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Abstract: Probability distributions are very useful in modeling lifetime datasets. However, no spe-
cific distribution is suitable for all kinds of datasets. In this study, the bounded truncated Cauchy
power exponential distribution is proposed for modeling datasets on the unit interval. The proba-
bility density function exhibits desirable shapes, such as left-skewed, right-skewed, reversed J, and
bathtub shapes, whereas the hazard rate function displays J and bathtub shapes. For the purpose of
modeling dependence between measures in a dataset, a bivariate extension of the proposed distribu-
tion is developed. The bivariate probability density function displays monotonic and non-monotonic
shapes, making it suitable for modeling complex bivariate relations. Subsequently, the applications
of the distribution are illustrated using COVID-19 data. The results revealed that the new distri-
bution provides a better fit to the datasets compared to other existing distributions. Finally, a new
quantile regression model is developed and its application demonstrated. The generated quantile
regression model offers a decent fit to the data, according to the residual analysis.

Keywords: COVID-19; bounded distribution; estimation methods; Cauchy; regression; bivariate

1. Introduction

Disease modeling and prediction are primary tasks of epidemiologists and researchers
interested in the estimation of disease occurrences. To perform these tasks, modeling the
variability in disease occurrences using probability distributions is essential. With the
emergence of the novel coronavirus disease in late 2019 (COVID-19) and its negative im-
pact on humanity, many researchers have proposed new probability distributions (discrete
or continuous) for modeling the number of infections, mortality rate, and recovery rates,
among others. Some of the proposed probability distributions or families of distributions
include: Marshall-Olkin reduced Kies distribution [1], modified inverse Weibull distribu-
tion [2], weighted Weibull distribution [3], type I half logistic Burr X-G family [4], unit
power Weibull distribution [5], new extended exponentiated Weibull distribution [6], dis-
crete extended odd Weibull exponential distribution [7], odd Weibull inverse Topp-Leone
distribution [8], log-logistic tangent distribution [9], discrete-type half-logistic exponential
distribution [10], and unit Johnson Sy; distribution [11].

Among these probability distributions used for modeling diseases, those defined on
the unit interval play a major role due to their usefulness in areas such as health, psy-
chology, and epidemiology, among others. For instance, researchers may be interested in
modeling mortality or recovery rates. Observations measured on these variables are usu-
ally proportions, fractions, or rates, which are defined in the unit interval. Although the
beta distribution is the oldest for modeling datasets measured on the unit interval, the in-
tractability of its cumulative distribution function (CDF) and quantile function has called
for the development of new distributions with tractable CDFs and quantile functions that
are also capable of modeling data on the unit interval. Unit distributions proposed recently
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in literature include: unit Gamma/Gompertz distribution [12], bounded odd inverse Pareto
exponential distribution [13], bounded shifted Gompertz distribution [14], unit modified
Burr-III distribution [15], unit generalized half normal distribution [16], unit Lindley dis-
tribution [17], unit Gompertz distribution [18], logit slash distribution [19], unit Weibull
distribution [20] and unit inverse Gaussian distribution [21].

Despite the existence of many unit distributions in the literature, no single distribution
is capable of modeling all forms of data since the data generating process produces data
with different characteristics such as symmetric, skewed, varied degrees of kurtosis, and
monotonic and non-monotonic failure rates. This study thus proposes a new unit distribu-
tion called the bounded truncated Cauchy power exponential (BTCPE) distribution. The
motivations for developing the new distribution are as follows: to provide a model capable
of modeling complex data on unit interval that exhibits platykurtic, leptokurtic, reversed
J, left-skewed, right-skewed, bathtub, and ] shapes; to develop a bivariate distribution for
modeling interdependence between random data on unit interval; and to develop a quan-
tile regression model for understanding the relationship between a response variable and
given covariates.

The remainder of the paper is organized in nine sections, described as follows: Section 2
presents the development of the BTCPE distribution, Section 3 describes some of its impor-
tant properties, Section 4 focuses on a special bivariate extension of the BTCPE distribution,
Section 5 is devoted to the parametric estimation methods, Section 6 presents the Monte
Carlo simulation of nine frequentist estimation methods, Section 7 contains the univariate
applications of the BTCPE distribution, Section 8 is about the quantile regression model
and its application, and finally the conclusion of the paper is presented in Section 9.

2. Bounded Truncated Cauchy Power Exponential Distribution

A random variable X follows the truncated Cauchy power exponential (TCPE) distri-
bution if its CDF and probability density function (PDF), respectively, are defined as

4
&&mﬁ):;mdeLﬂ”ﬂ%a>QA>Qx>Q 1)

and .
dade M (1 — e M)
[l + (1— e 2x)™]

The TCPE distribution can be presented as a special case of the TCP Weibull distri-

bution proposed by [22]. Now, we define a new unit distribution, called the BTCPE dis-

tribution, corresponding to the distribution of Y = e~*. The associated CDF is obtained
as follows:

fx(x0,A) = x > 0. ()

Fy(y;a,A) =P(e* <y) = P(—X <log(y))
=1-P(X < —log(y))
=1—Fx(—log(y);a,A).

Hence, the CDF of the BTCPE distribution is expressed as
4 ok
Fy(y;a,A) =1— ;arctan[(l —-y') ], 0<y <1, ©)]
and « > 0 and A > 0 are the shape parameters that have to be estimated. The associated
PDF of the BTCPE distribution is obtained by differentiating Equation (3), and it is given by
CLO N (0
o+ (1= )]

frya,A) = O0<y <l 4)

Often, the PDFs are expressed in expanded form for easy derivation of the statistical
properties of the proposed distribution. The expanded form of the PDF of the BTCPE
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distribution is mainly obtained using the generalized binomial expansion, (y +a) " =
r (_kn>yka_"_k, ly| < a, where n is any real number. Thus, it is given by
k=0

a(2i+1)—1

Frlyad) = =23 (1Y (1 oY) 0<y<l 5)

The corresponding hazard rate function (HRF) is given by
-1
ay (1 -y
—0<y<L (6)

hy(y;a,A) = 14 (1— y/\)z"‘]arctan[(l -yY)

The shapes of the PDF and HRF for some given parameter values are shown in
Figure 1. The PDF exhibits symmetric, bathtub, left-skewed and right-skewed shapes for
the given parameter values. The HRF displays bathtub and increasing failure rates.

o7 — @=29 2742 Rl — «=1,2=105
— 0=182,3=24 — %=02,3=001
0=235 125 — %=02,3=05
— =45 3705
< — 0=053=05
o

¥ ¥

Figure 1. PDF (left) and HRF (right) of the BTCPE distribution.

3. Some Important Properties

This section presents some relevant properties of the BTCPE distribution.

3.1. Distribution Inequalities

This subsection investigates some desirable inequalities satisfied by the CDF of the
BTCPE distribution. These inequalities are very essential in determining the first order
stochastic dominance of random variables [23].

