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Abstract: In recent, various metaheuristic algorithms have shown significant results in control
engineering problems; moreover, fuzzy sets (FSs) and theories were frequently used for dynamic
parameter adaption in metaheuristic algorithms. The primary reason for this is that fuzzy inference
system (FISs) can be designed using human knowledge, allowing for intelligent dynamic adaptations
of metaheuristic parameters. To accomplish these tasks, we proposed shadowed type-2 fuzzy
inference systems (ST2FISs) for two metaheuristic algorithms, namely cuckoo search (CS) and flower
pollination (FP). Furthermore, with the advent of shadowed type-2 fuzzy logic, the abilities of
uncertainty handling offer an appealing improved performance for dynamic parameter adaptation
in metaheuristic methods; moreover, the use of ST2FISs has been shown in recent works to provide
better results than type-1 fuzzy inference systems (T1FISs). As a result, ST2FISs are proposed for
adjusting the Lèvy flight (P) and switching probability (P′) parameters in the original cuckoo search
(CS) and flower pollination (FP) algorithms, respectively. Our approach investigated trapezoidal
types of membership functions (MFs), such as ST2FSs. The proposed method was used to optimize
the precursors and implications of a two-tank non-interacting conical frustum tank level (TTNCFTL)
process using an interval type-2 fuzzy controller (IT2FLC). To ensure that the implementation is
efficient compared with the original CS and FP algorithms, simulation results were obtained without
and then with uncertainty in the main actuator (CV1) and system component (leak) at the bottom
of frustum tank two of the TTNCFLT process. In addition, the statistical z-test and non-parametric
Friedman test are performed to analyze and deliver the findings for the best metaheuristic algorithm.
The reported findings highlight the benefits of employing this approach over traditional general
type-2 fuzzy inference systems since we get superior performance in the majority of cases while using
minimal computational resources.

Keywords: cuckoo search algorithm; shadowed type-2 fuzzy logic systems; flower pollination
algorithm; fault-tolerant controller; conical frustum tank; fuzzy logic control

1. Introduction

Optimization is a branch of study that uses mathematical modeling in a variety of
subjects, including science, engineering, economics, and others [1–4]. In general, the goal is
to find an amicable alternative to an objective function defined across a search space [5].
There are two types of optimization algorithms: deterministic and stochastic. Deterministic
techniques usually struggle to solve optimization problems since they only provide a hypo-
thetical guarantee of finding a local minimum for the objective function [6–8]. On the other
hand, stochastic techniques are frequently faster at discovering a global optimum [3,7,8].
Moreover, with the exception of deterministic approaches, they are easily adaptable to
black-box formulations and severely ill-behaved functions, whereas deterministic meth-
ods usually depend heavily on at least some theoretical assumptions about the problem
formulation and its analytical properties (such as Lipschitz continuity) [9].
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logistic model poses implausible assumptions regarding the guessing process. The four-parameter
guessing model has been proposed as an alternative to circumvent these conceptual issues. In this
article, the four-parameter guessing model is compared with alternative item response models for
handling guessing effects through a simulation study and an empirical example. It turns out that
model selection for item response models should be rather based on the AIC than the BIC. However,
the RMSD item fit statistic used with typical cutoff values was found to be ineffective in detecting
misspecified item response models. Furthermore, sufficiently large sample sizes are required for
sufficiently precise item parameter estimation. Moreover, it is argued that the criterion of the sta-
tistical model fit should not be the sole criterion of model choice. The item response model used
in operational practice should be valid with respect to the meaning of the ability variable and the
underlying model assumptions. In this sense, the four-parameter guessing model could be the model
of choice in educational large-scale assessment studies.
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1. Introduction

Item response theory models [1–3] are central to analyzing dichotomous random
variables used for model testing data from educational or psychological applications. This
class of statistical model can be regarded as a factor-analytic multivariate technique to
summarize a high-dimensional contingency table by a few latent factor variables of interest.
Of particular relevance is the application of item response models in educational large-
scale assessment [4], such as the studies programme for international student assessment
(PISA; [5]) or progress in international reading literacy study (PIRLS; [6]).

Educational tests often use multiple-choice items [7,8] to assess the ability of test takers
in a well-defined domain of interest. In multiple-choice items, test takers have to choose
the correct response alternative from a set of response alternatives (e.g., one out of four
response alternatives is the correct solution to the item). If test takers do not know the
correct answer, they can obviously guess the correct alternative. In the case of random
guessing, the probability of providing the correct answer by a random guess is 0.25 for a
multiple-choice item with four response alternatives.

Typically, the occurrence of random guessing should be taken into account in statistical
modeling [9,10] (see also [11–13]). The three-parameter logistic item response model [14] is
frequently used for handling guessing effects in multiple-choice items [6]. However, this
model has been criticized because of implausible assumptions because it does not correctly
reflect the process of random guessing [15,16]. An alternative, more plausible item response
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model has been proposed that circumvents the drawbacks of the three-parameter logistic
model. The four-parameter guessing model [15,17] can also potentially model the guessing
process adequately. However, neither a simulation study nor an empirical application
exists that compares the four-parameter guessing model with competitive item response
models. This article fills the gaps in the literature.

