set, this version of NSGA-II
is compared with the original NSGA-II.

In the case of the CSO problem, irace receives the common and binary-coded pa-
rameters of Table 2. Evaluating a typical instance of this problem requires a significant
amount of time, so generating and evaluating 100,000 configurations is infeasible. Our
approach has been to define a small instance (with 1170 bits) that is used for training. As the
Pareto front for this problem is unknown, we have defined a reference point (which is
the requirement to apply the hypervolume) after inspecting several approximated fronts
reached in a number of pilot tests. We have taken the extreme points of these fronts and
added an offset in a conservative way to ensure that any approximated front computed by
AutoNSGA-II would dominate those points. The reference point is then the result of taking
the highest values per dimension of the extreme points. As with benchmark problems,
the configuration found for AutoNSGA-II will be compared with the standard NSGA-II on
a set of realistic problem instances.

3.3.3. Computing Environments

Running irace for algorithm auto-configuration can require a significant amount
of computer power. The experiments on the ZDT problems have been executed in a
virtualization environment located at the Ada Byron Research Center at the University of
Málaga (Spain). We have used a virtual machine with Intel(R) Xeon(R) Platinum 8358 CPU
@ 2.60 GHz processor (64 cores) and 64 GB of RAM. The operating system is Ubuntu 21.04,
and the versions of Java and irace are, respectively, JDK 14 and 3.4.1. The version of jMetal
is 6.0-SNAPSHOT.

The experimentation conducted on the CSO problem, which is very computationally
demanding, has been deployed on the facilities of the Supercomputing and Bioinformatics
Center of the Universidad de Málaga, named Picasso. It is a heterogeneous computing
platform composed of several clusters with up to 30.616 computing cores. The full hardware
description can be found at http://www.scbi.uma.es/site/scbi/hardware, accessed on
25 October 2022. As the stopping condition here is to reach a predefined number of
function evaluations because the true Pareto front is not known for this real-world problem,
executions can be performed in this heterogeneous environment because runtimes are not
relevant for this study. As such, each of these executions is submitted to Picasso using
slurm, a cluster job manager, which allocates them to the first available computing core.

4. Results

In this section, we present and analyze the results obtained after applying the experi-
ments in the two scenarios described above.

4.1. ZDT Benchmark

In Table 3, we include the default settings of NSGA-II and the configuration of
AutoNSGA-II found by irace. If we compare the two algorithms, we observe that none of
the default parameters of NSGA-II is kept by AutoNSGA-II. The auto-configured algorithm
uses an external archive with population and offspring populations sizes of 56 and 14,

http://www.scbi.uma.es/site/scbi/hardware

Math. Comput. Appl. 2022, 27, 103 8 of 17

respectively (the default values are 100 in both populations). It is worth noting that the
traditionally used Simulated Binary Crossover (SBX) and Polynomial-based Mutation are
replaced by BLX_alpha crossover and non-uniform mutation. The configuration obtained
by irace sets a value of α = 0.94 for BLX_alpha, which introduces an additional diversity
in the population that aims to properly integrate the controlled effect of the non-uniform
mutation with the 1/n scheme used for the mutation rate in the search, and both the
perturbation = 0.3 and the mutation factor of 0.45.

Table 3. Settings of NSGA-II and AutoNSGA-II for the ZDT problems.

Default Settings for NSGA-II Settings of AutoNSGA-II

algorithmResult: population algorithmResult: externalArchive
populationSize: 100 populationSizeWithArchive: 56
offspringPopulationSize: 100 offspringPopulationSize: 14
variation: crossoverAndMutationVariation variation: crossoverAndMutationVariation
crossover: SBX crossover: BLX_ALPHA
crossoverProbability: 0.9 crossoverProbability: 0.88
crossoverRepairStrategy: random crossoverRepairStrategy: bounds
sbxDistributionIndexValue: 20.0 blxAlphaCrossoverAlphaValue: 0.94
mutation: polynomial mutation: nonUniform
mutationProbabilityFactor: 1 mutationProbabilityFactor: 0.45
mutationRepairStrategy: random mutationRepairStrategy: round
polynomialMutationDistributionIndex: 20.0 nonUniformMutationPerturbation: 0.3
selection: tournament selection: tournament
selectionTournamentSize: 2 selectionTournamentSize: 9

We have executed both NSGA-II variants in the first scenario. The results obtained
are presented in Table 4, which includes the computing times and evaluations required to
reach the stopping condition. It is worth mentioning that we conducted a set of preliminary
experiments, which revealed that the computing times and a number of evaluations per
algorithm–problem combination were roughly similar, so performing a number of inde-
pendent runs and reporting mean values would not add relevant information. This has
to be taken into account, as it should be noted that some runs take hours or even days to
complete. Consequently, the figures in Table 4 are the result of single executions.