Proposition 1. The CDF of the BICPE distribution is increasing with respect to the parameter «.
The CDF of the BICPE distribution is decreasing with respect to the parameter A.

Proof. For the first point, since (1 — y})" log(1—y") <0, fory € (0,1), we have

OFy(y;ia,A) _ 4(1-y")"log(1-yY) _

du all+(1-yM)*

This means that Fy(y;a, A) is increasing with respect to a. For the second point, since
yM (1 - y")'xil log(y) <0, fory € (0,1), we have

OFy (v, A) _ 4ay*(1—y")" " log(y)
9A a1+ (1 -y

<0.
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This implies that Fy(y;a,A) is decreasing with respect to A. This completes the proof
of the proposition. From Proposition 1, the following stochastic ordering property fol-
lows immediately: if a1 < ap then Fy(y;a1,A) < Fy(y;az,A). Also, if Ay < A; then
Fy(y;a,A2) < Fy(y;a,Aq).

3.2. Quantile Function

The quantile function or the inverse CDF is simply the solution Q(u;«, A) of the fol-
lowing nonlinear equation: Fy(Q(u;a,A);a,A) = u, for all u € (0,1). Thus, after some
algebraic manipulation, we have

Qi;,A) = {1 ~ (tn[F0- u)Dl/a}lm,u e (0,1). 7)

The median is obtained by substituting u = 0.5. The quantile function plays an im-
portant role in the generation of random observations from the BTCPE distribution. The
quantile function values are also useful in computing measures of skewness and kurtosis.
As a classical quantile measure, the MacGillivray measure of skewness [24] is given by

Q1 —wa,A) + Q(u;a,A) —2Q(0.5;, 1)
Q1 —u;a,A) — Q(u; &, A)

o(u;a,A) = ,ue(0,1).

In particular, the MacGillivray measure of skewness can be used to efficiently describe
the effect of the parameters (a, A) on the skewness. The more the shapes of p(u; &, A) vary
according to the parameters, the more flexible the skewness is. Figure 2 shows the plot
of this skewness measure for a fixed value of A while « varies and for a fixed value of &
while A varies. From Figure 2, the wider variations seen imply that both parameters have
a strong influence on the skewness of the BTCPE distribution. In addition, as the values of
a or A increase, p(u; &, A) gets closer to the horizontal line. This shows that utilizing higher
values of the parameter can result in a symmetrical distribution.

A=2.5 a=2.5
o | o |
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= © 7 = ° 7
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— a=07
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' T T T T T T ' T T T T T T
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Figure 2. Plots of the MacGillivray skewness.

The kurtosis of the BTCPE distribution can be studied using the Moors kurtosis [25].
The Moors (coefficient of) kurtosis is usually given by
Q(7/8a,A) —Q(5/8a,A)+Q(3/8a,A) —Q(1/8;x,A)

K(a,A) = Q(B/4u,A) —Q(1/4a,A) '




Math. Comput. Appl. 2022, 27, 105

50f27

Large values of the Moors kurtosis imply that the distribution has a heavy tail, and
small values are indications of a light tail. Figure 3 displays the Moors kurtosis for the
BTCPE distribution. It can be observed that the BTCPE distribution exhibits various de-
grees of kurtosis. When the parameters &« and A are equal, the distribution displays a
platykurtic shape. The overall shapes show how flexible the BTCPE distribution is with
regards to modeling datasets having different degrees of kurtosis and skewness.

Moors Kurtosis

— =05 — o=t
- - = -~ u=15
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Figure 3. Plots of Moors kurtosis.

3.3. Moments and Moments Generating Function

The r'" moments, incomplete moments and moment generating function of the BTCPE
distribution are presented in this subsection.

Proposition 2. If Y is a BICPE random variable, i.e., a random variable with the BTCPE distri-
bution, then its r'"'non-central moment is given by

4o & i .
W= =Y (-)B(5 +1a+20)r =12, ®)
i=0

where B(a,b) = [z 1(1 - z)bildz is the beta integral function.

o

Proof. The '’ non-central moment of the BTCPE random variable is defined as W, =
E(Y") = fl Y fy(y; &, A)dy. Thus, substituting the expanded form of the PDF given in Equa-
tion (5) y?elds
(o) 1 )
o= e L ) [y O ey
0

1=

Letting z =y, y — 0,z = 0;y — 1,z — 1 and dz = Ay~ 1dy, we get

0o 1
V/r — 4;0‘2 (_1)1/2%(1 _ Z)lX(l‘l’Zl)*le'
i=0 0

Hence, several algebraic manipulation yield

W, = 4;"‘2 (—1)@(% +1,a(1 +2i)).
i=0

1
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This completes the proof.

The non-central moments can be used to derive other important characteristics of the
BTCPE distribution such as estimating the variance, coefficient of skewness and kurtosis.

Proposition 3. The 1! incomplete moment of the BTCPE random variable is given by

A ip (AT A\ L
= =3 1)B(y ,A-+]Va(1+-20),r__1,2p.., )

i=0

where B(g;a,b) = [2°71(1 — 2)""dz is the incomplete beta integral function.

Ct—=

Proof. By definition, the 7! incomplete moment is given by

Y
¢or=EY'{Y <y}) = /x’f(x;zx,/\)dx.
0

Hence, substituting the expanded form of the PDF into the definition yields

J
¢r = =

W'Mg

y
/xr+/\ 11— xY a(1+20)-1,
0

Letting z = x*,x = 0,z = 0;x = y,z — y* and dz = Ax*~1dx . Hence, applying similar

concepts for proving the incomplete moments yields

:%§§K=WB@M£+Lau+%D.

i=0

This completes the proof.

The moment generating function is useful for deriving the moments of a random vari-
able if only the moment exists.

Proposition 4. The moment generating function of the BTCPE random variable is given by

40(00 [o0]

NI

( +1,(1+2i)). (10)

Proof. By definition and a standard exponential expansion, we have My (t) = E(e!Y) =

& r

) % #',. Hence, substituting the r!'non-central moment of the BTCPE distribution into
r=0 "

the definition completes the proof.