The rest of the article is structured as follows. An overview of different item response
models for handling guessing effects is given in Section 2. In Section 3, the statistical
properties of the four-parameter guessing model are assessed in a simulation study. The
four-parameter guessing model is compared with alternative item response models for
handling guessing effects in an educational large-scale assessment study application in
Section 4. Finally, the paper closes with a discussion in Section 5.

2. Item Response Models

In this section, we present an overview of different item response models that are used
for analyzing educational testing data to obtain a unidimensional summary score [18]. In
the rest of the article, we restrict ourselves to the treatment of dichotomous items.

Let X = (X1, . . . , XI) be the vector of I dichotomous random variables Xi ∈ {0, 1}
(also referred to as items). A unidimensional item response model [1,18] is a statistical
model for the probability distribution P(X = x) for x = (x1, . . . , xI) ∈ {0, 1}I , where

P(X = x; γ) =
∫ ∞

−∞

I

∏
i=1

[
Pi(θ; γi)

xi (1− Pi(θ; γi))
1−xi

]
φ(θ)dθ , (1)

where φ is the density of the standard normal distribution. The vector γ = (γ1, . . . , γI)
contains all estimated item parameters of item response functions Pi(θ; γi) = P(Xi = 1|θ).

In Equation (1), the latent variable θ can be interpreted as a unidimensional summary
of the test items X. The distribution of θ is modeled as a standard normal distribution
with density function φ, although this assumption can be weakened [19–22]. The item
response functions (IRF) Pi(θ; γi) model the relationship of the dichotomous item with
the latent ability θ. Moreover, the multivariate dependency in X is entirely captured by
the unidimensional variable θ. This means that in (1), item responses Xi are conditionally
independent on θ; that is, after controlling the latent ability θ, pairs of items Xi and Xj
are conditionally uncorrelated. This property is also known as the local dependence
assumption that can be statistically tested [18,23].

The item parameters γi of the item response functions in Equation (1) can be esti-
mated by (marginal) maximum likelihood (ML) using an expectation-maximization al-
gorithm [24–26]. The corresponding likelihood function to the multivariate distribution
defined in (1) can also be applied to test designs, where each test taker only receives a
subset of items [27,28]. In this case, non-administered items are skipped in the computation
of the likelihood function.

In the remainder of this section, different item response models (i.e., specifications of
the item response functions Pi) are discussed that can handle guessing effects in testing data.

2.1. Two-Parameter Model (2PL)

The two-parameter logistic (2PL) model [29] parametrizes the item response function
Pi(θ) as a function of item discrimination ai and item intercept bi:

Pi(θ) = Ψ(aiθ − bi) , (2)

where Ψ(x) = [1 + exp(−x)]−1 denotes the logistic link function. The Rasch model can
be considered a special case of the 2PL model (2) (see [30,31]) that constrains all item
discriminations ai to be equal to a common discrimination parameter a. The 2PL model
does not handle guessing effects, and its item response function has a lower asymptote of 0
and an upper asymptote of 1.
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2.2. Three-Parameter Model (3PL)

The three-parameter logistic (3PL) model [14] introduces an additional pseudo-guessing
parameter ci in the 2PL model that models a lower asymptote different from 0:

Pi(θ) = ci + (1− ci)Ψ(aiθ − bi) . (3)

Guessing effects are intended to be captured by the pseudo-guessing parameter ci. In
particular, the 3PL model is used for multiple-choice items in educational and psychological
assessment data. Large sample sizes or (weakly) informative prior distributions are required
for stable estimation of the 3PL model [18,32]. Variants of the 3PL model (3) that constrain
parameters have also been proposed to address estimation issues [33–35]. Some researchers
question the identifiability of the 3PL model [36,37], while others argue that the 3PL model
can be identified by relying on a normal distribution assumption of the latent trait θ [3].

2.3. Four-Parameter Model (4PL)

In educational and psychological testing data, it might be possible that incorrect item
responses would result, even if the test taker had sufficient ability to solve the item correctly.
Such a situation can be described by the occurrence of slipping effects. The four-parameter
logistic (4PL) item response model [38] is a generalization of the 3PL model that also
includes an additional parameter di that accommodates slipping effects. The item response
function is given by

Pi(θ) = ci + (1− ci − di)Ψ(aiθ − bi) . (4)

Contrary to the 1PL, 2PL, or 3PL model, the 4PL model is not yet widely applied in
the operational practice of educational studies. However, there are case studies in which
the 4PL model is applied to educational testing data [39–41].

Like the 3PL, the 4PL model also might suffer from empirical nonidentifiability [38,42–44].
This is why prior distributions for guessing (3PL and 4PL) and slipping (4PL) parameters
prove helpful for stabilizing model estimation. Alternatively, regularized estimation using
a ridge-type penalty function for all pairwise differences of pseudo-guessing and slipping
parameters can ensure feasible model estimation [45].

