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Abstract: Probability distributions are very useful in modeling lifetime datasets. However, no spe‑
cific distribution is suitable for all kinds of datasets. In this study, the bounded truncated Cauchy
power exponential distribution is proposed for modeling datasets on the unit interval. The proba‑
bility density function exhibits desirable shapes, such as left‑skewed, right‑skewed, reversed J, and
bathtub shapes, whereas the hazard rate function displays J and bathtub shapes. For the purpose of
modeling dependence between measures in a dataset, a bivariate extension of the proposed distribu‑
tion is developed. The bivariate probability density function displaysmonotonic and non‑monotonic
shapes, making it suitable for modeling complex bivariate relations. Subsequently, the applications
of the distribution are illustrated using COVID‑19 data. The results revealed that the new distri‑
bution provides a better fit to the datasets compared to other existing distributions. Finally, a new
quantile regression model is developed and its application demonstrated. The generated quantile
regression model offers a decent fit to the data, according to the residual analysis.

Keywords: COVID‑19; bounded distribution; estimation methods; Cauchy; regression; bivariate

1. Introduction
Diseasemodeling andprediction are primary tasks of epidemiologists and researchers

interested in the estimation of disease occurrences. To perform these tasks, modeling the
variability in disease occurrences using probability distributions is essential. With the
emergence of the novel coronavirus disease in late 2019 (COVID‑19) and its negative im‑
pact on humanity, many researchers have proposed newprobability distributions (discrete
or continuous) for modeling the number of infections, mortality rate, and recovery rates,
among others. Some of the proposed probability distributions or families of distributions
include: Marshall–Olkin reduced Kies distribution [1], modified inverse Weibull distribu‑
tion [2], weighted Weibull distribution [3], type I half logistic Burr X‑G family [4], unit
power Weibull distribution [5], new extended exponentiated Weibull distribution [6], dis‑
crete extended oddWeibull exponential distribution [7], oddWeibull inverse Topp–Leone
distribution [8], log‑logistic tangent distribution [9], discrete‑type half‑logistic exponential
distribution [10], and unit Johnson SU distribution [11].

Among these probability distributions used for modeling diseases, those defined on
the unit interval play a major role due to their usefulness in areas such as health, psy‑
chology, and epidemiology, among others. For instance, researchers may be interested in
modeling mortality or recovery rates. Observations measured on these variables are usu‑
ally proportions, fractions, or rates, which are defined in the unit interval. Although the
beta distribution is the oldest for modeling datasets measured on the unit interval, the in‑
tractability of its cumulative distribution function (CDF) and quantile function has called
for the development of new distributions with tractable CDFs and quantile functions that
are also capable ofmodeling data on the unit interval. Unit distributions proposed recently
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in literature include: unit Gamma/Gompertzdistribution [12], bounded odd inverse Pareto
exponential distribution [13], bounded shifted Gompertz distribution [14], unit modified
Burr‑III distribution [15], unit generalized half normal distribution [16], unit Lindley dis‑
tribution [17], unit Gompertz distribution [18], logit slash distribution [19], unit Weibull
distribution [20] and unit inverse Gaussian distribution [21].

Despite the existence ofmanyunit distributions in the literature, no single distribution
is capable of modeling all forms of data since the data generating process produces data
with different characteristics such as symmetric, skewed, varied degrees of kurtosis, and
monotonic and non‑monotonic failure rates. This study thus proposes a new unit distribu‑
tion called the bounded truncated Cauchy power exponential (BTCPE) distribution. The
motivations for developing the newdistribution are as follows: to provide amodel capable
of modeling complex data on unit interval that exhibits platykurtic, leptokurtic, reversed
J, left‑skewed, right‑skewed, bathtub, and J shapes; to develop a bivariate distribution for
modeling interdependence between random data on unit interval; and to develop a quan‑
tile regression model for understanding the relationship between a response variable and
given covariates.

The remainder of the paper is organized in nine sections, described as follows: Section 2
presents the development of the BTCPE distribution, Section 3 describes some of its impor‑
tant properties, Section 4 focuses on a special bivariate extension of the BTCPE distribution,
Section 5 is devoted to the parametric estimation methods, Section 6 presents the Monte
Carlo simulation of nine frequentist estimation methods, Section 7 contains the univariate
applications of the BTCPE distribution, Section 8 is about the quantile regression model
and its application, and finally the conclusion of the paper is presented in Section 9.

2. Bounded Truncated Cauchy Power Exponential Distribution
A random variable X follows the truncated Cauchy power exponential (TCPE) distri‑

bution if its CDF and probability density function (PDF), respectively, are defined as

FX(x; α, λ) =
4
π
arctan[(1 − e−λx)

α
], α > 0, λ > 0, x > 0, (1)

and

fX(x; α, λ) =
4αλe−λx(1 − e−λx)

α−1

π[1 + (1 − e−λx)
2α
]

, x > 0. (2)

The TCPE distribution can be presented as a special case of the TCP Weibull distri‑
bution proposed by [22]. Now, we define a new unit distribution, called the BTCPE dis‑
tribution, corresponding to the distribution of Y = e−X . The associated CDF is obtained
as follows:

FY(y; α, λ) = P(e−X ≤ y) = P(−X ≤ log(y))

= 1 − P(X ≤ − log(y))

= 1 − FX(− log(y); α, λ).

Hence, the CDF of the BTCPE distribution is expressed as

FY(y; α, λ) = 1 − 4
π
arctan[(1 − yλ)

α
], 0 < y < 1, (3)

and α > 0 and λ > 0 are the shape parameters that have to be estimated. The associated
PDF of the BTCPE distribution is obtained by differentiating Equation (3), and it is given by

fY(y; α, λ) =
4αλyλ−1(1 − yλ)

α−1

π[1 + (1 − yλ)
2α
]

, 0 < y < 1. (4)

Often, the PDFs are expressed in expanded form for easy derivation of the statistical
properties of the proposed distribution. The expanded form of the PDF of the BTCPE
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distribution is mainly obtained using the generalized binomial expansion, (y + a)−n =
∞
∑

k=0

(
−n
k

)
yka−n−k, |y| < a, where n is any real number. Thus, it is given by

fY(y; α, λ) =
4αλ

π

∞

∑
i=0

(−1)iyλ−1(1 − yλ)
α(2i+1)−1

, 0 < y < 1. (5)

The corresponding hazard rate function (HRF) is given by

hY(y; α, λ) =
αλyλ−1(1 − yλ)

α−1

[1 + (1 − yλ)
2α
]arctan[(1 − yλ)

α
]
, 0 < y < 1. (6)

The shapes of the PDF and HRF for some given parameter values are shown in
Figure 1. The PDF exhibits symmetric, bathtub, left‑skewed and right‑skewed shapes for
the given parameter values. The HRF displays bathtub and increasing failure rates.

Math. Comput. Appl. 2022, 27, x FOR PEER REVIEW 3 of 31 
 

 

4( ; , ) 1 arctan[(1 ) ],0 1,YF y y yλ αα λ
π

= − − < <  (3)

and 0α >  and 0λ >  are the shape parameters that have to be estimated. The associ-
ated PDF of the BTCPE distribution is obtained by differentiating Equation (3), and it is 
given by 

1 1

2
4 (1 )( ; , ) ,0 1.