Table 1 shows the first six moments of the BTCPE distribution and other useful mea-
sures, such as the standard deviation (SD), coefficients of variation (CV), skewness (CS)
and kurtosis (CK). The SD, CV, CS and CK are, respectively, given by

SD = \/uy — 2,

!/
cv=2= /B4,

p pu?
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Cg — 13— Bupy +2p
3/2
(3 — )
and ) A
/ / /
_ My —4pps t+6pTps —3p
CK = .
/ 2\2
(ny —1?)
Table 1. Values of moment measures, including the SD, CV, CS and CK.
1, x=04,A1=25 w=451=31 x=200,A=15
;u’l 0.8799 0.5602 0.1339
,”/2 0.8021 0.3401 0.0242
JTA 0.7457 0.2185 0.0053
‘ufl 0.7020 0.1465 0.0013
;u'5 0.6667 0.1017 0.0004
TA 0.6373 0.0726 0.0001
SD 0.1668 0.1619 0.0794
CV 0.1896 0.2890 0.5931
CS —1.9527 —0.3403 0.7713
CK 6.6850 2.7084 3.5390

Jen (Y50, A)

From Table 1, the CS is negative for the given parameter values and positive for others.
It can be seen that the BTCPE distribution can be leptokurtic or platykurtic depending on
the parameter values, since the CK can be lower than 3 or greater than 3, respectively. The
coefficient of skewness also reveals that the BTCPE distribution can model both left and
right-skewed data.

3.4. Order Statistics

Order statistics play an imperative role in both statistics and industrial reliability anal-
ysis. They can be used to estimate the minimum, maximum, and range of observations.
They are used in developing control charts that are useful in industrial quality control
analyses. Let Yi.;, < Yo,y < ... <Y, be n order statistics from n BTCPE random variables.
Then, the PDF of Y., is given by

Fen (i, A) = O [Fy (0, M) 1 = Fy (30, )" fy (5., 1),

where

Using the binomial expansion (1 — y))Hl =¥ (—1)i <)L 1_ 1)yi, ly| < 1, we can write

=0
=l ifk—1 n—k+i
fn W0, A) = O ) (17, 1= By, )" fy (i, A).
i=0
Thus, we have

n—k-+i

Oyt A —y) T k=N
R TEEr e o) [t - an
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On the other side, the CDF of Y7, is simply given by

Fin(yp0,4) = 1= [1 = By (0, A)J"
—1- [garctan[a - yA)“]] ,

and the CDF of Y;,.,; is derived as
. 4 Ak
Fon(y;0,A) = [Fy(y;a,A)]" = |1 — Earctan[(l -y )] -

The distribution of the smallest order statistic represents the lifetime of a system con-
nected in series, and that of the maximum order statistic denotes the lifetime of a system
connected in parallel. Hence, they are vital in studying the minimum and maximum time
to failure of components in engineering reliability. The minimum and maximum (min-
max) plots of the order statistics can be used to investigate the distributional behavior of
observations. The min—-max plot captures not only the information in the tails but all the
information about the whole distribution. The min—max plots shown in Figure 4 for some
parameter values depend on E(Y7.,) and E (Y., ). From the min—max plots, the distribution
can exhibit symmetrical, left-skewed, and right-skewed shapes.

0=0.5,2.=0.2 0=0.6,2=2.4

08
|
o

Iin-Max
0.4
|

Iin-Max
02 04 06 08 1.0

0 20 40 60 80 100

0=45,2=0.8 0=2.5, =38

%

Min-hax
|
Min-hax

0.2

02 04 06 08 10

0.0
|

0 20 40 60 80 100 0 20 40 60 80 100

Figure 4. Min—max plots for some parameter values.

4. Bivariate Extension

Researchers may be interested in modeling the dependence between two (quantita-
tive) measures in a dataset. For instance, one may be interested in modeling the rela-
tionship between age and the body mass index of individuals. Bivariate distributions
have been used in reliability analysis, queuing theory, finance, and insurance risk anal-
ysis, among others, to study interdependency (see [26]). In this section, the bivariate exten-
sion of the BTCPE (BEBTCPE) distribution is proposed following the strategy developed
in [26,27]. Given a bivariate continuous random vector (X, Y), the CDF of the BEBTCPE
distribution with parameters «, A, d1,95,J3, where « > 0,A > 0, -1 < 4 +3J3 < 1,
-1<dh+d<1,0<x<land 0 <y < 1,is given by

(1 — ZFarctan[(1 — x*)"]) (1 — Zarctan[(1 — y*)"]) (12)

Fxy(x, ;1) = 1

{1 + (61 + 53)%arctan[(1 — M+ (62 + (53)%arctan[(1 — y/\)“]}
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wherey = (a, B, 01,62, 53)T. The parameters 61, 6, and J3 quantify the dependence between
the two variables of a BEBTCPE random vector. The plots of the CDF for the following
parameter values are shown in Figure 5:

(@ a=35A=820=03,06=010=03;

(b) a=25A=08,0 =056, =04,03=02and

() a=05A=48,6 =-03,0p =—-07,63 =—0.1.

(a) (b) (c)

10 oo 10 oo 1w o

Figure 5. CDF plots of the BEBTCPE distribution.

We notice various concave and convex shapes from these plots.
The corresponding bivariate PDF is given by

4/ 702 (x) (1 = — g 4 o)) A=) 1=y |

fxy(xyim) = = (13)
{14 (61 + 63) Barctan[(1 — x1)"] + (6, + 85) Barctan[(1 — y*)"]} !
Figure 6 shows the bivariate PDF plots of the BEBTCPE distribution for the following
parameter values:
(@ a=35A=820 =03, =01,755=023;
(b) a=25A=08,0 =05, =0403=02and
() a=05A=48,0 =-03,6, =-07,63 =—0.1.
The first graph displays a non-monotonic shape whereas the other two exhibit mono-
tonic shapes, illustrating the versatility in the bivariate modeling sense.
(a) (b) (c)

Figure 6. PDF plots of the BEBTCPE distribution.
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5. Parameter Estimation Methods

This section presents nine estimation methods for estimating the parameters of the
BTCPE distribution. These include the maximum likelihood (ML) estimation (MLE), or-
dinary least squares (OLS), weighted least squares (WLS), Cramér-von Mises (CVM), per-
centile (PC) estimation, Anderson-Darling (AD) methods, and maximum and minimum
product spacing methods.

5.1. Maximum Likelihood Estimation

One of the most common methods used for estimating the parameters of a devel-
oped model is the MLE method. Suppose that Y follows the BTCPE distribution, with
8 = (x,A) as the parameter vector. For a single observation y of Y, the log-likelihood
function ¢ = ¢(9) is

4ol 2
(= log(fT) +(A=1)log(y) + (x — 1) log(1 —y*) —log(1+ (1—y")™).  (14)
To obtain the estimates of the parameters for the single observation, the first partial
derivative of Equation (14) with respect to the parameters needs to be derive. Here, we
obtain

2u
a 1 oy 20 —yM T log(1 — M)
o o OBV L+ (1-yh)™ )
and -
a1 M —1Dlog(y) | 2ay*(1—yM)™ log(y)
T A+log(y) p— + ) . (16)

Giventhatyq,y», ...,y are (independent and identically) observations from n BTCPE
n
random variables, then the total log-likelihood function is given by ¢;, = Y ¢;(¢), where
i=1

4;(9),i=1,2,...,nis defined in Equation (14) with y = y;. The estimates of the parameters
can be obtained by maximizing the total log-likelihood function directly using MATLAB,
MATHEMATICA and R software. In this study, the R software is used [28]. Alternatively,
the estimates of the parameters can be obtained by equating the first partial derivatives
with respect to the parameters to zero and solving the resulting system of equations simul-
taneously. However, since the resulting system of equations does not have a closed form,

* #\ T
the nonlinear system of equations (%, %) = (0, 0)T is solved numerically to obtain the

estimates of the parameters.