2.4. Four-Parameter Guessing Model (4PGL)

It has been pointed out that the 3PL model is not a plausible statistical model for
handling guessing effects in testing data. The reason is that it presupposes that all test
takers who guess the item get the item correct with a probability of one [15–17]. This
implausible observation motivated Aitkin and Aitkin [15] to propose the four-parameter
guessing (4PGL) model:

Pi(θ) = giπi + (1− gi)Ψ(aiθ − bi) . (5)

The item parameter gi is the probability of guessers; that is, the proportion of test takers
that guess item i. The parameter πi quantifies the probability of a correct guess of item i of
test takers that are in the class of guessers for this item. Hence, the total probability giπi
is the marginal probability of test takers that have a correct item response by a random
guess. It is advised to fix the guessing probability πi to a plausible fixed value [15]. For
a multiple-choice item with Ki response alternatives, it is plausible to fix the guessing
probability πi to 1/Ki.

The 4PGL model defined in Equation (5) is motivated by a sequential process of
responding to the item. In the first stage, students decide whether they try to solve the
item (with probability 1− gi) or whether they guess the item (with probability gi. In the
second stage, students that guess the item receive a correct item response with probability
πi (i.e., by random guessing). Students that try to solve the item get the item correct with
probability Ψ(aiθ − bi). The multiplication in both terms of the righthand side in (5) reflect
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the sequential psychological process. The item response probability Pi(θ) of getting the
item correct results as the total probability.

2.5. Reparametrized Four-Parameter Model (R4PL)

Obviously, the 4PL and the 4PGL models include four-item parameters. Interestingly,
one can define a reparametrized four-parameter logistic (R4PL) model that reparametrizes
the 4PL model (4) into a parameterization of the 4PGL model (5). The only difference is that
guessing probabilities πi are estimated from the data. The reparametrized item parameters
are given by

gi = ci + di and πi =
ci

ci + di
. (6)

In applications (in particular with smaller sample sizes), it might be advantageous to
estimate the 4PL instead of the R4PL model. The computation of πi in (6) might be unstable
if both pseudo-guessing ci and slipping di parameters are close to zero.

Note that the parameters gi and πi in (6) correspond to the same parameters in the
4PGL model (see (5)). However, the crucial difference is that πi is typically fixed to 1/Ki in
the 4PGL model, while it is estimated in the R4PL model.

2.6. Three-Parameter Model with Residual Heterogeneity (3PLRH)

As an alternative to the 2PL model, item response functions with skew link functions
have been proposed [41,46–49]. The three-parameter model with residual heterogeneity
(3PLRH) extends to the 2PL model by including an asymmetry parameter δi [50,51] in the
item response function:

Pi(θ) =
1

1 + exp
(
−
√

1 + exp(−δiθ)(aiθ − bi)
) . (7)

The 3PLRH model has been successfully applied to LSA data and often resulted in
superior model fit compared to the 2PL or 3PL model [41,52,53]. Importantly, it has been
argued that the 3PLRH model would also be able to handle guessing effects [54,55].

2.7. Summary

As pointed out by an anonymous reviewer, it should be emphasized that (pseudo-)
guessing parameters in the 3PL, 4PL, or 4PGL model are not an actual empirical quantifica-
tion of guessing. The item parameters can only be interpreted as quantities obtained by
fitting a (misspecified) parametric item response model to the dataset of item responses.

This anonymous reviewer suggests that one can interpret the 4PGL model as quantify-
ing the proportion of respondents that engage in a guessing process, while the 3PL or 4PL
model quantifies the probability of a correct response by guessing. The 3PL and the 4PGL
models differ in that respondents choose to either guess or problem solve at the outset.
According to the 3PL model, students first try to solve the item and only resort to guessing
if they fail to solve the item. In contrast, according to the 4PGL model, students decide at
the onset whether they try to solve or they guess the item [15]. Hence, the meaning of the
item parameters in the 3PL and 4PGL models is quite different.

Overall, we think that the criteria of psychological plausibility or usefulness may
sometimes, if not frequently, outweigh considerations of model fit. The criterion of use-
fulness might be particularly relevant if differences between the alternative item response
models in terms of model fit can be considered small.

3. Simulation Study

In this simulation study, we investigate the performance of the 4PGL model. Item
response data are simulated by the 4PGL model. We compare the estimated item parameters
of the 4PGL model with alternative item response models described in Section 2 and
contrast the results in terms of parameter recovery and item fit.
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3.1. Method

The simulated datasets consisted of 30 items. The first 15 items C1 to C15 were
constructed response items. The data-generating model for the constructed response items
was the 2PL model because no guessing effects could be expected for this item format. The
remaining 15 items M1 to M15 were multiple-choice items that were simulated according
to the 4PGL model. The guessing probability πi was assumed constant with a fixed value
of 0.25. This situation corresponds to a multiple-choice test with four item alternatives.
The data-generating item parameters are presented in Table 1. The item parameters were
chosen to mimic parameter values obtained in the empirical example in Section 4.

Table 1. Simulation study: data-generating item parameters in the 4PGL model.