If we focus on ZDT1 and 2048 variables, we observe that AutoNSGA-II needs 182,356
evaluations against the 1,250,500 required by NSGA-II. As a consequence, the computing
times are reduced from 0.13 to 0.02 h (453 and 87 s, respectively), so the AutoNSGA-II is
about 4.6 times faster than NSGA-II. This behavior continues until the number of variables
increases up to 16,384, as NSGA-II is unable to solve ZDT1 with 32,768 variables; however,
AutoNSGA-II is able to reach an approximated front that satisfies the stopping condition for
the 131,072 decision variables of ZDT1 (95% of the HV of the reference front). The figures
of ZDT2 are similar to those of ZTD1.

In the case of ZDT3, the number of evaluations decreases for NSGA-II compared
to the ones of ZDT1 and ZDT2, while they increase for AutoNSGA-II, which is around
4.2 times faster. For this problem, NSGA-II fails to solve ZDT3 with 32,768 variables, while
AutoNSGA-II is not capable of doing so with the largest number of variables. The results
for ZDT6 reveal that AutoNSGA-II is about 18 times faster than NSGA-II in solving the
problem with up to 65,356 variables, while NSGA-II can only solve it with 8192. The ZDT4
problem deserves special attention. Neither algorithm was able to solve it for 2048 variables,
so we decided to re-run the auto-configuration process by using only ZDT4 as the training
set. The settings obtained by irace are similar to those shown in Table 3 except for the
mutation operator, which is linked polynomial mutation [28] (distributed index = 18.49,
mutation probability factor = 0.28, and mutation repair strategy = random). With these
parameter values, AutoNSGA-II has been able to solve ZDT4 with 2048 variables in less
than 25 million evaluations.

Math. Comput. Appl. 2022, 27, 103 9 of 17

Table 4. Results for NSGA-II and AutoNSGA-II on the ZDT benchmark. The last row shows the time
and evaluations of AutoNSGA-II using a specific configuration for the ZDT4 problem.

Time (h) Evaluations
Problem Variables NSGA-II AutoNSGA-II NSGA-II AutoNSGA-II
ZDT1 2048 0.13 0.02 1,250,500 182,356

4096 0.51 0.12 2,906,100 484,356
8192 2.40 0.50 6,622,600 1,039,156

16,384 11.19 2.15 14,741,200 2,180,656
32,768 - 9.04 - 4,605,556
65,356 - 31.66 - 9,494,556

131,072 - 120.02 - 19,359,356
ZDT2 2048 0.14 0.02 1,472,800 164,756

4096 0.62 0.10 3,433,100 429,156
8192 2.77 0.49 7,676,600 986,556

16,384 12.30 2.28 17,059,600 2,358,056
32,768 - 9.28 - 4,736,056
65,356 - 39.19 - 10,081,856

131,072 - 138.85 - 21,703,556
ZDT3 2048 0.10 0.03 1,089,800 253,356

4096 0.47 0.16 2,514,200 610,956
8192 2.08 0.62 5,463,000 1,267,656

16,384 9.18 2.68 11,877,500 2,820,556
32,768 - 11.39 - 6,158,256
65,356 - 40.69 - 11,912,856

131,072 - - - -
ZDT4 * 2048 - 2.62 - 21,746,882
ZDT6 2048 0.45 0.04 5,401,100 291,856

4096 1.82 0.16 11,482,400 659,956
8192 7.16 0.66 24,897,300 1,374,056

16,384 - 3.08 - 3,221,156
32,768 - 15.51 - 7,941,156
65,356 - 63.79 - 17,685,556

131,072 - - - -
* This instance has used a specifically tuned configuration by irace.

From these results, we can state that the use of auto-configuration for NSGA-II pro-
duces a variant that is not only faster than NSGA-II on all problems except for ZDT4 but
is also capable of scaling up to more than 100,000 variables in the case of problems ZDT1
and ZDT2, which is a remarkable outcome of our study. Using the five instances as a
training set for the auto-configuration process has had the consequence of finding a suitable
parameterization for four problems at the expense of a detriment in ZDT4.

The ZDT benchmark was proposed more than 20 years ago, and its problems are
considered easy to solve, so we could consider our findings as a kind of lower bound
of the capabilities of NSGA-II to solve scalable problems. We could also argue that the
time required to solve ZDT1 and ZDT2 with 131,072 variables is more than four days,
but we have to consider that we have used virtual machines and we have not applied any
optimization technique (e.g., parallelism), so those times could be significantly reduced.