5.2. Ordinary and Weighted Least Squares Estimation
Suppose that y(1),Y(2), - - -, Y(n) are ordered observations from n BTCPE random vari-

ables. The OLS estimates of the parameters & s and ALgE are obtained by minimizing the
following function:

n

LSE(a,A) =) [(1 - %arctan[ﬂ _y?i))“}) B n—li_l} 2, (17)

i=1

with respect to the parameters # and A. On the other hand, the OLS estimates can be
obtained by numerically solving the following nonlinear equations:

n 4 .
; [(1 — —arctan[(1 — ]/f‘,-))“}) - _ZF J As(ygyla,A) =0, s =1,2, (18)
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AD(a,A) =

—n— %Z (2i—1) [log (1 — %arctan[(l - y(l))]) + log( arctan[(1 — Y ))})],

where

—
—_
<
X
~

og(1—
A+ (1 -y)™

M(ygpla,A) = —

~—

and

-1

8y (1 —yy)" ™ log(y)
20
14 (1- yf\i)) ]

The WLS estimates &g and Apg are obtained by minimizing the following func-
tion:

Do (y(iyle, A) =

lil 11—1}—11_1(—1:—41—)2) [(1 - %arctan[(l - yé‘i))a]> — n—li—.l]z’

with respect to the parameters a and A. Alternatively, the WLS estimates can be obtained
by numerically solving the following nonlinear equations:

WLS(, A) (19)

" (n 2(n w i
EW[(l_iarcm[(l—y@)) }) n+JAs(y<)|a A)=0,5=1,2, (20)

where As(x(;)[a, A),s = 1,2 are defined above.

5.3. Cramér—Von Mises Estimation

Let ]/(1)/]/(2)/'-' a
CVM estimates of the parameters &cy s and Acy )y are obtained by minimizing the follow-
ing function:

+Y(n) be ordered observations from n BICPE random variables. The

ot Z [(1 - —arctan[(l -~ y({.))”‘]) - Ziz; 1} 2, (1)

with respect to the parameters « and A. The estimates of the parameters can also be ob-
tained by numerically solving the following equations:

CVM(a, M)

3 4 paa) 21
i;l |:(1 — Earctan[(l _]/(l)) ]) - 2}’l:| AS(]/(z)|“/)\) = 0, s = 1/2/

(22)

where As(y(;)|a, A),s = 1,2 are given above.

5.4. Anderson—Darling Estimation

Another minimum distance estimation method is the AD estimation technique. Let
Yy Y@y Y be ordered observations from n BTCPE random variables. The AD esti-
mates for the parameters of the BTCPE distribution are obtained by minimizing the follow-
ing function:

) 23)
i=1

with respect to the parameters & and A.

5.5. Percentile Estimation

The PC estimation approach is another method of estimating the parameters of a given
model. Lety(1),¥(2), - - ., ¥(n) be ordered observations from n BTCPE random variables and
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u; = i/(n+ 1) be an unbiased estimate of Fy(]/(i) ; &, A). The PC estimates of the parameters
of the BTCPE distribution are obtained by minimizing the following function:

n

2
PC(a,A) =Y [y(i) - {1 — (tan[ 01— ui)})w}ml , (24)

i=1
with respect to the parameters & and A.

5.6. Maximum and Minimum Product Spacing Estimation

An alternative parameter estimation technique which is based on the Kullback-Leibler
information measure is the maximum product spacing (MPS). Let y(1), ¥ (2), - - -, ¥ (n) be or-
dered observations from # BTCPE random variables. Consider the uniform spacing

Di = Fy(yy e A) — Fy(y(i—1)iaA)
= %arctan[(1 — yf‘i_l))] — 2arctan[(1 — yé‘i))]
where Fy(y(o);a,)L) =0, Fy(y(nﬂ);zx,)\) =1and Dg(a,A) + D1(a,A) + ...+ Dyyq(a,A) =
1. The estimates of the parameters are obtained via the MPS approach by maximizing the
logarithm of the geometric mean of the spacing defined by

n+1
MPS(a,A) = %4_1 Y log Dj(a, A), (25)
i=1

1

with respect to the parameters & and A.
Additionally, the minimum spacing distance (MSD) estimates for the parameters «
and A are obtained by minimizing the following function:

n+1 1
MSD(a,A) = Y #(Dj(w, A), "y 1), (26)
i=1

where 9(x, y) is an appropriate distance, with respect to the parameters « and A. Although
different choices of 9(x, y) exist, in this study the absolute distance |x — y| and the absolute-
log distance [logx —logy| are utilized. Thus, the minimum spacing absolute distance
(MSAD) and minimum spacing absolute-log distance (MSALD) estimates are, respectively,
obtained by minimizing the following functions:

n+1 1
MSAD(a,A) = 1; |Di(a,A) — m' (27)
and
n+1
MSALD(a,A) = Y [log Dj(a, A) —log et |, (28)

i=1

where D;(x,A) # 11 and log Dj(a, A) # log 717

6. Simulation

In this section, simulation experiments are carried out to assess how well the proposed
parameters of the BTCPE distribution have been estimated. The experiments are carried
out with the following two different parameter combinations: « = 4.1,A = 2.5and & =
3.1, A = 8.5. The experiments are replicated 5000 times with the following different sample
sizes: n = 25,75,125,175 and 225. The bias (AB) and root mean square error (RMSE) of
the estimates are then computed and compared.
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The AB and RMSE are, respectively, computed using

AB =

| =

i(@f ~9)

and

where 8 is either & or A and R =5000 is used in this study.

From Tables 2 and 3, most of the estimates have their ABs and RMSEs decreasing
as the sample size increases. This is an indication that most of the estimates exhibit the
consistency property. From Table 2, it can be observed that for sample sizes 25, 75 and 125
the PC estimate is the best for « and, for the sample sizes 175 and 225, the MLE is the best
for a. For the parameter A, the PC estimate is the best for the sample size 25 and the MLE
is the best for 75, 125, 175 and 225. In Table 3, for sample sizes 25 and 75 the AD estimate is
the best for the parameter & and the MLE is the best for 125, 175 and 225. For the parameter
A, the MLE is the best for sample sizes 25, 125, 175 and 225. The AD estimate is best for A
when the sample size is 75.
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Table 2. AB and RMSE fora = 4.1 and A = 2.5.