Item ai bi gi

C01 1.3 −2.1 —
C02 2.3 −1.7 —
C03 1.3 −1.2 —
C04 1.7 −0.9 —
C05 2.0 −0.8 —
C06 2.1 −0.7 —
C07 1.9 −0.5 —
C08 1.3 −0.3 —
C09 0.9 −0.2 —
C10 1.7 −0.1 —
C11 1.4 0.1 —
C12 1.7 0.3 —
C13 1.1 0.6 —
C14 1.1 0.7 —
C15 1.6 0.9 —
M01 1.0 −0.6 0.20
M02 2.1 −1.6 0.10
M03 2.1 −3.0 0.20
M04 1.5 −2.0 0.15
M05 2.1 −1.0 0.20
M06 1.3 0.2 0.30
M07 0.9 −0.4 0.05
M08 1.3 −0.7 0.10
M09 1.3 −0.7 0.20
M10 1.2 −0.6 0.05
M11 1.4 −0.4 0.10
M12 1.3 −0.4 0.30
M13 1.5 −2.1 0.15
M14 1.3 −0.2 0.30
M15 1.4 0.2 0.20

Note. ai = item discrimination; bi = item intercept; gi = probability of guessers. The items C01 to C15 are CR items
and follow the 2PL model. The items M01 to M15 are MC items, follow the 4PGL model, and have a constant
guessing probability πi of 0.25.

We varied the sample sizes of the item response datasets as N = 1000, 2000, 5000, and
10,000 to reflect different but typical situations in educational test data applications. We did
not consider smaller sample sizes because a less stable estimation would be expected. In
this case, we refrained in this simulation study from applying Bayesian or regularization
methods in low sample size situations.

After simulating a dataset according to the 4PGL model, the dataset was analyzed with
the five item response models: 2PL, 3PL, R4PL, 4PGL, and 3PLRH. No prior distributions
for item parameters were utilized for model estimation. For constructed response items,
item response functions of the 2PL were specified. The five more complex item response
models were only utilized for multiple-choice items. Note that the analysis of the item
responses involved all 30 items.
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Parameter recovery was assessed by bias and root mean square error (RMSE). Because
item parameters of all 30 items were of interest, we computed the average absolute bias and
the average RMSE of item parameter groups (i.e., the average absolute bias of gi parameters
of all multiple-choice items).

The model-fit assessment was assessed by the root integrated squared error (RISE)
between the estimated item response function P̂i(θ; γ̂i) and the true item response function
Pi,true(θ) that was used to simulate item responses [56,57]. The estimated item response
function depends on estimated item parameters γ̂i. The functions are evaluated on an
equidistant discrete grid of θ points θ1, . . . , θT . The RISE statistic is given by

RISEi =

√√√√ T

∑
t=1

(
P̂i(θt; γ̂i)− Pi,true(θt)

)2wt , (8)

where wt = Cφ(θt) are the weights of the discretized standard normal distribution [58],
and C is a scaling constant to ensure ∑T

t=1 wt = 1.
In real data, the true item response function Pi,true is typically unknown. Hence, the

adequacy of the functional form of the item response function can be assessed by means of
item fit statistics [59]. The root mean square deviation (RMSD; [60–62]) statistic assesses
the difference between an observed item response function Pi,obs and the model-implied
item response function P̂i(θ; γ̂i):

RMSDi =

√√√√ T

∑
t=1

(
Pi,obs(θt)− P̂i(θt; γ̂i)

)2wt , (9)

where Pi,obs(θ) is reconstructed from individual posterior distributions P(θt|xn; γ̂) and xn
denotes the vector of item responses of person n [61,63].

In practice, a researcher does not know which item response model has generated the
data. Hence, model selection based on information criteria is frequently applied [5,41,64–66].
We assessed the percentage rates of correctly choosing the data-generating 4PGL model
employing the Akaike information criterion (AIC) and the Bayesian information crite-
rion (BIC).

The entire simulation study was carried out in the statistical software R [67]. The item
response models were specified using the xxirt() function in the R package sirt [68]. In
each of the four cells of the simulation (i.e., the four factor levels of the sample size N),
1500 replications were conducted.

3.2. Results

We now present the findings of choosing the correct data-generating 4PGL model
utilizing information criteria AIC and BIC. The model selection based on AIC was satisfac-
tory with accuracy rates 96.8% (N = 1000), 99.7% (N = 2000), and 100.0% (N = 5000 and
N = 10,000). In contrast, model selection based on BIC showed issues in correctly choosing
the 4PGL model for lower sample sizes (4.4% for N = 1000 and 52.8% for N = 2000),
while it had accuracy rates of 100.0% for large sample sizes N = 5000 and N = 10,000. In
situations where the 4PGL model was not selected, the simpler 2PL model was chosen.

The average absolute bias (ABias) and average RMSE of estimated item parameters
in the 4PGL and R4PL models for constructed response and multiple-choice items are
shown in Table 2. Note again that the 2PL model was specified for constructed response
items. The average absolute bias of item discriminations ai and item intercepts bi was quite
satisfactory for constructed response items. However, more interesting findings appeared
for multiple-choice items. ABias turned out to be substantially large with moderate sample
sizes of N = 1000, in particular for item discriminations in the R4PL model. However, for
(very) large sample sizes of N = 10,000, the true 4PGL model and the overparametrized
R4PL model provided unbiased estimates. Note that the ABias and RMSE decreased with
increasing sample sizes.
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Table 2. Simulation study: average absolute bias (ABias) and root mean square error (RMSE) of
estimated item parameters in the 4PGL and R4PL models as a function of sample size N.