[1 (1 ) ]Y
y yf y y

y

λ λ α

λ α
αλα λ
π

− −−= < <
+ −

 (4)

Often, the PDFs are expressed in expanded form for easy derivation of the statistical 
properties of the proposed distribution. The expanded form of the PDF of the BTCPE 
distribution is mainly obtained using the generalized binomial expansion, 

0
( ) ,| |n k n k

k

n
y a y a y a

k

∞
− − −

=

− 
+ = < 

 
 , where n  is any real number. Thus, it is given by 

1 (2 1) 1

0

4( ; , ) ( 1) (1 ) ,0 1.i i
Y

i
f y y y yλ λ ααλα λ

π

∞
− + −

=

= − − < <  (5)

The corresponding hazard rate function (HRF) is given by 

1 1

2
(1 )( ; , ) ,0 1.

[1 (1 ) ]arctan[(1 ) ]Y
y yh y y

y y

λ λ α

λ α λ α
αλα λ

− −−= < <
+ − −

 (6)

The shapes of the PDF and HRF for some given parameter values are shown in 
Figure 1. The PDF exhibits symmetric, bathtub, left-skewed and right-skewed shapes for 
the given parameter values. The HRF displays bathtub and increasing failure rates. 

 
Figure 1. PDF (left) and HRF (right) of the BTCPE distribution. 

3. Some Important Properties 
This section presents some relevant properties of the BTCPE distribution. 

3.1. Distribution Inequalities 

Figure 1. PDF (left) and HRF (right) of the BTCPE distribution.

3. Some Important Properties
This section presents some relevant properties of the BTCPE distribution.

3.1. Distribution Inequalities
This subsection investigates some desirable inequalities satisfied by the CDF of the

BTCPE distribution. These inequalities are very essential in determining the first order
stochastic dominance of random variables [23].

Proposition 1. The CDF of the BTCPE distribution is increasing with respect to the parameter α.
The CDF of the BTCPE distribution is decreasing with respect to the parameter λ.

Proof. For the first point, since (1 − yλ)
α log(1 − yλ) < 0 , for y ∈ (0, 1), we have

∂FY(y; α, λ)

∂α
= −4(1 − yλ)

α log(1 − yλ)

π[1 + (1 − yλ)
2α
]

≥ 0.

This means that FY(y; α, λ) is increasing with respect to α. For the second point, since
yλ(1 − yλ)

α−1 log(y) < 0, for y ∈ (0, 1), we have

∂FY(y; α, λ)

∂λ
=

4αyλ(1 − yλ)
α−1 log(y)

π[1 + (1 − yλ)
2α
]

≤ 0.
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This implies that FY(y; α, λ) is decreasing with respect to λ. This completes the proof
of the proposition. From Proposition 1, the following stochastic ordering property fol‑
lows immediately: if α1 ≤ α2 then FY(y; α1, λ) ≤ FY(y; α2, λ). Also, if λ1 ≤ λ2 then
FY(y; α, λ2) ≤ FY(y; α, λ1). �

3.2. Quantile Function
The quantile function or the inverse CDF is simply the solution Q(u; α, λ) of the fol‑

lowing nonlinear equation: FY(Q(u; α, λ); α, λ) = u, for all u ∈ (0, 1). Thus, after some
algebraic manipulation, we have

Q(u; α, λ) =

{
1 −

(
tan

[π

4
(1 − u)

])1/α
}1/λ

, u ∈ (0, 1). (7)

The median is obtained by substituting u = 0.5. The quantile function plays an im‑
portant role in the generation of random observations from the BTCPE distribution. The
quantile function values are also useful in computing measures of skewness and kurtosis.
As a classical quantile measure, the MacGillivray measure of skewness [24] is given by

ρ(u; α, λ) =
Q(1 − u; α, λ) + Q(u; α, λ)− 2Q(0.5; α, λ)

Q(1 − u; α, λ)− Q(u; α, λ)
, u ∈ (0, 1).

In particular, theMacGillivraymeasure of skewness can be used to efficiently describe
the effect of the parameters (α, λ) on the skewness. The more the shapes of ρ(u; α, λ) vary
according to the parameters, the more flexible the skewness is. Figure 2 shows the plot
of this skewness measure for a fixed value of λ while α varies and for a fixed value of α
while λ varies. From Figure 2, the wider variations seen imply that both parameters have
a strong influence on the skewness of the BTCPE distribution. In addition, as the values of
α or λ increase, ρ(u; α, λ) gets closer to the horizontal line. This shows that utilizing higher
values of the parameter can result in a symmetrical distribution.
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The kurtosis of the BTCPE distribution can be studied using the Moors kurtosis [25].
The Moors (coefficient of) kurtosis is usually given by

K(α, λ) =
Q(7/8; α, λ)− Q(5/8; α, λ) + Q(3/8; α, λ)− Q(1/8; α, λ)

Q(3/4; α, λ)− Q(1/4; α, λ)
.
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Large values of the Moors kurtosis imply that the distribution has a heavy tail, and
small values are indications of a light tail. Figure 3 displays the Moors kurtosis for the
BTCPE distribution. It can be observed that the BTCPE distribution exhibits various de‑
grees of kurtosis. When the parameters α and λ are equal, the distribution displays a
platykurtic shape. The overall shapes show how flexible the BTCPE distribution is with
regards to modeling datasets having different degrees of kurtosis and skewness.
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3.3. Moments and Moments Generating Function
The rth moments, incompletemoments andmoment generating function of the BTCPE

distribution are presented in this subsection.

Proposition 2. If Y is a BTCPE random variable, i.e., a random variable with the BTCPE distri‑
bution, then its rthnon‑central moment is given by

µ′
r =

4α

π

∞

∑
i=0

(−1)iB
( r

λ
+ 1, α(1 + 2i)

)
, r = 1, 2, . . . , (8)

where B(a, b) =
1∫

0
za−1(1 − z)b−1dz is the beta integral function.

Proof. The rth non‑central moment of the BTCPE random variable is defined as µ′
r =

E(Yr) =
1∫

0
yr fY(y; α, λ)dy. Thus, substituting the expanded form of the PDF given in Equa‑

tion (5) yields

µ′
r =

4αλ

π

∞

∑
i=0

(−1)i
1∫

0

yr+λ−1(1 − yλ)
α(1+2i)−1

dy.

Letting z = yλ, y → 0, z → 0; y → 1, z → 1 and dz = λyλ−1dy , we get

µ′
r =

4α

π

∞

∑
i=0

(−1)i
1∫

0

z
r
λ (1 − z)α(1+2i)−1dz.

Hence, several algebraic manipulation yield

µ′
r =

4α

π

∞

∑
i=0

(−1)iB
( r

λ
+ 1, α(1 + 2i)

)
.
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This completes the proof. �

The non‑central moments can be used to derive other important characteristics of the
BTCPE distribution such as estimating the variance, coefficient of skewness and kurtosis.

Proposition 3. The rth incomplete moment of the BTCPE random variable is given by

φr =
4α

π

∞

∑
i=0

(−1)iB
(

yλ;
r
λ
+ 1, α(1 + 2i)

)
, r = 1, 2, . . . , (9)

where B(q; a, b) =
q∫

0
za−1(1 − z)b−1dz is the incomplete beta integral function.

Proof. By definition, the rth incomplete moment is given by

φr = E(Yr1{Y < y}) =
y∫

0

xr f (x; α, λ)dx.

Hence, substituting the expanded form of the PDF into the definition yields

φr =
4αλ

π

∞

∑
i=0

(−1)i
y∫

0

xr+λ−1(1 − xλ)
α(1+2i)−1

dx.