AB RMSE

Parameter 1 T MPS  MADS MALDS OLS  WLS  CVM  AD PC MLE MPS MADS MALDS OLS WLS CVM  AD PC
25 07980 22327 —23189 0531 03530 26423 11477 04713 —03155 22233 35728 29322 33391 24457 26729 35377 19964 14972
75 02140 07443 —1.8442 00634 01365 —3.1632 03415 01180 —0.1694 09157 13139 24241 11330 11489  3.1657 12820 09535 08506
« 125 01342 04372 —13088 —00031 00472 —33268 01337 00713 —00783 06843 08313 19860 07795 08149 33279 08159 07025  0.6641
175 00914 02987 —08738 —00272 00460 —21721 0.1164 00657 —00484 05365 06791 15544 06323 06845 21990 06955 05941 05393
25 00677 02509 —0.6976 00062 00301 30791 0109 00365 —0.0623 04841 05505 13266 05926 05906 33377 06147 05240  0.4860
25 01871 05436 —1.1017 00300 —00075 —13344 02060 00670 —01737 06038 08201 13862 07382 06538 13687 07340 05749 05401
75 00478 02197 08939 —00079 00078 —20003 00802 0.185 —0.0672 03089 04026 12090 0399 03692 20029 03886 03379 03175
A 125 00378 01293 —0.6271 —00160 —00055 —2.1461 00305 00146 —00448 02407 02740 09681 02987 02752 21472 02798 02560  0.2466
175 00233 00866 0398 00139 00034 16394 00280 00114 —00267 01959 02314 07264 02315 02372 16455 02383 02134 02008
25 00208 00820 —03101 00021 00003 01937 00230 00007 —0.025 01810 01939 06057 0219 02079 03066 02124 01874  0.1835

Table 3. AB and RMSE fora = 3.1 and A = 8.5.
AB RMSE

Parameter % TTUNE MPS  MADS MALDS OLS  WLS  CVM _ AD PC MLE  MPS MADS MALDS OLS WLS CVM  AD PC
25 05120 15281 —13158 03712 02359 —19121 07701 02725 —0.6748 14793 25597 20817 19689 16086 19366 24325 13231 14204
75 02081 05190 —0.9456 00477 00264 —22924 01973 00989 —03302 06848 08671 15913 07865 07088 22949 08122 06294 08145
« 125 00994 03218 —0.6895 00570 00153 —24255 01020 00757 —02704 04778 06228 12854 05657 05532 24266 05644 05109  0.6262
175 00867 02259 —05478 00107 00240 —13857 00882 00554 —02187 04077 04554 10538 04821 04813 14810 04940 04163 05242
25 00461 01719 —04192 00007 00195 22166 00555 00200 —0.1735 03331 03880 08460 04021 04133 23785 04184 03477 04768
25 05725 19602 —35282 01675 01107 —46443 07293 02368 —16432 20951  3.1555 48358 26753 23883 47703 26517 21203  2.6346
75 02957 08211 24563 —0.0292 —00416 —69243 02449 00825 07220 11627 14130 39050 13676 12655 69330 13246 11047 14877
A 125 01098 04964 —1.6975 00128 —00435 —7.3960 01015 00784 —05259 08837 10321 30631 10694 09899 73994 09670 09327  1.1482
175 01182 03504 12348 00232 00022 55678 01061 00622 —04011 07361 07785 24368 08864 08608 55937  0.8687 07734 09365
25 00631 02843 —09196 —0.0034 00015 06715 0043 00249 —03171 06223 07091 19241 07604 07452 10898 07515  0.6590  0.8305
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7. Applications

Three applications of the BTCPE distribution are illustrated in this section, and its per-
formance is compared to other competitive distributions defined in the unit interval. The
performance of the BTCPE distribution was compared with that of the beta, unit Burr-III
(UBIII) [29], bounded M-O extended exponential (BMOEE) [30], unit Gompertz (UG) [18],
unit Lindley (UL) [17], unit Weibull (UW) [20] and unit-improved second-degree Lindley
(UISDL) [31] distributions. The Akaike information criterion (AIC), Bayesian information
criterion (BIC), Anderson-Darling (AD) test, and Cramér—von Mises (CVM) are the model
selection techniques employed in arriving at the best model. For these selection techniques,
the best model is the one with the smallest test statistic. The datasets represent the mortal-
ity rate of COVID-19 patients in Canada and the United Kingdom (UK), and the recovery
rate of COVID-19 patients in Spain. The first two datasets were recently reported by [8].

The first dataset is the mortality rate for UK from 1 December 2020 to 29 January 2021.
The data are: 0.1292, 0.3805, 0.4049, 0.2564, 0.3091, 0.2413, 0.1390, 0.1127, 0.3547, 0.3126,
0.2991, 0.2428, 0.2942, 0.0807, 0.1285, 0.2775, 0.3311, 0.2825, 0.2559, 0.2756, 0.1652, 0.1072,
0.3383, 0.3575, 0.2708, 0.2649, 0.0961, 0.1565, 0.1580, 0.1981, 0.4154, 0.3990, 0.2483, 0.1762,
0.1760, 0.1543, 0.3238, 0.3771, 0.4132, 0.4602, 0.352, 0.1882, 0.1742, 0.4033, 0.4999, 0.3930,
0.3963, 0.3960, 0.2029, 0.1791, 0.4768, 0.5331, 0.3739, 0.4015, 0.3828, 0.1718, 0.1657, 0.4542,
0.4772, 0.3402.

The second dataset denotes the mortality rate for Canada from 1 November to 26
December 2020. The data are: 0.1622, 0.1159, 0.1897, 0.1260, 0.3025, 0.2190, 0.2075, 0.2241,
0.2163, 0.1262, 0.1627, 0.2591, 0.1989, 0.3053, 0.2170, 0.2241, 0.2174, 0.2541, 0.1997, 0.3333,
0.2594, 0.2230, 0.2290, 0.1536, 0.2024, 0.2931, 0.2739, 0.2607, 0.2736, 0.2323, 0.1563, 0.2677,
0.2181, 0.3019, 0.2136, 0.2281, 0.2346, 0.1888, 0.2729, 0.2162, 0.2746, 0.2936, 0.3259, 0.2242,
0.1810, 0.2679, 0.2296, 0.2992, 0.2464, 0.2576, 0.2338, 0.1499, 0.2075, 0.1834, 0.3347, 0.2362.