Type Parm Model

ABias RMSE

N N

1000 2000 5000 10,000 1000 2000 5000 10,000

CR ai
4PGL 0.011 0.004 0.002 0.001 0.133 0.093 0.059 0.041

CR R4PL 0.016 0.007 0.003 0.001 0.134 0.094 0.059 0.041
CR bi

4PGL 0.006 0.002 0.002 0.001 0.101 0.070 0.045 0.032
CR R4PL 0.005 0.002 0.002 0.001 0.101 0.070 0.045 0.032
MC ai

4PGL 0.069 0.028 0.008 0.004 0.395 0.275 0.173 0.120
MC R4PL 0.262 0.141 0.060 0.027 0.637 0.413 0.249 0.172
MC bi

4PGL 0.050 0.019 0.007 0.004 0.361 0.255 0.161 0.113
MC R4PL 0.062 0.026 0.011 0.004 0.429 0.285 0.175 0.121
MC gi

4PGL 0.017 0.014 0.007 0.004 0.092 0.073 0.049 0.035
MC R4PL 0.034 0.027 0.015 0.011 0.133 0.109 0.079 0.061
MC πi R4PL 0.035 0.028 0.026 0.028 0.245 0.216 0.178 0.151

Note. Type = item type; Parm = item parameter; CR = constructed response item; MC = multiple-choice item.

Critically, the RMSE of estimated guessing probabilities πi was very large in the
4PGL model. Most likely, the issues can be traced back to boundary estimates of the
probability of guessers gi. The situation changes when one assesses bias and RMSE for
pseudo-guessing parameters ci and slipping parameters di in the 4PL model, which can be
accurately estimated in sufficiently large sample sizes.

Overall, the simulation study demonstrated that the 4PGL model could be successfully
applied for typical educational testing data applications. We would also like to emphasize
that the 3PL model practically estimates pseudo-guessing parameters ci as zero and is,
therefore, inadequate in situations in which the 4PGL model is the data-generating model.

We now turn to the assessment of model fit. Because the five different item response
models involved different item parameters, the RISE statistic is an effective summary of the
discrepancy between estimated and true item response functions. The item statistics RISE
and RMSD are shown in Table 3. Overall, RISE was always larger than RMSD. The reason
is that the RMSD statistic replaces the unknown true item response function Pi,true by the
observed item response function Pi,obs. The RISE, as well as the RMSD statistic, decreased
with increasing sample sizes.

Table 3. Simulation study: root integrated square error (RISE) and root mean square deviation
(RMSD) statistics as a function of sample size N.

Model

RISE RMSD

N N

1000 2000 5000 10,000 1000 2000 5000 10,000

Constructed response items
2PL 0.019 0.014 0.009 0.007 0.014 0.010 0.007 0.005
3PL 0.019 0.014 0.009 0.007 0.014 0.010 0.007 0.005
4PGL 0.019 0.013 0.008 0.006 0.014 0.010 0.006 0.004
R4PL 0.019 0.013 0.008 0.006 0.014 0.010 0.006 0.004
3PLRH 0.019 0.013 0.009 0.006 0.014 0.010 0.006 0.004

Multiple-choice items
2PL 0.033 0.029 0.027 0.026 0.022 0.019 0.016 0.014
3PL 0.034 0.030 0.027 0.026 0.022 0.018 0.015 0.014
4PGL 0.024 0.018 0.011 0.008 0.015 0.010 0.006 0.005
R4PL 0.028 0.020 0.013 0.009 0.013 0.009 0.005 0.004
3PLRH 0.029 0.024 0.019 0.017 0.017 0.013 0.010 0.008
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For constructed response items, there was no practical difference in terms of model fit.
This observation seems plausible because the constructed response items were correctly
specified according to the data-generating 2PL model. Hence, the misfit in multiple-choice
items does not impact the fit in constructed response items.

For multiple-choice items, the data-generating 4PGL model fitted best in terms of RISE
and RMSD statistics. The R4PL model includes the true 4PGL model as a special case but
introduces additional variability in terms of RISE due to one additional estimated item
parameter per item. Notably, the misspecified 3PLRH model outperformed the misspecified
2PL and 3PL models for multiple-choice items in terms of RISE and RMSD. Although there
is a clear item misfit regarding the functional form, the RMSD values of the 2PL and the 3PL
model were still relatively small compared to the usually employed cutoff values of 0.05
or 0.08 [61]. Hence, using the 2PL model as the analysis model would not be considered a
significant model deviation in applied research. Therefore, the true data-generating 4PGL
model would not be detected if only the 2PL or 3PL models had been fitted and RMSD
statistics were computed.

To summarize our findings, the adequacy of fitted item response models should
be compared based on the average RMSD value or some other aggregated RMSD value
statistic, and the best-fitting model should be chosen based on the aggregated statistic.

4. Empirical Example: PIRLS 2016 Reading

In this empirical example, we use a dataset from the PIRLS 2016 reading study [6].