4.2. The CSO Problem

The resulting configuration of AutoNSGA-II and how it contrasts with the typical
NSGA-II settings for binary encodings is shown in Table 5. In this case, the main differences
are again the presence of an external archive, the size reduction in the two populations

Math. Comput. Appl. 2022, 27, 103 10 of 17

(from 100 to 93 and 32 individuals, respectively), almost doubling the mutation impact (to
1.7) and higher selection pressure since a tournament size of 9 is adopted instead of 2.

Table 5. Settings for NSGA-II and AutoNSGA-II for the CSO problem.

Default Settings for NSGA-II Settings of AutoNSGA-II

algorithmResult: population algorithmResult: externalArchive
populationSize: 100 populationSizeWithArchive: 93
offspringPopulationSize: 100 offspringPopulationSize: 32
variation: crossoverAndMutationVariatio variation: crossoverAndMutationVariation
crossover: singlePoint crossover: singlePloint
crossoverProbability: 0.90 crossoverProbability: 0.89
mutation: bitFlip mutation: bitFlip
mutationProbabilityFactor: 1 mutationProbabilityFactor: 1.7
selection: tournament selection: tournament
selectionTournamentSize: 2 selectionTournamentSize: 9

In this experimental scenario, the goal is not to reach an approximated Pareto front
with a given quality level but to approximate the best possible set of non-dominated
solutions. To do so, we have used nine different families of CSO instances with an increasing
density, not only in the SBSs deployed in the network (i.e., the problem size) but also in the
number of existing users that represents the actual demand for data traffic. Three density
levels for each parameter have been considered, namely Low, Medium, and High (L, M,
and H, respectively), whose full specification is included in Table A1 in the Appendix.
The combination of these density levels results in nine families of instances that have
already been addressed in previous works [26,27]. We would like to emphasize that we
have used the term “family” because the generation of these instances involves random
processes for the deployment of both users and SBSs. To address this issue, we have
considered here the same 50 random seeds for the two algorithms so that both NSGA-II
and AutoNSGA-II face exactly the same generated instances. Two statistical measures
of the HV indicator of the approximated Pareto fronts are computed: the mean and the
standard deviation (see Table 6). Finally, as we do not have the true Pareto front for this real-
world problem, the stopping condition is slightly different from that of the benchmarking
problems addressed in the previous section. In fact, a maximum number of function
evaluations has been used, which increases with the size of the instances: 100,000, 150,000,
and 250,000 for L{X}, M{X}, and H{X}, respectively, with X = {L,M,H}. To obtain a reliable
value of the HV indicator, we have first composed a reference Pareto front composed of all
the non-dominated solutions found by all the algorithms for each instance, and then we
have normalized each approximated front prior to computing the HV value, thus avoiding
the effect of the different scaling in the problem objectives.

Table 6. HV indicator for the nine CSO problem families (Mean±Standard deviation).

NSGA-II AutoNSGA-II
LL 0.733±0.074 0.857±0.041

LM 0.726±0.077 0.834±0.044

LH 0.707±0.116 0.814±0.071

ML 0.619±0.084 0.871±0.030

MM 0.659±0.098 0.843±0.048

MH 0.685±0.099 0.823±0.067

HL 0.699±0.080 0.868±0.034

HM 0.644±0.128 0.792±0.119

HH 0.725±0.103 0.812±0.086

Math. Comput. Appl. 2022, 27, 103 11 of 17

The HV values reached by NSGA-II and AutoNSGA-II are shown in Table 6, where we
have used a gray background to highlight the best (highest) value of the indicator. The con-
clusion is clear: AutoNSGA-II consistently outperforms NSGA-II in all combinations of
densities in the UDN. These differences are remarkable, considering the normalization
of the approximated fronts. If we analyze the effect of the density in more detail, we can
also observe that when the density of users is Low, i.e., families {X}L (rows 1, 4 and 7),
the average HV improvement of AutoNSGA-II is 0.18 over NSGA-II, whereas it is slightly
lower for families {X}M and {X}H, which is 0.15 and 0.11, respectively. This showcases
a very interesting point for the radio network designer (the decision-maker in the CSO
problem) because substantially improved solutions can be reached in periods of very low
demand, thus saving more energy consumption. All these results are shown to have statis-
tical significance at a 95% level using either an ANOVA I or a Kruskal–Wallis depending on
the normality of the samples, which is checked beforehand by a Kolmogorov–Smirnov test.

In order to better support these claims, in Figure 2, we also show the 50%-attainment
surfaces [29] of the nine families of CSO instances. It can be seen that, averaged over all
the approximated fronts, the attainment surfaces of AutoNSGA-II cover regions of the
solution space with very large energy savings (left-hand side of the plots), where NSGA-II
is unable to reach. This particularly holds in the plots of the first column (i.e., families {X}L),
corroborating the previous analysis of the HV values. Note that this is a key issue in the
deployment of 5G networks, as this problem objective actually computes the instantaneous
power consumption, so even small reductions have a deep impact on the electricity bill
over a month/year timeframe for a network operator.