The third dataset constitutes the recovery rates of COVID-19 patients in Spain from 3
March to 7 May 2020. The dataset can be found in [1] and are: 0.6670, 0.5000, 0.5000, 0.4286,
0.7500, 0.6531, 0.5161, 0.7895, 0.7689, 0.6873, 0.5200, 0.7251, 0.6375, 0.6078, 0.6289, 0.5712,
0.5923, 0.6061, 0.5924, 0.5921, 0.5592, 0.5954, 0.6164, 0.6455, 0.6725, 0.6838, 0.6850, 0.6947,
0.7210, 0.7315, 0.7412, 0.7508, 0.7519, 0.7547, 0.7645, 0.7715, 0.7759, 0.7807, 0.7838, 0.7847,
0.7871, 0.7902, 0.7934, 0.7913, 0.7962, 0.7971, 0.7977, 0.8007, 0.8038, 0.8289, 0.8322, 0.8354,
0.8371, 0.8387, 0.8456, 0.8490,0.8535, 0.8547, 0.8564, 0.8580, 0.8604, 0.8628, 0.6586, 0.7070,
0.7963, 0.8516.

The ML estimates of the parameters are estimated using the bbmle package in R [32].
The initial values of the parameters of the fitted distributions used for the optimization are
obtained using the GenSA package in R [33]. Table 4 displays the descriptive statistics for
COVID-19 mortality for the UK and Canada, as well as the recovery rate for Spain. The
datasets are platykurtic due to the negative excess kurtosis. The UK mortality is right-
skewed and that of Canada is left-skewed. The recovery rate for Spain is also left-skewed.
This is affirmed by the boxplot of the datasets shown in Figure 7.

Table 4. Descriptive statistics for datasets.

Country Minimum Maximum Mean Skewness Kurtosis
UK 0.0807 0.5331 0.2888 0.0476 —1.1034
Canada 0.1159 0.3347 0.2305 —0.0850 —0.4402
Spain 0.4286 0.8628 0.7240 —0.6890 —0.4761

7.1. UK COVID-19 Mortality

Table 5 presents ML estimates of the parameters and their corresponding standard
errors in brackets, the log-likelihood (¢), AIC, BIC, AD, and CVM for the fitted distributions.
Given that it has the lowest values for the AIC, BIC, AD, and CVM and the maximum log-
likelihood, the BTCPE distribution offers the best fit to the UK mortality dataset.
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Figure 7. Boxplots of COVID-19 datasets.
Table 5. Parameter estimates and model selection criteria for UK.
Model Parameter 4 AIC BIC AD CVM
« = 16.6904(5.2798)
BTCPE A — 2.3884(0.2865) 45.4400 —86.8726 —82.6840 0.6494 0.1049
o = 4.0502(0.7128)
Beta B — 10.0132(1.8287) 45.4000 —86.7958 —82.6071 0.7356 0.1280
a = 0.0757(0.0383)
UBIII B — 13.3804(6.5631) 38.9000 —73.8075 —69.6188 2.8948 0.5248
a = 105.2655(59.9004)
BMOEE B — 3.5049(0.4092) 40.7200 —77.4396 —73.2509 1.1465 0.1698
o = 0.2834(0.0602)
UwW B — 3.1228(0.3047) 42.5600 —81.1208 —76.9322 1.0656 0.1820
& = 686.3600(2.2295 x 10~10)
UG B = 0.0011(1.4051 x 10-4) 2.8400 1.6760 2.5127 12.2290 2.4707
UL « = 2.8293(0.3029) 32.3800 —62.7533 —60.6590 4.4878 0.7574
UISDL a = 3.4259(0.3151) 33.6100 —65.2142 —63.1198 3.9972 0.6545

Figure 8 displays the empirical and fitted PDFs and CDFs of the various distributions
used to model the UK mortality dataset. The figure gives an indication that the BTCPE
distribution provides a good fit to the dataset compared to the other models.

Figure 9 is the probability—probability (P-P) plots of the fitted distributions. Figure 9
once more shows that the BTCPE distribution fits the UK drought mortality well because
the points cluster along the diagonal.

The profile log-likelihood plots for the estimated parameter values of the BTCPE distri-
bution for the UK mortality data are shown in Figure 10. From the plots, it can be observed
that the estimated values are the true maxima.

7.2. Canada COVID-19 Mortality

Table 6 presents ML estimates of the parameters and their corresponding standard
errors in brackets and model selection criteria for the fitted distributions. The BTCPE dis-
tribution again provides the best fit to the Canada mortality dataset since it has the highest
log-likelihood and the lowest values of the AIC, BIC, AD, and CVM.
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Figure 10. Profile log-likelihood plots for estimated parameters of BTCPE for UK.
Table 6. Parameter estimates and model selection criteria for Canada.
Model Parameter 14 AIC BIC AD CVM
BICPE & = 622.2064(399.8188)
A = 4.5085(0.4837) 86.4400 —168.8806 —164.8299 0.3767 0.0689
Beta x = 14.5128(2.7128)
B = 48.4900(9.1745) 85.9400 —167.8800 —163.8293 0.4398 0.0692
UBII « = 0.0080(0.0011)
B = 101.7700(8.4127 x 10~8) 30.8900 —57.7749 —53.7242 14.8770 3.1113
a = 2822.9776(3.3087 x 1072)
BMOEE
B = 5.4444(0.1439) 80.6700 —157.3394 —153.2887 1.5514 0.2327
UW « = 0.0552(0.0193)
B = 6.1602(0.5868) 79.9500 —155.9080 —151.8573 1.4890 0.2389
UG o = 628.3885(2.4072 x 10~10)
B = 0.0011(1.4212 x 10~%) 5.2500 —6.4901 —2.4393 18.5180 3.9712
UL o = 3.9381(0.4506) 41.1400 —80.2707 —78.2453 12.7090 2.5936
UISDL o = 3.4259(0.3151) 42.2000 —82.3913 —80.3660 12.3010 2.4925

Density
4
I

&

Figure 11 shows the empirical and fitted PDFs and CDFs of the various distributions
used to model the Canada drought mortality dataset. The figure gives an indication that
the BTCPE distribution provides a better fit to the drought mortality for Canada than
the other models, as it mimics the empirical PDF and CDF of the dataset better than the
other models.
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Figure 11. Empirical and fitted PDFs (left) and CDFs (right) of Canada dataset.
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Figure 12 shows the P-P plots of the fitted models. Figure 12 gives an indication that
the BTCPE distribution provides a good fit to the Canada mortality as the points cluster
along the diagonal.
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Figure 13 displays the profile log-likelihood plots for the estimated parameter values
of the BTCPE distribution for the Canada mortality data. It can be observed from the plots
that the estimates are unique and represent the true maxima.
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Figure 13. Profile log-likelihood plots for estimated parameters of BTCPE for Canada.
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7.3. Spain COVID-19 Recovery Rate

The ML estimates of the parameters and their corresponding standard errors in brack-
ets and model selection criteria for the fitted distributions are shown in Table 7. Because
it has the lowest values for the AIC, BIC, AD, and CVM and the maximum log-likelihood,
the BTCPE distribution again offers the best fit to the Spain recovery rate dataset.

Table 7. Parameter estimates and model selection criteria for Canada.