Letting z = xλ, x → 0, z → 0; x → y, z → yλ and dz = λxλ−1dx . Hence, applying similar
concepts for proving the incomplete moments yields

φr =
4α

π

∞

∑
i=0

(−1)iB
(

yλ;
r
λ
+ 1, α(1 + 2i)

)
.

This completes the proof. �

Themoment generating function is useful for deriving the moments of a random vari‑
able if only the moment exists.

Proposition 4. The moment generating function of the BTCPE random variable is given by

MY(t) =
4α

π

∞

∑
r=0

∞

∑
i=0

(−1)itr

r!
B
( r

λ
+ 1, α(1 + 2i)

)
. (10)

Proof. By definition and a standard exponential expansion, we have MY(t) = E(etY) =
∞
∑

r=0

tr

r! µ′
r. Hence, substituting the rthnon‑central moment of the BTCPE distribution into

the definition completes the proof. �

Table 1 shows the first six moments of the BTCPE distribution and other useful mea‑
sures, such as the standard deviation (SD), coefficients of variation (CV), skewness (CS)
and kurtosis (CK). The SD, CV, CS and CK are, respectively, given by

SD =
√

µ′
2 − µ2,

CV =
σ

µ
=

√
µ′

2
µ2 − 1,
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CS =
µ′

3 − 3µµ′
2 + 2µ3

(µ′
2 − µ2)3/2

and

CK =
µ′

4 − 4µµ′
3 + 6µ2µ′

2 − 3µ4

(µ′
2 − µ2)2 .

Table 1. Values of moment measures, including the SD, CV, CS and CK.

µ’r α = 0.4, λ = 2.5 α = 4.5, λ = 3.1 α = 20.0, λ = 1.5

µ′
1 0.8799 0.5602 0.1339

µ′
2 0.8021 0.3401 0.0242

µ′
3 0.7457 0.2185 0.0053

µ′
4 0.7020 0.1465 0.0013

µ′
5 0.6667 0.1017 0.0004

µ′
6 0.6373 0.0726 0.0001

SD 0.1668 0.1619 0.0794

CV 0.1896 0.2890 0.5931

CS −1.9527 −0.3403 0.7713

CK 6.6850 2.7084 3.5390

FromTable 1, the CS is negative for the given parameter values and positive for others.
It can be seen that the BTCPE distribution can be leptokurtic or platykurtic depending on
the parameter values, since the CK can be lower than 3 or greater than 3, respectively. The
coefficient of skewness also reveals that the BTCPE distribution can model both left and
right‑skewed data.

3.4. Order Statistics
Order statistics play an imperative role in both statistics and industrial reliability anal‑

ysis. They can be used to estimate the minimum, maximum, and range of observations.
They are used in developing control charts that are useful in industrial quality control
analyses. Let Y1:n ≤ Y2:n ≤ . . . ≤ Yn:n be n order statistics from n BTCPE random variables.
Then, the PDF of Yk:n is given by

fk:n(y; α, λ) = Ωk:n[FY(y; α, λ)]k−1[1 − FY(y; α, λ)]n−k fY(y; α, λ),

where
Ωk:n =

n!
(k − 1)!(n − k)!

.

Using the binomial expansion (1 − y)λ−1 =
∞
∑

i=0
(−1)i

(
λ − 1

i

)
yi, |y| < 1, we canwrite

fk:n(y; α, λ) = Ωk:n

k−1

∑
i=0

(−1)i
(

k − 1
i

)
[1 − FY(y; α, λ)]n−k+i fY(y; α, λ).

Thus, we have

fk:n(y; α, λ) =
Ωk:n4αλyλ−1(1 − yλ)

α−1

π[1 + (1 − yλ)
2α
]

k−1

∑
i=0

(−1)i
(

k − 1
i

)[
4
π
arctan[(1 − yλ)

α
]

]n−k+i
. (11)
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On the other side, the CDF of Y1:n is simply given by

F1:n(y; α, λ) = 1 − [1 − FY(y; α, λ)]n

= 1 −
[

4
πarctan[(1 − yλ)

α
]
]n

,

and the CDF of Yn:n is derived as

Fn:n(y; α, λ) = [FY(y; α, λ)]n =

[
1 − 4

π
arctan[(1 − yλ)

α
]

]n
.

The distribution of the smallest order statistic represents the lifetime of a system con‑
nected in series, and that of the maximum order statistic denotes the lifetime of a system
connected in parallel. Hence, they are vital in studying the minimum and maximum time
to failure of components in engineering reliability. The minimum and maximum (min‑
max) plots of the order statistics can be used to investigate the distributional behavior of
observations. The min–max plot captures not only the information in the tails but all the
information about the whole distribution. The min–max plots shown in Figure 4 for some
parameter values depend on E(Y1:n) and E(Yn:n). From themin–max plots, the distribution
can exhibit symmetrical, left‑skewed, and right‑skewed shapes.
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4. Bivariate Extension
Researchers may be interested in modeling the dependence between two (quantita‑

tive) measures in a dataset. For instance, one may be interested in modeling the rela‑
tionship between age and the body mass index of individuals. Bivariate distributions
have been used in reliability analysis, queuing theory, finance, and insurance risk anal‑
ysis, among others, to study interdependency (see [26]). In this section, the bivariate exten‑
sion of the BTCPE (BEBTCPE) distribution is proposed following the strategy developed
in [26,27]. Given a bivariate continuous random vector (X, Y), the CDF of the BEBTCPE
distribution with parameters α, λ, δ1, δ2, δ3, where α > 0, λ > 0, −1 < δ1 + δ3 < 1,
−1 < δ2 + δ3 < 1, 0 < x < 1 and 0 < y < 1, is given by

FXY(x, y; η) =
(1 − 4

πarctan[(1 − xλ)
α
])(1 − 4

πarctan[(1 − yλ)
α
]){

1 + (δ1 + δ3)
4
πarctan[(1 − xλ)

α
] + (δ2 + δ3)

4
πarctan[(1 − yλ)

α
]
}−1 , (12)
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where η = (α, β, δ1, δ2, δ3)
T. The parameters δ1, δ2 and δ3 quantify the dependence between

the two variables of a BEBTCPE random vector. The plots of the CDF for the following
parameter values are shown in Figure 5:
(a) α = 3.5, λ = 8.2, δ1 = 0.3, δ2 = 0.1, δ3 = 0.3;
(b) α = 2.5, λ = 0.8, δ1 = 0.5, δ2 = 0.4, δ3 = 0.2 and
(c) α = 0.5, λ = 4.8, δ1 = −0.3, δ2 = −0.7, δ3 = −0.1.
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We notice various concave and convex shapes from these plots.
The corresponding bivariate PDF is given by

fXY(x, y; η) =
(4αλ/π)2(xy)λ−1(1 − xλ − yλ + (xy)λ)

α−1
[1 + (1 − xλ)

2α
]
−1

[1 + (1 − yλ)
2α
]
−1{

1 + (δ1 + δ3)
8
πarctan[(1 − xλ)

α
] + (δ2 + δ3)

8
πarctan[(1 − yλ)

α
]
}−1 . (13)

Figure 6 shows the bivariate PDF plots of the BEBTCPE distribution for the following
parameter values:
(a) α = 3.5, λ = 8.2, δ1 = 0.3, δ2 = 0.1, δ3 = 0.3;
(b) α = 2.5, λ = 0.8, δ1 = 0.5, δ2 = 0.4, δ3 = 0.2 and
(c) α = 0.5, λ = 4.8, δ1 = −0.3, δ2 = −0.7, δ3 = −0.1.