0 2 4
0.0

0.5

1.0

1.5

C
ap

ac
it

y
(G

b
p

s)

×104 LL

NSGA-II

AutoNSGA-II

0 2 4

LM

NSGA-II

AutoNSGA-II

0 2 4

LH

NSGA-II

AutoNSGA-II

2 4
0.0

0.5

1.0

1.5

C
ap

ac
it

y
(G

b
p

s)

×104 ML

NSGA-II

AutoNSGA-II

2.5 5.0 7.5

MM

NSGA-II

AutoNSGA-II

2 4

MH

NSGA-II

AutoNSGA-II

2 4
Power consumption (kW)

0.0

0.5

1.0

1.5

C
ap

ac
it

y
(G

b
p

s)

×104 HL

NSGA-II

AutoNSGA-II

2.5 5.0
Power consumption (kW)

HM

NSGA-II

AutoNSGA-II

5 10
Power consumption (kW)

HH

NSGA-II

AutoNSGA-II

Figure 2. Attainment surfaces for the nine CSO instance families.

Math. Comput. Appl. 2022, 27, 103 12 of 17

5. Conclusions

This work has shown how a well-designed optimization software in combination with
an automatic configuration tool such as irace allows tuning the NSGA-II algorithm to
deal with large-scale multi-objective optimization problems. By properly adjusting the
algorithm components in a methodology that involves not only updating the application
rates but also the type of operators used, the auto-configured version of NSGA-II, named
AutoNSGA-II, has been successfully evaluated over fairly different scenarios. On the one
hand, AutoNSGA-II has been able to address instances of the continuous ZDT problem
family (ZDT1 and ZDT2) with up to 217 = 131, 072 decision variables, being considerably
faster (in terms of the number of function evaluations and thus the execution time) than the
canonical NSGA-II in reaching approximated Pareto fronts with 95% of the HV indicator of
the true Pareto front. On the other hand, in a more application-oriented context, AutoNSGA-
II has been able to improve upon NSGA-II when addressing a combinatorial optimization
problem in ultra-dense 5G networks, where a subset of cells have to be selected to be
switched off in order to reach a trade-off between energy consumption and quality of
service. The newly algorithmic configuration has been able to reach approximated Pareto
fronts with, specifically, higher energy-efficient solutions than those computed by the
standard NSGA-II.

A line of work that is worth addressing in the future is to repeat our experiments with
the ZDT problems but using each problem separately as a training set aimed at determining,
first, whether the performance of AutoNSGA-II can be improved (in terms of reducing the
number of evaluations and then reducing the computing time) and, second, to analyze the
obtained NSGA-II configurations for each problem to detect common parameter values
or components.

The usefulness of using a methodology for automated algorithm tuning, such as
NSGA-II, makes sense in the context of dealing with real-world problems, as our study
with the CSO has shown. The application of this approach with our combination of jMetal
and irace to other problems is also further research work.

Author Contributions: Conceptualization, A.J.N., J.G.-B., F.L. and C.A.C.C.; methodology, A.J.N.,
F.L. and C.A.C.C.; software, A.J.N. and J.G.-B.; validation, A.J.N., J.G.-B. and F.L.; analysis, A.J.N.,
J.G.-B., F.L. and C.A.C.C.; writing—original draft preparation, A.J.N. and J.G.-B.; writing—review
and editing, A.J.N., J.G.-B., F.L. and C.A.C.C.; All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been partially funded by the Spanish Ministry of Science and Innovation
via grants PID2020-112540RB-C41 and PID2020-112545RB-C54, by the European Union NextGenera-
tionEU/PRTR under grant and TED2021-131699B-I00 (AEI/FEDER, UE), and the Andalusian PAIDI
program with grants P18-RT-2799, A-TIC-608-UGR20, P18.RT.4830, and PYC20-RE-012-UGR. Carlos
A. Coello Coello acknowledges support from CONACyT grant no. 2016-01-1920 (Investigación en
Fronteras de la Ciencia 2016).

Data Availability Statement: A repository containing the source codes will be publicly available if
the paper is accepted.