4.1. Method

We selected 41 countries with moderate to high performance in the PIRLS reading
study. The chosen countries are listed in Appendix A. A random sample of 1000 students
per country was drawn for each of the 41 countries. In this example, the pooled sample
comprising all 41,000 students was used. We did not focus on country comparisons because
our motivation was to investigate the performance of different item response models
(see [41]). No student weights were used in the analysis models for the pooled item
response dataset.

In total, 141 items were used in the PIRLS 2016 reading study. There were 70 multiple-
choice items and 71 constructed response items. Note that only a small subset of items (e.g.,
20 to 30 items) was administered to each student because of limited testing time. Omitted
and not-reached item responses were scored as incorrect. Some constructed response items
were polytomously scored. These items were dichotomously recoded as correct if the
maximum score of the original polytomous item was attained.

We analyzed the pooled item response dataset with five analysis models: 2PL, 3PL,
4PGL, 4PL, and 3PLRH. We did not include prior distributions for item parameters in the
models because empirical identifiability issues were not expected in the large sample size
of N = 41,000 students. We also computed the resulting reparametrized item parameters of
the R4PL model based on the 4PL model estimation. The item fit was assessed using the
RMSD statistic. In addition, we used the information criteria AIC and BIC as criteria for
model selection. If a parameter was estimated at the boundary of the admissible parameter
space (e.g., a pseudo-guessing parameter was estimated as zero), such a parameter was not
counted as an estimated parameter in the computation of information criteria.

Moreover, we used the Gilula–Haberman penalty (GHP; [69–71]) as a normalized
variant of the AIC statistic that is relatively independent of the sample size and the number
of items. The GHP is defined as GHP = AIC/(2 ∑N

p=1 Ip), where Ip is the number of
estimated model parameters for person p. The GHP can be seen as a normalized variant of
the AIC. A difference in GHP values (i.e., ∆GHP) larger than 0.001 is a notable difference
regarding global model fit [41,71–73].

4.2. Results

We now present the results for the PIRLS 2016 reading dataset.
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Table 4 contains information criteria AIC and BIC and results for the GHP statistic. It
can be seen that the 4PL model (which is statistically equivalent to the R4PL model) had the
best fit in terms of AIC. However, the 3PL model would be preferred in terms of BIC. Note
that model comparisons in terms of differences in the GHP (i.e., ∆GHP) turned out to be
very small or even negligible according to the discussed cutoff values from the literature.

Table 4. PIRLS 2016 reading: Model comparison of different scaling models based on Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC) and Gilula–Haberman penalty (GHP).

Model #pars AIC BIC GHP ∆GHP

2PL 282 1,001,341 1,003,773 0.5229 0.0006
3PL 339 1,000,569 1,003,492 0.5225 0.0001
4PGL 317 1,001,171 1,003,904 0.5228 0.0005
R4PL 407 1,000,287 1,003,796 0.5223 0.0000
3PLRH 352 1,000,780 1,003,815 0.5226 0.0003

Note. #pars = number of estimated parameters; ∆GHP = difference in GHP value with corresponding GHP value
of the best-fitting model. The best-fitting models are printed in bold font.

Average RMSD item fit statistics are displayed in Table 5. The RMSD values were very
similar for constructed response items. For multiple-choice items, the R4PL model had the
best fit, followed by the 3PL and the 3PLRH models. Notably, the 4PGL model fitted worse
in terms of RMSD values. At least, the 4PGL model outperformed the 2PL model based on
average RMSD values.

Table 5. PIRLS 2016 reading: mean (M) and standard deviation (SD) of RMSD item fit statistics in
different scaling models.

Model
CR MC

M SD M SD

2PL 0.015 0.008 0.014 0.007
3PL 0.014 0.008 0.007 0.005
4PGL 0.015 0.009 0.012 0.007
R4PL 0.014 0.008 0.005 0.003
3PLRH 0.014 0.008 0.009 0.005

Note. CR = constructed response item; MC = multiple-choice item.

The item response functions of the 2PL model were utilized for constructed response
items for all five analysis models. It turned out that the correlations of item parameters ai
and bi for the constructed response items were practically equal to 1 (i.e., larger than 0.999).

For multiple-choice items, substantial differences occurred. Out of the 70 multiple-
choice items, 43 items had an estimate of zero of gi in the 4PGL model, 13 items had a zero
estimate of ci in the 3PL model, 8 items had a zero estimate of ci in the 4PL model, and
18 items had a zero estimate of di in the 4PL model. In Figure 1, the probability of guessers
parameters gi are displayed. It can be seen that only three items have larger probabilities
than 0.20.

The guessing and slipping parameters in the 4PL model are presented in Figure 2. It
can be seen that the pseudo-guessing parameters ci scatter around 0.20 and often range
between 0.10 and 0.30, while the slipping parameters di typically do not exceed 0.10.