The first graph displays a non‑monotonic shape whereas the other two exhibit mono‑
tonic shapes, illustrating the versatility in the bivariate modeling sense.
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5. Parameter Estimation Methods
This section presents nine estimation methods for estimating the parameters of the

BTCPE distribution. These include the maximum likelihood (ML) estimation (MLE), or‑
dinary least squares (OLS), weighted least squares (WLS), Cramér–von Mises (CVM), per‑
centile (PC) estimation, Anderson–Darling (AD) methods, and maximum and minimum
product spacing methods.

5.1. Maximum Likelihood Estimation
One of the most common methods used for estimating the parameters of a devel‑

oped model is the MLE method. Suppose that Y follows the BTCPE distribution, with
ϑ = (α, λ)T as the parameter vector. For a single observation y of Y, the log‑likelihood
function ℓ = ℓ(ϑ) is

ℓ = log
(

4αλ

π

)
+ (λ − 1) log(y) + (α − 1) log(1 − yλ)− log(1 + (1 − yλ)

2α
). (14)

To obtain the estimates of the parameters for the single observation, the first partial
derivative of Equation (14) with respect to the parameters needs to be derive. Here, we
obtain

∂ℓ

∂α
=

1
α
+ log(1 − yλ)− 2(1 − yλ)

2α log(1 − yλ)

1 + (1 − yλ)
2α

, (15)

and
∂ℓ

∂λ
=

1
λ
+ log(y)− yλ(α − 1) log(y)

1 − yλ
+

2αyλ(1 − yλ)
2α−1 log(y)

1 + (1 − yλ)
2α

. (16)

Given that y1, y2, . . . , yn are (independent and identically) observations from n BTCPE

random variables, then the total log‑likelihood function is given by ℓ∗n =
n
∑

i=1
ℓi(ϑ), where

ℓi(ϑ), i = 1, 2, . . . , n is defined in Equation (14)with y = yi. The estimates of the parameters
can be obtained by maximizing the total log‑likelihood function directly using MATLAB,
MATHEMATICA and R software. In this study, the R software is used [28]. Alternatively,
the estimates of the parameters can be obtained by equating the first partial derivatives
with respect to the parameters to zero and solving the resulting system of equations simul‑
taneously. However, since the resulting system of equations does not have a closed form,

the nonlinear system of equations
(

∂ℓ∗n
∂α , ∂ℓ∗n

∂λ

)T
= (0, 0)T is solved numerically to obtain the

estimates of the parameters.

5.2. Ordinary and Weighted Least Squares Estimation
Suppose that y(1), y(2), . . . , y(n) are ordered observations from n BTCPE random vari‑

ables. The OLS estimates of the parameters α̂LSE and λ̂LSE are obtained by minimizing the
following function:

LSE(α, λ) =
n

∑
i=1

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− i

n + 1

]2
, (17)

with respect to the parameters α and λ. On the other hand, the OLS estimates can be
obtained by numerically solving the following nonlinear equations:

n

∑
i=1

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− i

n + 1

]
∆s(y(i)|α, λ) = 0, s = 1, 2, (18)
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where

∆1(y(i)|α, λ) = −
8(1 − yλ

(i))
α log(1 − yλ

(i))

π[1 + (1 − yλ
(i))

2α
]

and

∆2(y(i)|α, λ) =
8αyλ

(i)(1 − yλ
(i))

α−1 log(y(i))

π[1 + (1 − yλ
(i))

2α
]

.

The WLS estimates α̂WLS and λ̂WLS are obtained by minimizing the following func‑
tion:

WLS(α, λ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− i

n + 1

]2
, (19)

with respect to the parameters α and λ. Alternatively, the WLS estimates can be obtained
by numerically solving the following nonlinear equations:

n

∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− i

n + 1

]
∆s(y(i)|α, λ) = 0, s = 1, 2, (20)

where ∆s(x(i)|α, λ), s = 1, 2 are defined above.

5.3. Cramér–Von Mises Estimation
Let y(1), y(2), . . . , y(n) be ordered observations from n BTCPE random variables. The

CVM estimates of the parameters α̂CVM and λ̂CVM are obtained by minimizing the follow‑
ing function:

CVM(α, λ) =
1

12n
+

n

∑
i=1

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− 2i − 1

2n

]2
, (21)

with respect to the parameters α and λ. The estimates of the parameters can also be ob‑
tained by numerically solving the following equations:

n

∑
i=1

[(
1 − 4

π
arctan[(1 − yλ

(i))
α
]

)
− 2i − 1

2n

]
∆s(y(i)|α, λ) = 0, s = 1, 2, (22)

where ∆s(y(i)|α, λ), s = 1, 2 are given above.

5.4. Anderson–Darling Estimation
Another minimum distance estimation method is the AD estimation technique. Let

y(1), y(2), . . . , y(n) be ordered observations from n BTCPE random variables. The AD esti‑
mates for the parameters of the BTCPE distribution are obtained byminimizing the follow‑
ing function:

AD(α, λ) = −n − 1
n

n

∑
i=1

(2i − 1)
[

log
(

1 − 4
π
arctan[(1 − yλ

(i))]

)
+ log

(
4
π
arctan[(1 − yλ

(i))]

)]
, (23)

with respect to the parameters α and λ.

5.5. Percentile Estimation
ThePC estimation approach is anothermethod of estimating the parameters of a given

model. Let y(1), y(2), . . . , y(n) be ordered observations from n BTCPE random variables and
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ui = i/(n+ 1) be an unbiased estimate of FY(y(i); α, λ). The PC estimates of the parameters
of the BTCPE distribution are obtained by minimizing the following function:

PC(α, λ) =
n

∑
i=1

[
y(i) −

{
1 −

(
tan

[π

4
(1 − ui)

])1/α
}1/λ

]2

, (24)

with respect to the parameters α and λ.

5.6. Maximum and Minimum Product Spacing Estimation
Analternative parameter estimation techniquewhich is based on theKullback–Leibler

information measure is the maximum product spacing (MPS). Let y(1), y(2), . . . , y(n) be or‑
dered observations from n BTCPE random variables. Consider the uniform spacing

Di = FY(y(i); α, λ)− FY(y(i−1); α, λ)

= 4
πarctan[(1 − yλ

(i−1))]−
4
πarctan[(1 − yλ

(i))]

where FY(y(0); α, λ) = 0, FY(y(n+1); α, λ) = 1 and D0(α, λ) + D1(α, λ) + . . . + Dn+1(α, λ) =
1. The estimates of the parameters are obtained via the MPS approach by maximizing the
logarithm of the geometric mean of the spacing defined by

MPS(α, λ) =
1

n + 1

n+1

∑
i=1

log Di(α, λ), (25)

with respect to the parameters α and λ.
Additionally, the minimum spacing distance (MSD) estimates for the parameters α

and λ are obtained by minimizing the following function:

MSD(α, λ) =
n+1

∑
i=1

ϑ(Di(α, λ),
1

n + 1
), (26)

where ϑ(x, y) is an appropriate distance, with respect to the parameters α and λ. Although
different choices of ϑ(x, y) exist, in this study the absolute distance |x − y| and the absolute‑
log distance |log x − log y| are utilized. Thus, the minimum spacing absolute distance
(MSAD) andminimum spacing absolute‑log distance (MSALD) estimates are, respectively,
obtained by minimizing the following functions:

MSAD(α, λ) =
n+1

∑
i=1

|Di(α, λ)− 1
n + 1

| (27)

and

MSALD(α, λ) =
n+1

∑
i=1

|log Di(α, λ)− log
1

n + 1
|, (28)

where Di(α, λ) ̸= 1
n+1 and log Di(α, λ) ̸= log 1

n+1 .