Acknowledgments: The authors would like to thank Picasso, the supercomputer at the Supercom-
puting and Bioinformatics centre of the Universidad de Málaga, for providing its services to perform
the experiments (http://www.scbi.uma.es/, accessed on 25 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. UDN Modeling and Instances

This work considers a service area of 500× 500 meters, which has been discretized
using a grid of 100× 100 points (also called “pixels” or area elements), each covering a
25 m2 area, where the signal power is assumed to be constant. In addition to that, vertical
densification has been taken into account by considering three vertical area elements, i.e.,
25 m of height.

http://www.scbi.uma.es/

Math. Comput. Appl. 2022, 27, 103 13 of 17

Ten different regions have been defined with different propagation conditions. To com-
pute the received power at each point, Prx[dBm], the following model has been used:

Prx[dBm] = Ptx[dBm] + PLoss[dB] (A1)

where Prx is the received power in dBm, Ptx is the transmitted power in dBm, and PLoss is
the global signal losses, which depend on the given propagation region, and are computed as:

PLoss[dB] = GA + PA (A2)

where GA is the total gain of both antennas, and PA is the transmission losses in space,
computed as:

PA[dB] =
(

λ

2 · π · d

)K
(A3)

where d is the Euclidean distance to the corresponding sector at the SBS, and K is the
exponent loss, which randomly ranges in [2.0, 4.0] for each of the 10 different regions.
The Signal-to-Interference plus Noise Ratio (SINR) for UE k, is computed as:

SINRk =
Prx,j,k[mW]

∑M
i=1 Prx,i,k[mW]− Prx,j,k[mW] + Pn[mW]

(A4)

where Prx,j,k is the received power by UE k from the cell j, the summation is the total
received power by UE k from all the cells operating at the same frequency that j, and Pn is
the noise power, computed as:

Pn[dBm] = −174 + 10 · log10 BWj (A5)

where BWj is the bandwidth of cell j, defined as 10% of the SBS operating frequency, which
is the same for all the cells it deploys (see Table A1).

Finally, the UE’s capacity has been calculated according to the MIMO depicted in [30].
Thus, we assume that the transmission power from each antenna is Ptx/ntx, where ntx
indicates the number of transmitting antennas. Then, if we consider the subchannels to be
uncoupled, their capacities can add up, and the overall channel capacity of the UE k can be
estimated using the Shannon capacity formula:

Cj
k[bps] = BW j

k[Hz] ·
r

∑
i=1

log2

(
1 +

SINRk · λi
ntx

)
(A6)

where
√

λi is the singular value of the channel matrix H, of dimensions nrx × ntx (i.e., #
receiving antennas × # transmitting antennas). Note that both nrx and ntx depend on the
cell type (see Table A1). BW j

k is the bandwidth assigned to UE k when connected to cell j,
assuming a round-robin schedule, that is:

BW j
k =

BWj

Nj
(A7)

where Nj is the number of UEs connected to cell j, and the UEs are connected to the cell
that provides the highest SINR, regardless of its type.

In order to build a heterogeneous network, three different types of cells of increasing
size and decreasing frequency are considered: femtocells, picocells, and microcells. Recall
that these cells are generated by the antennas installed in a given sector of an SBS. Figure A1
illustrates the three configurations used in our modeling. In the first row, the three SBSs
have the three sectors, and all their cells switched on (in operation). Thus the mapping to
the binary string that represents a tentative solution, included below each subfigure, does
have all the genes set to 1. In the second row, we have included several solutions with a

Math. Comput. Appl. 2022, 27, 103 14 of 17

subset of cells switched off, with the corresponding genes set to 0. It should also be noted
that the number of transmitting antennas of each cell type increases with frequency, being
8, 64, and 256 transmitting antennas, respectively, for micro, pico, and femtocells. In the
same way, we assume that high-capacity UEs, which will preferably connect to small cells
(pico and femtocells), will implement a higher number of receiving antennas (4 and 8 for
pico and femtocells, respectively).

2

1

0

1

0

2

3

4

5
0

1
2

3
4 5

6
7

8
9

1011

2

1

0

1

0

2

3

4

5

0
1
2

3
4 5

6
7

8
9

1011

[1 0 1] [0 1 1 0 0 1] [1 0 1 0 0 0 1 0 1 0 1 1]

[1 1 1] [1 1 1 1 1 1] [1 1 1 1 1 1 1 1 1 1 1 1]

Figure A1. Configuration of the SBSs, sectors, and cells used in this work, as well as its mapping into
a binary encoded representation.

With the system configuration described above, the actual deployment of the cells is
carried out via the placement of SBSs in the working area, using a random rotation angle
for the sectors, which determines the orientation of the different cell beams. Then, both
SBSs and UEs are deployed using independent Poisson Point Processes (PPP) with different
densities, defined by λCells

P and λUE
P), respectively.