Model Parameter 4 AIC BIC AD CVM
a = 7.1385(1.7764)
BTCPE A = 7.1961(0.9033) 58.7500 —113.4953 —109.1160 0.8770 0.1363
o = 12.7943(2.2291)
Beta B — 4.8994(0.8270) 57.5700 —111.1489 —106.7692 1.0520 0.1783
& = 5.4398(0.7948)
UBIII B = 2.0613(0.1723) 53.8000 —103.5927 —99.2134 1.3725 0.2209
o = 22.1286(9.9041)
BMOEE B = 10.0043(1.2381) 51.4600 —98.9276 —94.5483 1.4958 0.2100
x = 8.6445(1.6973)
Uuw B — 2.2320(0.2036) 53.9700 —103.9316 —99.5523 1.3830 0.2238
a = 0.2792(0.1059)
UG — 3.8482(0.6025) 46.0300 —88.0569 —83.6776 2.4709 0.3691
UL a = 0.5200(0.0466) 46.1100 —90.2298 —88.0402 4.2480 0.6736
UISDL a = 0.7403(0.0539) 52.0400 —102.0717 —99.8820 2.3450 0.3194
The empirical and fitted PDFs and CDFs of the various distributions used to model
the Spain recovery rate dataset are shown in Figure 14. It can be seen that the BTCPE
distribution provides a better fit to the recovery rate data than the other models.
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Figure 14. Empirical and fitted PDFs (left) and CDFs (right) of Spain dataset.

The P-P plots of the fitted models for the recovery rate data are displayed in Figure 15.
The plots indicate that the BTCPE distribution provides a good fit to the recovery rate data
as the points cluster along the diagonal.



Math. Comput. Appl. 2022, 27, 105

21 of 27

Profile Loglikelihood

E xpected probability

E xpected probability

86

84

82

80

78

78

74

72

BTCPE Distribution

=
—

04 0B 08

02

oo

oo 04 08

Observed probability

UW Distribution

oo 04 08

Observed probability

Beta Distribution

Expected probabilty

Observed probakbility

UL Distribution

= _|
=
L -
=
=
=
=
w
£ 3
=
=
£ =
QD
(=5
=
w
o g
=
]
= _]
[
L

L
oo 04 08

CObserved probakility

Expected probabilty

Expected probabilty

UBIII Distribution

Observed probability

UG Distribution

0.0 04 08

Observed probakbility

Figure 15. P-P plots for Spain recovery data.

Expected probabilty

Expected probabilty

BMOEE Distribution

=
—

p2 04 06 08

oo

UISDL Distribution

=
—

p2 04 0B 08

0.0

oo 04 08

Observed probability

oo 04 08

Observed probability

The profile log-likelihood plots for the estimated parameter values of the BTCPE dis-
tribution for the recovery rate data are shown in Figure 16. The plots suggest that the
estimates are unique and represent the true maxima.
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Figure 16. Profile log-likelihood plots for estimated parameters of BTCPE for Spain.

8. Quantile Regression

When the response variable defined in the unit interval is skewed or contaminated
with outliers, the beta regression model, which models the conditional mean of the re-
sponse variable, is no longer reliable. A robust regression model is needed to model



Math. Comput. Appl. 2022, 27, 105

22 of 27

da(log(1— (tan[rt(1—u) /4])/%) / log(p) )y los(—(tan[w(1—u)/4])1/*)/ log(0)) 1 (1 _; (log(1—(tan[(1—u) /4])) /%) g (p))

the effects of the covariates on the response variable. In this study, a quantile regres-
sion model is proposed for modeling the conditional quantile of the response variable.
Given the quantile function of the BTCPE distribution, the PDF of the BTCPE distribu-
tion can be re-parameterized in terms of its u'" quantile as p = Q(u;a,A),p € [0,1]. If

A =log(1 — (tan[rr(1 — u) /4])1/“)/ log(p), then the re-parameterized PDF is

AyaA) =

a—1

(29)

1
n

i=1

14+ (1—y loB(1—(tanle (1) /4) /%) /log )y

The parameter p is the quantile parameter. The BTCPE quantile regression is de-

fined as
8 (P i) = Zli 0,

where 68 = (6y,64,..., Bp)’ is the vector of unknown parameters, p; is the th quantile pa-
rameter and z'; = (1,zj,2p, - - -, Zip) are the known it" vector of covariates. The link func-
tion g(-) is used to link the covariates to the conditional median of the dependent variable
Y. The logit link function is used to link the covariates to the conditional quantile since
y € (0,1). Hence, we have

Pi
1—91).

g(pi) = logit(p;) = log(

Further, we can write
o exp(z';0)
Pi=T1y exp(z/;0)
Substituting p; into the re-parameterized PDF, the log-likelihood for estimating the
parameters of the BTCPE quantile regression is given by

0= é log ((4a/7) (log(1 — (tan[rr(1 — u)/4])"/*) /Tog(p1)) ) - é log(1+ (1— z)2)+

n (30)

3. [(log(1 — (tan[rr(1 — u)/4])/*)/ log(p;)) — 1] log(y) + (x — 1) ¥ log(1 — z)),

i=1

where z; = yi(IOg(l_(tan["(l_”)MDW)/ log(pi)), The estimates of the parameters of the regres-
sion equation are obtained by directly maximizing the log-likelihood function. They will
be denoted as & and 6 = (éo,. ., 9p)’ of & and 6, respectively.

8.1. Residual Analysis

Model diagnostics are very essential when fitting a model to a dataset. Often, the
behavior of the model residuals is examined to see if the model really provides a good fit to
the data. In this study, the randomized quantile residuals are used to assess the adequacy
of the regression model. The randomized quantile residuals are defined as

ri =& YFy(yi;4,0),i=1,2,...,n,

where ®~1(-) is the quantile of the standard normal distribution. The randomized quantile
residuals are expected to be distributed as the standard normal distribution if the models
provide a good fit to the data.

8.2. Monte Carlo Simulation for Quantile Regression

Monte Carlo simulations are carried out in this section to examine the performance
of the ML estimates of the parameters of the BTCPE regression model. The exercise is
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performed with two covariates. The following regression structure is adopted for the sim-
ulation:

_exp(bo + 01zi1 + 0rzin)

~ 1+exp(fo + 01z + 0hzip)”

The observations for the response variable are generated from the BTCPE distribution
using sample sizes n = 50, 100,250, 350, 500, 600 and 700. The experiments were repeated
5000 times for each sample size. The performance of the ML estimates is examined using
AB and RMSE. The simulations were carried out using the median, u = 0.5. The following
parameter combinations were used in the simulation: I : («, 6y, 61,6) = (0.7,0.2,0.8,0.3),
II: («,60,6q,62) = (0.6,0.5,04,1.8) and III : («,6p,01,62) = (0.8,0.4,0.9,0.6). From the
simulation results shown in Table 8, the ABs and RMSEs of the estimates’ decrease as the
sample size increases. Hence, the ML estimates for the BTCPE regression parameters are
consistent.

i

Table 8. Simulation results for the quantile regression.