6. Simulation
In this section, simulation experiments are carried out to assess howwell the proposed

parameters of the BTCPE distribution have been estimated. The experiments are carried
out with the following two different parameter combinations: α = 4.1, λ = 2.5 and α =
3.1, λ = 8.5. The experiments are replicated 5000 timeswith the following different sample
sizes: n = 25, 75, 125, 175 and 225. The bias (AB) and root mean square error (RMSE) of
the estimates are then computed and compared.



Math. Comput. Appl. 2022, 27, 105 13 of 27

The AB and RMSE are, respectively, computed using

AB =
1
R

R

∑
i=1

(
ϑ̂i − ϑ

)
and

RMSE =

√√√√ 1
R

R

∑
i=1

(
ϑ̂i − ϑ

)2
,

where ϑ̂ is either α̂ or λ̂ and R = 5000 is used in this study.
From Tables 2 and 3, most of the estimates have their ABs and RMSEs decreasing

as the sample size increases. This is an indication that most of the estimates exhibit the
consistency property. From Table 2, it can be observed that for sample sizes 25, 75 and 125
the PC estimate is the best for α and, for the sample sizes 175 and 225, the MLE is the best
for α. For the parameter λ, the PC estimate is the best for the sample size 25 and the MLE
is the best for 75, 125, 175 and 225. In Table 3, for sample sizes 25 and 75 the AD estimate is
the best for the parameter α and theMLE is the best for 125, 175 and 225. For the parameter
λ, the MLE is the best for sample sizes 25, 125, 175 and 225. The AD estimate is best for λ
when the sample size is 75.
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Table 2. AB and RMSE for α = 4.1 and λ = 2.5.

Parameter n
AB RMSE

MLE MPS MADS MALDS OLS WLS CVM AD PC MLE MPS MADS MALDS OLS WLS CVM AD PC

α

25 0.7980 2.2327 −2.3189 0.531 0.3530 −2.6423 1.1477 0.4713 −0.3155 2.2233 3.5728 2.9322 3.3391 2.4457 2.6729 3.5377 1.9964 1.4972

75 0.2140 0.7443 −1.8442 0.0634 0.1365 −3.1632 0.3415 0.1180 −0.1694 0.9157 1.3139 2.4241 1.1330 1.1489 3.1657 1.2820 0.9535 0.8506

125 0.1342 0.4372 −1.3088 −0.0031 0.0472 −3.3268 0.1337 0.0713 −0.0783 0.6843 0.8313 1.9860 0.7795 0.8149 3.3279 0.8159 0.7025 0.6641

175 0.0914 0.2987 −0.8738 −0.0272 0.0460 −2.1721 0.1164 0.0657 −0.0484 0.5365 0.6791 1.5544 0.6323 0.6845 2.1990 0.6955 0.5941 0.5393

225 0.0677 0.2509 −0.6976 0.0062 0.0301 3.0791 0.1096 0.0365 −0.0623 0.4841 0.5505 1.3266 0.5926 0.5906 3.3377 0.6147 0.5240 0.4860

λ

25 0.1871 0.5436 −1.1017 0.0300 −0.0075 −1.3344 0.2060 0.0670 −0.1737 0.6038 0.8201 1.3862 0.7382 0.6538 1.3687 0.7340 0.5749 0.5401

75 0.0478 0.2197 −0.8939 −0.0079 0.0078 −2.0003 0.0802 0.1185 −0.0672 0.3089 0.4026 1.2090 0.3996 0.3692 2.0029 0.3886 0.3379 0.3175

125 0.0378 0.1293 −0.6271 −0.0160 −0.0055 −2.1461 0.0305 0.0146 −0.0448 0.2407 0.2740 0.9681 0.2987 0.2752 2.1472 0.2798 0.2560 0.2466

175 0.0233 0.0866 −0.3986 −0.0139 0.0034 −1.6394 0.0280 0.0114 −0.0267 0.1959 0.2314 0.7264 0.2315 0.2372 1.6455 0.2383 0.2134 0.2008

225 0.0208 0.0820 −0.3101 0.0021 0.0003 0.1937 0.0230 0.0007 −0.0225 0.1810 0.1939 0.6057 0.2196 0.2079 0.3066 0.2124 0.1874 0.1835

Table 3. AB and RMSE for α = 3.1 and λ = 8.5.

Parameter n
AB RMSE

MLE MPS MADS MALDS OLS WLS CVM AD PC MLE MPS MADS MALDS OLS WLS CVM AD PC

α

25 0.5120 1.5281 −1.3158 0.3712 0.2359 −1.9121 0.7701 0.2725 −0.6748 1.4793 2.5597 2.0817 1.9689 1.6086 1.9366 2.4325 1.3231 1.4204

75 0.2081 0.5190 −0.9456 0.0477 0.0264 −2.2924 0.1973 0.0989 −0.3302 0.6848 0.8671 1.5913 0.7865 0.7088 2.2949 0.8122 0.6294 0.8145

125 0.0994 0.3218 −0.6895 0.0570 0.0153 −2.4255 0.1020 0.0757 −0.2704 0.4778 0.6228 1.2854 0.5657 0.5532 2.4266 0.5644 0.5109 0.6262

175 0.0867 0.2259 −0.5478 0.0107 0.0240 −1.3857 0.0882 0.0554 −0.2187 0.4077 0.4554 1.0538 0.4821 0.4813 1.4810 0.4940 0.4163 0.5242

225 0.0461 0.1719 −0.4192 0.0007 0.0195 2.2166 0.0555 0.0200 −0.1735 0.3331 0.3880 0.8460 0.4021 0.4133 2.3785 0.4184 0.3477 0.4768

λ

25 0.5725 1.9602 −3.5282 0.1675 0.1107 −4.6443 0.7293 0.2368 −1.6432 2.0951 3.1555 4.8358 2.6753 2.3883 4.7703 2.6517 2.1203 2.6346

75 0.2957 0.8211 −2.4563 −0.0292 −0.0416 −6.9243 0.2449 0.0825 −0.7220 1.1627 1.4130 3.9050 1.3676 1.2655 6.9330 1.3246 1.1047 1.4877

125 0.1098 0.4964 −1.6975 0.0128 −0.0435 −7.3960 0.1015 0.0784 −0.5259 0.8837 1.0321 3.0631 1.0694 0.9899 7.3994 0.9670 0.9327 1.1482

175 0.1182 0.3504 −1.2348 −0.0232 0.0022 −5.5678 0.1061 0.0622 −0.4011 0.7361 0.7786 2.4368 0.8864 0.8608 5.5937 0.8687 0.7734 0.9365

225 0.0631 0.2843 −0.9196 −0.0034 0.0015 0.6715 0.043 0.0249 −0.3171 0.6223 0.7091 1.9241 0.7604 0.7452 1.0898 0.7515 0.6590 0.8305
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7. Applications
Three applications of the BTCPE distribution are illustrated in this section, and its per‑

formance is compared to other competitive distributions defined in the unit interval. The
performance of the BTCPE distribution was compared with that of the beta, unit Burr‑III
(UBIII) [29], bounded M‑O extended exponential (BMOEE) [30], unit Gompertz (UG) [18],
unit Lindley (UL) [17], unit Weibull (UW) [20] and unit‑improved second‑degree Lindley
(UISDL) [31] distributions. The Akaike information criterion (AIC), Bayesian information
criterion (BIC), Anderson–Darling (AD) test, and Cramér–vonMises (CVM) are the model
selection techniques employed in arriving at the bestmodel. For these selection techniques,
the best model is the one with the smallest test statistic. The datasets represent the mortal‑
ity rate of COVID‑19 patients in Canada and the United Kingdom (UK), and the recovery
rate of COVID‑19 patients in Spain. The first two datasets were recently reported by [8].