The power consumption of a transmitter is computed based on the model presented
in [31], which considers that the device is transmitting over the fiber backhauling. Therefore,
the regular power consumption of cell j, Pj, is expressed as:

Pj = α · P + β + δ · S + ρ (A8)

where P denotes the transmitted or radiated power of the transmitter, coefficient α repre-
sents the efficiency of the transmission power produced by a radio frequency amplifier and
feeder losses, the power dissipated due to signal processing and site cooling is denoted
by β, and the dynamic power consumption per unit of data is given by δ, where S is the
actual traffic demand provided by the serving cell. Finally, the power consumption of the
transmitting device is represented by the coefficient ρ. However, in order to consider an
accurate power consumption model, the power consumed by the air conditioning and
power supply of the SBS should also be taken into account [32]. This has been called
maintenance power and is set to 2W/SBS for any SBS containing at least one active cell.

The detailed parametrization of the scenarios addressed is included in Table A1,
in which the column equation links the parameter to the corresponding equation in the for-
mulation detailed above. The names in the last nine columns, XY, represent the deployment
densities of SBSs and UEs, respectively, so that X = {L, M, H}, meaning either low, medium,
or high-density deployments (λCell

P parameter of the PPP), and Y = {L, M, H}, indicate a low,

Math. Comput. Appl. 2022, 27, 103 15 of 17

medium, or high density of deployed UEs (λUE
P parameter of the PPP), in the last row of

the table. The parameters Gtx and f of each type of cell refer to the transmission gain and
the operating frequency (and its available bandwidth) of the antenna, respectively, where
ntx and nrx are the number of transmitting and receiving antennas. Finally, the parameters
of the previously described power consumption model are also included. Nine instances
have been, therefore, used in this work in order to assess the performance of the different
metaheuristics and their hybridization with the problem-specific operators.

Table A1. Model parameters for users and base stations.

Cell Parameter Equation LL LM LH ML MM MH HL HM HH

Micro

Gtx (A2) 12
f (A5) 5 GHz (BW = 500 MHz)
α (A8) 15
β (A8) 10000
δ (A8) 1
ρ[W] (A8) 1
ntx 8
nrx 2
λmicro

P (Cells/km2) 300 300 300 600 600 600 900 900 900

Pico

Gtx (A2) 20
f (A5) 20 GHz (BW = 2000 MHz)
α (A8) 9
β (A8) 6800
δ (A8) 0.5
ρ[W] (A8) 1
ntx 64
nrx 4
λ

pico
P (Cells/km2) 1500 1500 1500 1800 1800 1800 2100 2100 2100

Femto

Gtx (A2) 28
f (A5) 68 GHz (BW = 6800 MHz)
α (A8) 5.5
β (A8) 4800
δ (A8) 0.2
ρ[W] (A8) 1
ntx 256
nrx 8

λ
f emto
P (Cells/km2) 3000 3000 3000 6000 6000 6000 9000 9000 9000

UEs λUE
P (UE/km2) 1000 2000 3000 1000 2000 3000 1000 2000 3000

Problem Formulation and Objectives

Let B be the set of randomly deployed SBSs. A solution to the CSO problem is a binary
string s ∈ {0, 1}|B|, where si indicates whether the cell i of a given SBS is activated or not.
The first objective to be minimized is, therefore, computed as:

min fPower(s) =
|B|
∑
i=1

si · Pi (A9)

where Pi is the power consumption of SBS i (Equation (A8)). Note that Pi includes both the
transmission power of every cell i in the SBSs and its maintenance power.

Let U be the set of UEs also deployed, as described in the previous section, and U be
the entire set of cells contained in B. Subsequently, in order to compute the total capacity of
the system, UEs are first assigned to the active cell that provides it with the highest SINR.
Let A(s) ∈ {0, 1}|U |×|C| be the matrix where aij = 1 if sj = 1 and the Cell j serves UE i

Math. Comput. Appl. 2022, 27, 103 16 of 17

with the highest SINR, and aij = 0 otherwise. Then, the second objective to be maximized,
which is the total capacity provided to all UEs, is calculated as:

max fCap(s) =
|U |
∑
i=1

|C|
∑
j=1

sj · aij · BW j
i (A10)

where BW j
i is the shared bandwidth of cell j provided to UE i (Equation (A7)). We would

like to remark that these two problem objectives are clearly conflicting with each other since
switching off base stations leads to a reduction in the power consumption of the network,
but it also damages the capacity received by the user, as the UE–cell distance increases
(rising the propagation losses) at the same time as the available bandwidth to serve users
is reduced.

References
1. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
2. Li, H.; Zhang, Q. Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II. IEEE Trans. Evol.

Comput. 2009, 13, 284–302. [CrossRef]
3. Reyes Sierra, M.; Coello Coello, C.A. Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and

ε-Dominance. In Evolutionary Multi-Criterion Optimization; Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E., Eds.; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 505–519.