I II III

Parameter n AB RMSE AB RMSE AB RMSE
0o 50 0.1949 0.2235 0.3599 0.3753 0.2609 0.2969
100 0.1946 0.1961 0.3551 0.3726 0.2178 0.2579

250 0.1919 0.1941 0.3465 0.3673 0.1525 0.1926

350 0.1898 0.1928 0.3271 0.3544 0.1320 0.1700

500 0.1838 0.1927 0.3109 0.3482 0.1101 0.1431

600 0.1779 0.1886 0.3051 0.3434 0.0998 0.1318

700 0.1761 0.1850 0.2908 0.3333 0.0908 0.1196

61 50 0.2826 0.3067 0.3485 0.3807 0.8194 0.8276
100 0.2605 0.2904 0.3181 0.3486 0.8142 0.8238

250 0.2290 0.2651 0.3171 0.3363 0.8013 0.8134

350 0.2176 0.2539 0.3138 0.3342 0.7872 0.8041

500 0.2097 0.2454 0.3083 0.3305 0.7727 0.7945

600 0.2079 0.2433 0.3020 0.3272 0.7188 0.7610

700 0.2053 0.2389 0.2978 0.3253 0.6862 0.7447

6 50 1.5889 1.5959 1.7104 1.7153 0.5212 0.5338
100 1.5835 1.5913 1.7046 1.7102 0.5140 0.5291

250 1.5818 1.5910 1.6938 1.7006 0.5073 0.5250

350 1.5698 1.5815 1.6751 1.6845 0.4893 0.5130

500 1.5566 1.5723 1.6432 1.6578 0.4753 0.5046

600 1.4749 1.5132 1.5559 1.5917 0.4601 0.4999

700 1.3803 1.4520 1.4593 1.5264 0.4535 0.4921

« 50 0.0792 0.0998 0.0842 0.1110 0.1091 0.1520
100 0.0577 0.0745 0.0570 0.0747 0.0872 0.1382

250 0.0352 0.0463 0.0339 0.0437 0.0523 0.0859

350 0.0295 0.0378 0.0287 0.0366 0.0427 0.0650

500 0.0246 0.0316 0.0239 0.0317 0.0340 0.0467

600 0.0227 0.0287 0.0217 0.0290 0.0317 0.0449

700 0.0210 0.0267 0.0201 0.0259 0.0287 0.0375

8.3. Application

The application of the quantile regression model is demonstrated in this section using
a real dataset. The data are taken from [34] and are also available at http://www.leg.ufpr.
br/doku.php/publications:papercompanions:multquasibeta (accessed on 30 August 2022).
The data consist of body fat percentage (response variable) measured in five regions: an-
droid, arms, gynoids, legs and trunk. The data are comprised of 298 observations and the
independent variables are: age (in years), body mass index (in kg/m?), sex (female or male)
and IPAQ (sedentary (S), insufficiently active (I), or active (A)). In this study, the response
variable body fat percentage at arms is regressed on age (z;1), body mass index (z;2) and sex
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(zi3, 0 for female and 1 for male). The response variable is regressed on the covariates us-
ing the relationship logit(p;) = 6y + 61zi1 + 62zi2 + 03zi3,i = 1,2,...,298. Table 9 presents
ML estimates, standard errors, and p-values for the parameters of the fitted models for the
different quantiles. The estimates are all significant at the 5% level of significance.

Table 9. ML estimates for quantile regression.

u éo é1 92 93 4

Estimates —3.6699 0.0076 0.0905 —1.004 308.7724

0.10 Standard error 0.1681 1.1670 x 103 7.5355 x 1073 43797 x 1072 9.3305 x 107>
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Estimates —3.2544 0.0071 0.0845 —0.9326 325.4705

0.25 Standard error 0.1545 1.0687 x 103 6.9379 x 1073 4.0103 x 102 46137 x 107>
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Estimates —2.8977 0.0067 0.0792 —0.8732 340.4285

0.50 Standard error 0.1436 9.9065 x 10* 6.4570 x 1073 3.7166 x 1072 1.3990 x 10~°
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Estimates —2.6424 0.0064 0.0766 —0.8384 281.1611

0.75 Standard error 0.1405 9.7128 x 10~4 6.3363 x 1073 3.6303 x 1072 6.4012 x 10~°
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Estimates —2.4030 0.0061 0.0731 —0.7987 273.9968

0.90 Standard error 0.1353 9.3470 x 10~4 6.1047 x 1073 3.4900 x 1072 2.9792 x 107>
p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 10 presents the model selection criteria for the different quantiles. It is observed
that the 0.90th quantile provides the best fit for the data as it has the least values of the
model selection criteria.

Table 10. Model selection criteria for quantile regression.

u —2¢ AIC BIC
0.10 —885.3517 —875.3517 —856.8663
0.25 —887.4067 —877.4067 —858.9212
0.50 —889.1990 —879.1990 —860.7136
0.75 —889.8634 —879.8634 —861.3779
0.90 —890.8307 —880.8307 —862.3453

Figure 17 shows the rate of change of the regression coefficients for the different quan-
tile levels and the corresponding 95% confidence interval (CI). It can be observed that all
the coefficients approach zero as the quantile level increases, suggesting that they are more
important in explaining smaller quantiles.
Figures 18 and 19 show the P-P plots and half-normal plots with simulated envelopes,
respectively, for the randomized quantile residuals. These figures display good fits of
the BTCPE quantile regression model to the u'" percentage of body fat in arms for u €
(0.10,0.25,0.50,0.75,0.90).
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9. Conclusions

In this study, the BTCPE distribution is proposed for modeling datasets that are de-
fined on the unit interval. The PDF of this distribution exhibits left-skewed, right-skewed,
reversed J, and approximately symmetric shapes. The HRF displays increasing and bath-
tub shapes. This makes the distribution a suitable candidate for modeling datasets that
exhibit these traits. Nine estimation methods were proposed for estimating the parame-
ters of the distribution, and simulation results revealed that most of these estimates were
consistent when it came to the estimation of the parameters of the distribution. The appli-
cations of the BTCPE distribution were illustrated using datasets on the mortality rate and
recovery rates of COVID-19. The results revealed that for the three datasets, the BTCPE
model provided a better fit than the other competing models. A quantile regression model
for studying the relationship between the conditional quantiles of a bounded response
variable and a set of covariates was proposed. The application of the regression model
was illustrated using real data. The study only defined the cumulative distribution and
probability density functions of the bivariate distribution. Our future research will study
the detailed properties of the bivariate distribution, estimate its parameters, and illustrate
its applications.
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