The first dataset is the mortality rate for UK from 1 December 2020 to 29 January 2021.
The data are: 0.1292, 0.3805, 0.4049, 0.2564, 0.3091, 0.2413, 0.1390, 0.1127, 0.3547, 0.3126,
0.2991, 0.2428, 0.2942, 0.0807, 0.1285, 0.2775, 0.3311, 0.2825, 0.2559, 0.2756, 0.1652, 0.1072,
0.3383, 0.3575, 0.2708, 0.2649, 0.0961, 0.1565, 0.1580, 0.1981, 0.4154, 0.3990, 0.2483, 0.1762,
0.1760, 0.1543, 0.3238, 0.3771, 0.4132, 0.4602, 0.352, 0.1882, 0.1742, 0.4033, 0.4999, 0.3930,
0.3963, 0.3960, 0.2029, 0.1791, 0.4768, 0.5331, 0.3739, 0.4015, 0.3828, 0.1718, 0.1657, 0.4542,
0.4772, 0.3402.

The second dataset denotes the mortality rate for Canada from 1 November to 26
December 2020. The data are: 0.1622, 0.1159, 0.1897, 0.1260, 0.3025, 0.2190, 0.2075, 0.2241,
0.2163, 0.1262, 0.1627, 0.2591, 0.1989, 0.3053, 0.2170, 0.2241, 0.2174, 0.2541, 0.1997, 0.3333,
0.2594, 0.2230, 0.2290, 0.1536, 0.2024, 0.2931, 0.2739, 0.2607, 0.2736, 0.2323, 0.1563, 0.2677,
0.2181, 0.3019, 0.2136, 0.2281, 0.2346, 0.1888, 0.2729, 0.2162, 0.2746, 0.2936, 0.3259, 0.2242,
0.1810, 0.2679, 0.2296, 0.2992, 0.2464, 0.2576, 0.2338, 0.1499, 0.2075, 0.1834, 0.3347, 0.2362.

The third dataset constitutes the recovery rates of COVID‑19 patients in Spain from 3
March to 7May 2020. The dataset can be found in [1] and are: 0.6670, 0.5000, 0.5000, 0.4286,
0.7500, 0.6531, 0.5161, 0.7895, 0.7689, 0.6873, 0.5200, 0.7251, 0.6375, 0.6078, 0.6289, 0.5712,
0.5923, 0.6061, 0.5924, 0.5921, 0.5592, 0.5954, 0.6164, 0.6455, 0.6725, 0.6838, 0.6850, 0.6947,
0.7210, 0.7315, 0.7412, 0.7508, 0.7519, 0.7547, 0.7645, 0.7715, 0.7759, 0.7807, 0.7838, 0.7847,
0.7871, 0.7902, 0.7934, 0.7913, 0.7962, 0.7971, 0.7977, 0.8007, 0.8038, 0.8289, 0.8322, 0.8354,
0.8371, 0.8387, 0.8456, 0.8490,0.8535, 0.8547, 0.8564, 0.8580, 0.8604, 0.8628, 0.6586, 0.7070,
0.7963, 0.8516.

The ML estimates of the parameters are estimated using the bbmle package in R [32].
The initial values of the parameters of the fitted distributions used for the optimization are
obtained using the GenSA package in R [33]. Table 4 displays the descriptive statistics for
COVID‑19 mortality for the UK and Canada, as well as the recovery rate for Spain. The
datasets are platykurtic due to the negative excess kurtosis. The UK mortality is right‑
skewed and that of Canada is left‑skewed. The recovery rate for Spain is also left‑skewed.
This is affirmed by the boxplot of the datasets shown in Figure 7.

Table 4. Descriptive statistics for datasets.

Country Minimum Maximum Mean Skewness Kurtosis

UK 0.0807 0.5331 0.2888 0.0476 −1.1034
Canada 0.1159 0.3347 0.2305 −0.0850 −0.4402
Spain 0.4286 0.8628 0.7240 −0.6890 −0.4761

7.1. UK COVID‑19 Mortality
Table 5 presents ML estimates of the parameters and their corresponding standard

errors in brackets, the log‑likelihood (ℓ), AIC, BIC,AD, andCVM for the fitteddistributions.
Given that it has the lowest values for the AIC, BIC, AD, and CVM and the maximum log‑
likelihood, the BTCPE distribution offers the best fit to the UK mortality dataset.
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Table 5. Parameter estimates and model selection criteria for UK.

Model Parameter ℓ AIC BIC AD CVM

BTCPE α = 16.6904(5.2798)
λ = 2.3884(0.2865) 45.4400 −86.8726 −82.6840 0.6494 0.1049

Beta α = 4.0502(0.7128)
β = 10.0132(1.8287) 45.4000 −86.7958 −82.6071 0.7356 0.1280

UBIII α = 0.0757(0.0383)
β = 13.3804(6.5631) 38.9000 −73.8075 −69.6188 2.8948 0.5248

BMOEE α = 105.2655(59.9004)
β = 3.5949(0.4092) 40.7200 −77.4396 −73.2509 1.1465 0.1698

UW α = 0.2834(0.0602)
β = 3.1228(0.3047) 42.5600 −81.1208 −76.9322 1.0656 0.1820

UG α = 686.3600(2.2295 × 10−10)
β = 0.0011(1.4051 × 10−4)

2.8400 −1.6760 2.5127 12.2290 2.4707

UL α = 2.8293(0.3029) 32.3800 −62.7533 −60.6590 4.4878 0.7574

UISDL α = 3.4259(0.3151) 33.6100 −65.2142 −63.1198 3.9972 0.6545

Figure 8 displays the empirical and fitted PDFs and CDFs of the various distributions
used to model the UK mortality dataset. The figure gives an indication that the BTCPE
distribution provides a good fit to the dataset compared to the other models.

Figure 9 is the probability–probability (P‑P) plots of the fitted distributions. Figure 9
once more shows that the BTCPE distribution fits the UK drought mortality well because
the points cluster along the diagonal.

The profile log‑likelihoodplots for the estimatedparameter values of the BTCPEdistri‑
bution for the UKmortality data are shown in Figure 10. From the plots, it can be observed
that the estimated values are the true maxima.

7.2. Canada COVID‑19 Mortality
Table 6 presents ML estimates of the parameters and their corresponding standard

errors in brackets and model selection criteria for the fitted distributions. The BTCPE dis‑
tribution again provides the best fit to the Canadamortality dataset since it has the highest
log‑likelihood and the lowest values of the AIC, BIC, AD, and CVM.
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Table 6. Parameter estimates and model selection criteria for Canada.