4. Nebro, A.J.; Durillo, J.J.; García-Nieto, J.; Coello, C.A.C.; Luna, F.; Alba, E. SMPSO: A new PSO-based metaheuristic for
multi-objective optimization. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria
Decision-Making (MCDM 2009), Nashville, TN, USA, 30 March–2 April 2009; pp. 66–73. [CrossRef]

5. Zavala, G.R.; Nebro, A.J.; Luna, F.; Coello, C.A.C. A survey of multi-objective metaheuristics applied to structural optimization.
Struct. Multidiscip. Optim. 2014, 49, 537–558. [CrossRef]

6. Becerra, D.; Sandoval, A.; Restrepo-Montoya, D.; Nino, L.F. A parallel multi-objective Ab initio approach for protein structure
prediction. In Proceedings of the 2010 IEEE International Conference on Bioinformatics and Biomedicine, Houston, TX, USA,
9–12 December 2010; pp. 137–141.

7. Fang, W.; Guan, Z.; Su, P.; Luo, D.; Ding, L.; Yue, L. Multi-Objective Material Logistics Planning with Discrete Split Deliveries
Using a Hybrid NSGA-II Algorithm. Mathematics 2022, 10, 2871. [CrossRef]

8. Turkson, R.F.; Yan, F.; Ahmed Ali, M.K.; Liu, B.; Hu, J. Modeling and multi-objective optimization of engine performance and
hydrocarbon emissions via the use of a computer aided engineering code and the NSGA-II genetic algorithm. Sustainability 2016,
8, 72. [CrossRef]

9. Adenso-Díaz, B.; Laguna, M. Fine-tuning of algorithms using fractional experimental designs and local search. Oper. Res. 2006,
54, 99–114. [CrossRef]

10. Durillo, J.; Nebro, A. jMetal: A Java framework for multi-objective optimization. Adv. Eng. Softw. 2011, 42, 760–771. [CrossRef]
11. Nebro, A.; Durillo, J.J.; Vergne, M. Redesigning the jMetal Multi-Objective Optimization Framework. In Proceedings of the

Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO Companion ’15),
Madrid, Spain, 11–15 July 2015; ACM: New York, NY, USA, 2015; pp. 1093–1100. [CrossRef]

12. López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.; Stützle, T.; Birattari, M. The irace package: Iterated Racing for Automatic
Algorithm Configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

13. Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 2000,
8, 173–195. [CrossRef] [PubMed]

14. Blot, A.; Hoos, H.H.; Jourdan, L.; Kessaci-Marmion, M.É.; Trautmann, H. MO-ParamILS: A Multi-objective Automatic Algorithm
Configuration Framework. In Learning and Intelligent Optimization; Festa, P., Sellmann, M., Vanschoren, J., Eds.; Springer
International Publishing: Cham, Switzerland, 2016; pp. 32–47.

15. Bezerra, L.C.T.; López-Ibáñez, M.; Stützle, T. Automatic Component-Wise Design of Multiobjective Evolutionary Algorithms.
IEEE Trans. Evol. Comput. 2016, 20, 403–417. [CrossRef]

16. Bezerra, L.C.T.; López-Ibáñez, M.; Stützle, T. Automatically Designing State-of-the-Art Multi- and Many-Objective Evolutionary
Algorithms. Evol. Comput. 2020, 28, 195–226. [CrossRef] [PubMed]

17. Nebro, A.J.; López-Ibáñez, M.; Barba-González, C.; García-Nieto, J. Automatic Configuration of NSGA-II with jMetal and Irace;
Association for Computing Machinery, Inc.: New York, NY, USA, 2019; pp. 1374–1381. [CrossRef]

18. Huband, S.; Barone, L.; While, R.; Hingston, P. A Scalable Multi-objective Test Problem Toolkit. In Proceedings of the Third
International Conference on Evolutionary MultiCriterion Optimization, EMO 2005, Guanajuato, Mexico, 9–11 March 2005; Coello,
C., Hernández, A., Zitler, E., Eds.; Springer: Berlin, Germany, 2005; Lecture Notes in Computer Science; Volume 3410, pp. 280–295.

http://doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2008.925798
http://dx.doi.org/10.1109/MCDM.2009.4938830
http://dx.doi.org/10.1007/s00158-013-0996-4
http://dx.doi.org/10.3390/math10162871
http://dx.doi.org/10.3390/su8010072
http://dx.doi.org/10.1287/opre.1050.0243
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1145/2739482.2768462
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1162/106365600568202
http://www.ncbi.nlm.nih.gov/pubmed/10843520
http://dx.doi.org/10.1109/TEVC.2015.2474158
http://dx.doi.org/10.1162/evco_a_00263
http://www.ncbi.nlm.nih.gov/pubmed/31464527
http://dx.doi.org/10.1145/3319619.3326832

Math. Comput. Appl. 2022, 27, 103 17 of 17

19. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Test Problems for Evolutionary Multiobjective Optimization. In
Evolutionary Multiobjective Optimization. Theoretical Advances and Applications; Abraham, A., Jain, L., Goldberg, R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2001; pp. 105–145.