The correlations and means of estimated item parameters for multiple-choice items are
displayed in Table 6. The correlations between item intercepts bi were high, but significant
deviations between different scaling models were observed for item discriminations ai.
Furthermore, the pseudo-guessing parameters of the 3PL and the 4PL model were highly
correlated. However, the pseudo-guessing parameter ci of the 3PL model correlated only
moderately with the probability of guessers gi from the 4PGL model. Interestingly, the gi
parameters from the 4PGL had high correlations with the slipping parameter di in the 4PL
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model. These findings underline that quantifications about guessing behavior in testing
datasets depend on the chosen item parameter and the item response model.Histogram of dfr1$g_AAPL
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Figure 1. PIRLS 2016 reading: Histogram of proportion of guessers parameters gi in the 4PGL model.
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Figure 2. PIRLS 2016 reading: Histogram of pseudo-guessing parameters ci (left panel) and slipping
parameters di (right panel) in the 4PL model.

In our study, it turned out that the correlation of the ci and di parameters in the 4PL
model was zero. Interestingly, ref. [53] reported moderate positive correlations ranging
between 0.26 and 0.43 in their empirical application that involves mathematics test data
from a standardized state-wise US-American assessment across multiple grades.
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Table 6. PIRLS 2016 reading: Means (diagonal entries) and correlations (non-diagonal entries) of
estimated item parameters of multiple-choice items in different scaling models.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1: ai 2PL 1.32 0.90 0.99 0.78 0.91 −0.69 −0.68 −0.67 −0.61 −0.61 −0.15 −0.03 −0.09 −0.31 −0.29 0.26 −0.43
2: ai 3PL 0.90 1.57 0.88 0.85 0.74 −0.49 −0.41 −0.45 −0.33 −0.38 −0.51 0.29 0.19 −0.39 −0.04 0.43 −0.42
3: ai 3PLRH 0.99 0.88 0.92 0.77 0.94 −0.70 −0.71 −0.69 −0.65 −0.64 −0.07 −0.11 −0.17 −0.26 −0.35 0.18 −0.40
4: ai 4PL 0.78 0.85 0.77 1.92 0.78 −0.38 −0.33 −0.35 −0.33 −0.36 −0.30 0.18 0.22 −0.02 0.20 0.23 0.00
5: ai 4PGL 0.91 0.74 0.94 0.78 1.43 −0.70 −0.74 −0.71 −0.74 −0.72 0.17 −0.25 −0.26 −0.01 −0.33 −0.03 −0.20
6: bi 2PL −0.69 −0.49 −0.70 −0.38 −0.70 −1.00 0.97 1.00 0.94 0.97 −0.27 0.05 0.09 0.33 0.35 −0.05 0.53
7: bi 3PL −0.68 −0.41 −0.71 −0.33 −0.74 0.97 −0.74 0.98 0.98 0.97 −0.42 0.26 0.27 0.21 0.46 0.08 0.45
8: bi 3PLRH −0.67 −0.45 −0.69 −0.35 −0.71 1.00 0.98 −0.68 0.96 0.98 −0.33 0.11 0.14 0.29 0.37 0.00 0.50
9: bi 4PL −0.61 −0.33 −0.65 −0.33 −0.74 0.94 0.98 0.96 −0.89 0.98 −0.54 0.32 0.33 0.10 0.45 0.20 0.34
10: bi 4PGL −0.61 −0.38 −0.64 −0.36 −0.72 0.97 0.97 0.98 0.98 −1.13 −0.44 0.18 0.20 0.17 0.38 0.12 0.40
11: δi 3PLRH −0.15 −0.51 −0.07 −0.30 0.17 −0.27 −0.42 −0.33 −0.54 −0.44 −0.23 −0.76 −0.68 0.38 −0.48 −0.73 0.20
12: ci 3PL −0.03 0.29 −0.11 0.18 −0.25 0.05 0.26 0.11 0.32 0.18 −0.76 0.12 0.92 −0.41 0.68 0.64 −0.23
13: ci 4PL −0.09 0.19 −0.17 0.22 −0.26 0.09 0.27 0.14 0.33 0.20 −0.68 0.92 0.15 −0.21 0.86 0.65 0.00
14: gi 4PGL −0.31 −0.39 −0.26 −0.02 −0.01 0.33 0.21 0.29 0.10 0.17 0.38 −0.41 −0.21 0.03 0.27 −0.50 0.89
15: gi R4PL −0.29 −0.04 −0.35 0.20 −0.33 0.35 0.46 0.37 0.45 0.38 −0.48 0.68 0.86 0.27 0.20 0.37 0.50
16: πi R4PL 0.26 0.43 0.18 0.23 −0.03 −0.05 0.08 0.00 0.20 0.12 −0.73 0.64 0.65 −0.50 0.37 0.72 −0.39
17: di 4PL −0.43 −0.42 −0.40 0.00 −0.20 0.53 0.45 0.50 0.34 0.40 0.20 −0.23 0.00 0.89 0.50 −0.39 0.04

Note. Absolute correlations larger than 0.80 are printed in bold font with gray background color. Absolute
correlations between 0.50 and 0.80 are printed in non-bold font and gray background color.