Model Parameter ℓ AIC BIC AD CVM

BTCPE α = 622.2064(399.8188)
λ = 4.5085(0.4837) 86.4400 −168.8806 −164.8299 0.3767 0.0689

Beta α = 14.5128(2.7128)
β = 48.4900(9.1745) 85.9400 −167.8800 −163.8293 0.4398 0.0692

UBIII α = 0.0080(0.0011)
β = 101.7700(8.4127 × 10−8) 30.8900 −57.7749 −53.7242 14.8770 3.1113

BMOEE α = 2822.9776(3.3087 × 10−5)
β = 5.4444(0.1439) 80.6700 −157.3394 −153.2887 1.5514 0.2327

UW α = 0.0552(0.0193)
β = 6.1602(0.5868) 79.9500 −155.9080 −151.8573 1.4890 0.2389

UG α = 628.3885(2.4072 × 10−10)
β = 0.0011(1.4212 × 10−4) 5.2500 −6.4901 −2.4393 18.5180 3.9712

UL α = 3.9381(0.4506) 41.1400 −80.2707 −78.2453 12.7090 2.5936

UISDL α = 3.4259(0.3151) 42.2000 −82.3913 −80.3660 12.3010 2.4925

Figure 11 shows the empirical and fitted PDFs and CDFs of the various distributions
used to model the Canada drought mortality dataset. The figure gives an indication that
the BTCPE distribution provides a better fit to the drought mortality for Canada than
the other models, as it mimics the empirical PDF and CDF of the dataset better than the
other models.
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Figure 12 shows the P‑P plots of the fitted models. Figure 12 gives an indication that
the BTCPE distribution provides a good fit to the Canada mortality as the points cluster
along the diagonal.
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Figure 13 displays the profile log‑likelihood plots for the estimated parameter values
of the BTCPE distribution for the Canada mortality data. It can be observed from the plots
that the estimates are unique and represent the true maxima.
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7.3. Spain COVID‑19 Recovery Rate
TheML estimates of the parameters and their corresponding standard errors in brack‑

ets and model selection criteria for the fitted distributions are shown in Table 7. Because
it has the lowest values for the AIC, BIC, AD, and CVM and the maximum log‑likelihood,
the BTCPE distribution again offers the best fit to the Spain recovery rate dataset.

Table 7. Parameter estimates and model selection criteria for Canada.

Model Parameter ℓ AIC BIC AD CVM

BTCPE α = 7.1385(1.7764)
λ = 7.1961(0.9033) 58.7500 −113.4953 −109.1160 0.8770 0.1363

Beta α = 12.7943(2.2291)
β = 4.8994(0.8270) 57.5700 −111.1489 −106.7692 1.0520 0.1783

UBIII α = 5.4398(0.7948)
β = 2.0613(0.1723) 53.8000 −103.5927 −99.2134 1.3725 0.2209

BMOEE α = 22.1286(9.9041)
β = 10.0043(1.2381) 51.4600 −98.9276 −94.5483 1.4958 0.2100

UW α = 8.6445(1.6973)
β = 2.2320(0.2036) 53.9700 −103.9316 −99.5523 1.3830 0.2238

UG α = 0.2792(0.1059)
β = 3.8482(0.6025) 46.0300 −88.0569 −83.6776 2.4709 0.3691

UL α = 0.5200(0.0466) 46.1100 −90.2298 −88.0402 4.2480 0.6736

UISDL α = 0.7403(0.0539) 52.0400 −102.0717 −99.8820 2.3450 0.3194

The empirical and fitted PDFs and CDFs of the various distributions used to model
the Spain recovery rate dataset are shown in Figure 14. It can be seen that the BTCPE
distribution provides a better fit to the recovery rate data than the other models.
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The P‑P plots of the fittedmodels for the recovery rate data are displayed in Figure 15.
The plots indicate that the BTCPE distribution provides a good fit to the recovery rate data
as the points cluster along the diagonal.
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The profile log‑likelihood plots for the estimated parameter values of the BTCPE dis‑
tribution for the recovery rate data are shown in Figure 16. The plots suggest that the
estimates are unique and represent the true maxima.
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The parameter ρ  is the quantile parameter. The BTCPE quantile regression is de-
fined as 
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Figure 16. Profile log‑likelihood plots for estimated parameters of BTCPE for Spain.

8. Quantile Regression
When the response variable defined in the unit interval is skewed or contaminated

with outliers, the beta regression model, which models the conditional mean of the re‑
sponse variable, is no longer reliable. A robust regression model is needed to model
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the effects of the covariates on the response variable. In this study, a quantile regres‑
sion model is proposed for modeling the conditional quantile of the response variable.
Given the quantile function of the BTCPE distribution, the PDF of the BTCPE distribu‑
tion can be re‑parameterized in terms of its uth quantile as ρ = Q(u; α, λ), ρ ∈ [0, 1]. If
λ = log(1 − (tan[π(1 − u)/4])1/α)/ log(ρ), then the re‑parameterized PDF is

fY(y; α, λ) =

4α(log(1−(tan[π(1−u)/4])1/α)/ log(ρ))y(log(1−(tan[π(1−u)/4])1/α)/ log(ρ))−1(1−y(log(1−(tan[π(1−u)/4])1/α)/ log(ρ)))
α−1

π[1+(1−y(log(1−(tan[π(1−u)/4])1/α)/ log(ρ)))
2α
]

.
(29)

The parameter ρ is the quantile parameter. The BTCPE quantile regression is de‑
fined as

g(ρi) = z′ iθ,

where θ = (θ0, θ1, . . . , θp)′ is the vector of unknown parameters, ρi is the ith quantile pa‑
rameter and z′ i = (1, zi1, zi2, . . . , zip) are the known ith vector of covariates. The link func‑
tion g(·) is used to link the covariates to the conditional median of the dependent variable
Y. The logit link function is used to link the covariates to the conditional quantile since
y ∈ (0, 1). Hence, we have

g(ρi) = logit(ρi) = log(
ρi

1 − ρi
).

Further, we can write

ρi =
exp(z′ iθ)

1 + exp(z′ iθ)
.

Substituting ρi into the re‑parameterized PDF, the log‑likelihood for estimating the
parameters of the BTCPE quantile regression is given by

ℓ =
n
∑

i=1
log

(
(4α/π)(log(1 − (tan[π(1 − u)/4])1/α)/ log(ρi))

)
−

n
∑

i=1
log(1 + (1 − zi)

2α)+

n
∑

i=1
[(log(1 − (tan[π(1 − u)/4])1/α)/ log(ρi))− 1] log(yi) + (α − 1)

n
∑

i=1
log(1 − zi),

(30)

where zi = yi
(log(1−(tan[π(1−u)/4])1/α)/ log(ρi)). The estimates of the parameters of the regres‑

sion equation are obtained by directly maximizing the log‑likelihood function. They will
be denoted as α̂ and θ̂ = (θ̂0, . . . , θ̂p)′ of α and θ, respectively.

8.1. Residual Analysis
Model diagnostics are very essential when fitting a model to a dataset. Often, the

behavior of themodel residuals is examined to see if themodel really provides a good fit to
the data. In this study, the randomized quantile residuals are used to assess the adequacy
of the regression model. The randomized quantile residuals are defined as

ri = Φ−1(FY(yi; α̂, θ̂)), i = 1, 2, . . . , n,

whereΦ−1(·) is the quantile of the standard normal distribution. The randomized quantile
residuals are expected to be distributed as the standard normal distribution if the models
provide a good fit to the data.

8.2. Monte Carlo Simulation for Quantile Regression
Monte Carlo simulations are carried out in this section to examine the performance

of the ML estimates of the parameters of the BTCPE regression model. The exercise is
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performed with two covariates. The following regression structure is adopted for the sim‑
ulation:

ρi =
exp(θ0 + θ1zi1 + θ2zi2)

1 + exp(θ0 + θ1zi1 + θ2zi2)
.