20. Durillo, J.J.; Nebro, A.J.; Coello, C.A.C.; Garcia-Nieto, J.; Luna, F.; Alba, E. A Study of Multiobjective Metaheuristics When Solving
Parameter Scalable Problems. IEEE Trans. Evol. Comput. 2010, 14, 618–635. [CrossRef]

21. Tian, Y.; Si, L.; Zhang, X.; Cheng, R.; He, C.; Tan, K.C.; Jin, Y. Evolutionary Large-Scale Multi-Objective Optimization: A Survey.
ACM Comput. Surv. 2021, 54, 174. [CrossRef]

22. Nebro, A.J.; Luna, F.; Alba, E.; Dorronsoro, B.; Durillo, J.J.; Beham, A. AbYSS: Adapting Scatter Search to Multiobjective
Optimization. IEEE Trans. Evol. Comput. 2008, 12, 439–457. [CrossRef]

23. Bohli, A.; Bouallegue, R. How to Meet Increased Capacities by Future Green 5G Networks: A Survey. IEEE Access 2019,
7, 42220–42237. [CrossRef]

24. Lopez-Perez, D.; Ding, M.; Claussen, H.; Jafari, A.H. Towards 1 Gbps/UE in Cellular Systems: Understanding Ultra-Dense Small
Cell Deployments. IEEE Commun. Surv. Tutorials 2015, 17, 2078–2101. [CrossRef]

25. González González, D.; Mutafungwa, E.; Haile, B.; Hämäläinen, J.; Poveda, H. A Planning and Optimization Framework for
Ultra Dense Cellular Deployments. Mob. Inf. Syst. 2017, 2017, 9242058. [CrossRef]

26. Luna, F.; Luque-Baena, R.; Martínez, J.; Valenzuela-Valdés, J.; Padilla, P. Addressing the 5G Cell Switch-off Problem with a
Multi-objective Cellular Genetic Algorithm. In Proceedings of the IEEE 5G World Forum, 5GWF 2018—Conference Proceedings,
Silicon Valley, CA, USA, 9–11 July 2018; pp. 422–426. [CrossRef]

27. Luna, F.; Zapata-Cano, P.H.; González-Macías, J.C.; Valenzuela-Valdés, J.F. Approaching the cell switch-off problem in 5G
ultra-dense networks with dynamic multi-objective optimization. Future Gener. Comput. Syst. 2020, 110, 876–891. [CrossRef]

28. Zille, H.; Ishibuchi, H.; Mostaghim, S.; Nojima, Y. Mutation operators based on variable grouping for multi-objective large-scale
optimization. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9
December 2016; pp. 1–8. [CrossRef]

29. Knowles, J. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective
optimizers. In Proceedings of the 5th ISDA, Washington, DC, USA, 8–10 September 2005; pp. 552–557.

30. Vucetic, B.; Yuan, J. Performance Limits of Multiple-Input Multiple-Output Wireless Communication Systems. In Space-Time
Coding; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; chapter 1, pp. 1–47.

31. Piovesan, N.; Fernandez Gambin, A.; Miozzo, M.; Rossi, M.; Dini, P. Energy sustainable paradigms and methods for future
mobile networks: A survey. Comput. Commun. 2018, 119, 101–117. [CrossRef]

32. Son, J.; Kim, S.; Shim, B. Energy Efficient Ultra-Dense Network Using Long Short-Term Memory. In Proceedings of the 2020 IEEE
Wireless Communications and Networking Conference (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6.

http://dx.doi.org/10.1109/TEVC.2009.2034647
http://dx.doi.org/10.1145/3470971
http://dx.doi.org/10.1109/TEVC.2007.913109
http://dx.doi.org/10.1109/ACCESS.2019.2907284
http://dx.doi.org/10.1109/COMST.2015.2439636
http://dx.doi.org/10.1155/2017/9242058
http://dx.doi.org/10.1109/5GWF.2018.8517066
http://dx.doi.org/10.1016/j.future.2019.10.005
http://dx.doi.org/10.1109/SSCI.2016.7850214
http://dx.doi.org/10.1016/j.comcom.2018.01.005

	Introduction
	Related Work
	Materials and Methods
	Component-Based NSGA-II
	Parameter Space for Auto-Configuring NSGA-II
	Experimental Methodology
	Scenarios
	Auto-Configuration and Performance Assessment
	Computing Environments

	Results
	ZDT Benchmark
	The CSO Problem

	Conclusions
	UDN Modeling and Instances
	References