5. Discussion

In this article, the 4PGL model was compared with alternative item response models
for handling guessing effects in educational testing data. It has been shown through a
simulation study that item parameters of the 4PGL model can be successfully recovered.
It turned out that in model selection, AIC should be preferred over BIC. Moreover, the
findings from the simulation study also demonstrate that the RMSD item fit statistic is
ineffective in detecting model misfit. The much simpler 2PL model would be preferred
over the correctly specified data-generating 4PGL model.

In the empirical example that involves PIRLS 2016 reading data, the 4PL model was
the frontrunner in terms of AIC and RMSD criteria, followed by the 3PL model. The
4PGL model was obviously inferior to the 3PL and 4PL models and only slightly inferior
to the 2PL model. However, we have argued elsewhere that the criterion of statistical
model fit should not be used for selecting a model for operational use in an educational
large-scale assessment study [41,74]. Different choices of item response models imply a
different weighing of items in the unidimensional ability variable θ utilized for official
reporting in the above-mentioned educational studies [75]. In this sense, statistics (or
psychometrics) should not change the quantity of interest [76,77]. The fitted item response
models in empirical applications are typically intentionally misspecified, and consequences
of the misspecification for standard errors of model parameters and reliability of the ability
variable θ have to be considered [74].

In the simulation study and the empirical example, we only considered large sample
sizes. In the case of smaller sample sizes, estimation issues of the 4PGL model will likely
occur. Regularized estimation could prove helpful in avoiding estimating issues [32,45].

An anonymous reviewer was concerned about identification issues in the 4PL model.
She or he argued that when the upper and the lower asymptotes are present, different
combinations of the guessing and the slipping parameters may lead to the same likelihood.
The reviewer was unsure of how the R4PL addresses this issue. As the R4PL model is
equivalent to the 4PL model (assuming ci > 0 and di > 0), identification issues would
apply to both models. Hence, there must be concerns about general identification issues
in the 4PL model. There are several simulation studies that showed that the 4PL model
could be empirically identified in sufficiently large samples [38]. We think that the correct
distributional assumption about θ might be crucial in obtaining empirical identifiability.
Probably, it this difficult to substantially weaken the normal distribution assumption of
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θ in a finite number of items [78]. In our simulation study and the empirical example,
the test consisted of constructed response items and multiple-choice items. As the 2PL
model instead of the 4PL model is applied for constructed response items, we expect that
the ability distribution for θ can primarily be identified based on this item type. This, in
turn, enables the identifiability of the guessing and slipping parameters in the 4PL model
because they could be identified if the ability θ were known for each student.

Furthermore, as suggested by an anonymous reviewer, the 4PGL model could also be
advantageous in applications of linking [79] and differential item functioning [80]. For ex-
ample, investigating differential item functioning in guessing parameters of the 4PGL model
might be an interesting topic in future research (see, for example, [81] for related work).

One might acknowledge that all utilized item response models might be misspecified
to some extent. This observation would lead us to conclude that ability parameters θ
would be biased. This reasoning depends on how a true θ value would be defined. One
could assume that a unidimensional item response model with monotonous item response
functions has generated the data. Under this assumption, one can quantify the bias in
estimated ability parameters (see [41]). However, why should one believe that the more
complex item response model better reflects the truth? We would think the other way
around. A purposely chosen (and useful) item response model defines a scoring rule
θ = f (X) for a particular ability parameter estimate [74]. Hence, the true ability value can
be defined by applying the intentionally misspecified item response model. There are good
reasons to not rely on the best-fitting item response model because this could imply that
(local) scoring rules that do not align with the test blueprint (i.e., the intended weighing of
items in the reported score θ; see [74,75,82]).

Finally, we assumed that guessing effects were modeled to be item-specific but were
assumed to be constant across test takers. This assumption can likely be violated in practice.
In particular, guessing can be related to the ability variable which is modeled in ability-
based guessing models [83,84]. Moreover, guessing (and slipping) effects might also be
a statistical property of test takers. Hence, guessing (and slipping) parameters can be
modeled as person-specific random variables [85–87]. However, the statistical model can
also include random variables for test takers to characterize misfitting test takers [88,89].
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Appendix A. Selected Countries in Empirical Example PIRLS 2016 Reading

The following 41 countries were used in the PIRLS 2016 reading example in Section 4:
ARE (United Arab Emirates), AUS (Australia), AUT (Austria), AZE (Azerbaijan), BFR
(Belgium, French Part), BGR (Bulgaria), CAN (Canada), CZE (Czech Republic), DEU
(Germany), DNK (Denmark), ENG (England), ESP (Spain), FIN (Finland), FRA (France),
GEO (Georgia), HKG (Hong Kong, SAR), HUN (Hungary), IRL (Ireland), IRN (Iran),
ISR (Israel), ITA (Italy), LTU (Lithuania), MAR (Morocco), MLT (Malta), NIR (Northern
Ireland), NLD (Netherlands), NOR (Norway), NZL (New Zealand), OMN (Oman), POL
(Poland), PRT (Portugal), QAT (Qatar), RUS (Russian Federation), SAU (Saudi Arabia),
SGP (Singapore), SVK (Slovak Republic), SVN (Slovenia), SWE (Sweden), TTO (Trinidad
and Tobago), TWN (Chinese Taipei), USA (United States of America).
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