The observations for the response variable are generated from the BTCPE distribution
using sample sizes n = 50, 100, 250, 350, 500, 600 and 700. The experiments were repeated
5000 times for each sample size. The performance of the ML estimates is examined using
AB and RMSE. The simulations were carried out using the median, u = 0.5. The following
parameter combinations were used in the simulation: I : (α, θ0, θ1, θ2) = (0.7, 0.2, 0.8, 0.3),
I I : (α, θ0, θ1, θ2) = (0.6, 0.5, 0.4, 1.8) and I I I : (α, θ0, θ1, θ2) = (0.8, 0.4, 0.9, 0.6). From the
simulation results shown in Table 8, the ABs and RMSEs of the estimates’ decrease as the
sample size increases. Hence, the ML estimates for the BTCPE regression parameters are
consistent.

Table 8. Simulation results for the quantile regression.

I II III

Parameter n AB RMSE AB RMSE AB RMSE

θ0 50 0.1949 0.2235 0.3599 0.3753 0.2609 0.2969
100 0.1946 0.1961 0.3551 0.3726 0.2178 0.2579
250 0.1919 0.1941 0.3465 0.3673 0.1525 0.1926
350 0.1898 0.1928 0.3271 0.3544 0.1320 0.1700
500 0.1838 0.1927 0.3109 0.3482 0.1101 0.1431
600 0.1779 0.1886 0.3051 0.3434 0.0998 0.1318
700 0.1761 0.1850 0.2908 0.3333 0.0908 0.1196

θ1 50 0.2826 0.3067 0.3485 0.3807 0.8194 0.8276
100 0.2605 0.2904 0.3181 0.3486 0.8142 0.8238
250 0.2290 0.2651 0.3171 0.3363 0.8013 0.8134
350 0.2176 0.2539 0.3138 0.3342 0.7872 0.8041
500 0.2097 0.2454 0.3083 0.3305 0.7727 0.7945
600 0.2079 0.2433 0.3020 0.3272 0.7188 0.7610
700 0.2053 0.2389 0.2978 0.3253 0.6862 0.7447

θ2 50 1.5889 1.5959 1.7104 1.7153 0.5212 0.5338
100 1.5835 1.5913 1.7046 1.7102 0.5140 0.5291
250 1.5818 1.5910 1.6938 1.7006 0.5073 0.5250
350 1.5698 1.5815 1.6751 1.6845 0.4893 0.5130
500 1.5566 1.5723 1.6432 1.6578 0.4753 0.5046
600 1.4749 1.5132 1.5559 1.5917 0.4601 0.4999
700 1.3803 1.4520 1.4593 1.5264 0.4535 0.4921

α 50 0.0792 0.0998 0.0842 0.1110 0.1091 0.1520
100 0.0577 0.0745 0.0570 0.0747 0.0872 0.1382
250 0.0352 0.0463 0.0339 0.0437 0.0523 0.0859
350 0.0295 0.0378 0.0287 0.0366 0.0427 0.0650
500 0.0246 0.0316 0.0239 0.0317 0.0340 0.0467
600 0.0227 0.0287 0.0217 0.0290 0.0317 0.0449
700 0.0210 0.0267 0.0201 0.0259 0.0287 0.0375

8.3. Application
The application of the quantile regressionmodel is demonstrated in this section using

a real dataset. The data are taken from [34] and are also available at http://www.leg.ufpr.
br/doku.php/publications:papercompanions:multquasibeta (accessed on 30 August 2022).
The data consist of body fat percentage (response variable) measured in five regions: an‑
droid, arms, gynoids, legs and trunk. The data are comprised of 298 observations and the
independent variables are: age (in years), bodymass index (in kg/m2), sex (female or male)
and IPAQ (sedentary (S), insufficiently active (I), or active (A)). In this study, the response
variable body fat percentage at arms is regressed on age (zi1), bodymass index (zi2) and sex

http://www.leg.ufpr.br/doku.php/publications:papercompanions:multquasibeta
http://www.leg.ufpr.br/doku.php/publications:papercompanions:multquasibeta
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(zi3, 0 for female and 1 for male). The response variable is regressed on the covariates us‑
ing the relationship logit(ρi) = θ0 + θ1zi1 + θ2zi2 + θ3zi3, i = 1, 2, . . . , 298. Table 9 presents
ML estimates, standard errors, and p‑values for the parameters of the fitted models for the
different quantiles. The estimates are all significant at the 5% level of significance.

Table 9. ML estimates for quantile regression.

u θ̂0 θ̂1 θ̂2 θ̂3 α̂

0.10
Estimates −3.6699 0.0076 0.0905 −1.004 308.7724

Standard error 0.1681 1.1670 × 10−3 7.5355 × 10−3 4.3797 × 10−2 9.3305 × 10−5

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.25
Estimates −3.2544 0.0071 0.0845 −0.9326 325.4705

Standard error 0.1545 1.0687 × 10−3 6.9379 × 10−3 4.0103 × 10−2 4.6137 × 10−5

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.50
Estimates −2.8977 0.0067 0.0792 −0.8732 340.4285

Standard error 0.1436 9.9065 × 104 6.4570 × 10−3 3.7166 × 10−2 1.3990 × 10−5

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.75
Estimates −2.6424 0.0064 0.0766 −0.8384 281.1611

Standard error 0.1405 9.7128 × 10−4 6.3363 × 10−3 3.6303 × 10−2 6.4012 × 10−6

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.90
Estimates −2.4030 0.0061 0.0731 −0.7987 273.9968

Standard error 0.1353 9.3470 × 10−4 6.1047 × 10−3 3.4900 × 10−2 2.9792 × 10−5

p‑value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 10 presents the model selection criteria for the different quantiles. It is observed
that the 0.90th quantile provides the best fit for the data as it has the least values of the
model selection criteria.

Table 10. Model selection criteria for quantile regression.

u −2ℓ AIC BIC

0.10 −885.3517 −875.3517 −856.8663
0.25 −887.4067 −877.4067 −858.9212
0.50 −889.1990 −879.1990 −860.7136
0.75 −889.8634 −879.8634 −861.3779
0.90 −890.8307 −880.8307 −862.3453

Figure 17 shows the rate of change of the regression coefficients for the different quan‑
tile levels and the corresponding 95% confidence interval (CI). It can be observed that all
the coefficients approach zero as the quantile level increases, suggesting that they aremore
important in explaining smaller quantiles.

Figures 18 and 19 show the P‑P plots and half‑normal plots with simulated envelopes,
respectively, for the randomized quantile residuals. These figures display good fits of
the BTCPE quantile regression model to the uth percentage of body fat in arms for u ∈
(0.10, 0.25, 0.50, 0.75, 0.90).
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9. Conclusions
In this study, the BTCPE distribution is proposed for modeling datasets that are de‑

fined on the unit interval. The PDF of this distribution exhibits left‑skewed, right‑skewed,
reversed J, and approximately symmetric shapes. The HRF displays increasing and bath‑
tub shapes. This makes the distribution a suitable candidate for modeling datasets that
exhibit these traits. Nine estimation methods were proposed for estimating the parame‑
ters of the distribution, and simulation results revealed that most of these estimates were
consistent when it came to the estimation of the parameters of the distribution. The appli‑
cations of the BTCPE distribution were illustrated using datasets on the mortality rate and
recovery rates of COVID‑19. The results revealed that for the three datasets, the BTCPE
model provided a better fit than the other competing models. A quantile regression model
for studying the relationship between the conditional quantiles of a bounded response
variable and a set of covariates was proposed. The application of the regression model
was illustrated using real data. The study only defined the cumulative distribution and
probability density functions of the bivariate distribution. Our future research will study
the detailed properties of the bivariate distribution, estimate its parameters, and illustrate
its applications.
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