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Abstract: The sparrow search algorithm (SSA) is a metaheuristic algorithm developed based on the
foraging and anti-predatory behavior of sparrow populations. Compared with other metaheuristic
algorithms, SSA also suffers from poor population diversity, has weak global comprehensive search
ability, and easily falls into local optimality. To address the problems whereby the sparrow search
algorithm tends to fall into local optimum and the population diversity decreases in the later stage of
the search, an improved sparrow search algorithm (PGL-SSA) based on piecewise chaotic mapping,
Gaussian difference variation, and linear differential decreasing inertia weight fusion is proposed.
Firstly, we analyze the improvement of six chaotic mappings on the overall performance of the
sparrow search algorithm, and we finally determine the initialization of the population by piecewise
chaotic mapping to increase the initial population richness and improve the initial solution quality.
Secondly, we introduce Gaussian difference variation in the process of individual iterative update and
use Gaussian difference variation to perturb the individuals to generate a diversity of individuals so
that the algorithm can converge quickly and avoid falling into localization. Finally, linear differential
decreasing inertia weights are introduced globally to adjust the weights so that the algorithm can fully
traverse the solution space with larger weights in the first iteration to avoid falling into local optimum,
and we enhance the local search ability with smaller weights in the later iteration to improve the
search accuracy of the optimal solution. The results show that the proposed algorithm has a faster
convergence speed and higher search accuracy than the comparison algorithm, the global search
capability is significantly enhanced, and it is easier to jump out of the local optimum. The improved
algorithm is also applied to the Heating, Ventilation and Air Conditioning (HVAC) system control
optimization direction, and the improved algorithm is used to optimize the parameters of the HVAC
system Proportion Integral Differential (PID) controller. The results show that the PID controller
optimized by the improved algorithm has higher control accuracy and system stability, which verifies
the feasibility of the improved algorithm in practical engineering applications.

Keywords: sparrow search algorithm; HVAC; PID controller; parameter optimization

1. Introduction

Sparrow search algorithm (SSA) [1] is an emerging metaheuristic algorithm, first pro-
posed in 2020, which belongs to the swarm intelligence algorithm based on the optimization
of group socialization features. The algorithm is simple in structure, easy to implement and
has the advantages of strong merit-seeking ability and fast convergence speed. However,
the sparrow search algorithm, as with other swarm intelligence optimization algorithms,
suffers from weak global comprehensive search ability, has reduced population diversity in
the late stage of the search, and easily falls into local optimality and other defects.

The sparrow search algorithm itself possesses certain superiority, and to improve
it with the same defects as other metaheuristics, many scholars have proposed a large
number of improvement strategies to address the defects of the sparrow search algorithm.
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Reference [2] presents a literature based on the logarithmic spiral strategy and strategy
of adaptive step chaotic sparrow search algorithm (CLSSA). The global search capabil-
ity of the sparrow search algorithm is improved by the logarithmic spiral strategy and
adaptive stepping strategy, and good results are achieved in structural engineering design
problems. Reference [3] proposed an improved sparrow search algorithm based on sine
cosine and firefly perturbation (SFSSA). The improved precision of algorithm convergence
and optimization can solve the problem of the emergency supplies distribution center
layout. Reference [4] proposed an improved sparrow search algorithm based on gold
sine curve and adaptive strategies (GCSSA) through fusion, which increased the sparrow
search algorithm convergence speed and global search ability. Reference [5] improves the
ability of the sparrow search algorithm to jump out of local optima by mutation and greedy
strategies (MSSA).

Numerous scholars in the above literature have made many improvements to the
original sparrow search algorithm from different perspectives. The main improvement
strategies can be summarized as four points: (1) improvement of the population initializa-
tion method of the sparrow search algorithm, which focuses on population initialization by
replacing pseudo-random numbers with various chaotic mappings; (2) strategic position
updating for individuals, such as individual position updating by sine cosine optimization,
adaptive t-distribution, adaptive step size, etc. to improve the ability of the algorithm to
jump out of the local optimum; (3) balancing the global search ability of the algorithm by
weight adjustment; and (4) multi-algorithm integration improvement, such as combining
the advantages of two algorithms for improvement.

The improvement strategies for the sparrow search algorithm are numerous but still
in the exploration stage. In order to fully improve the convergence accuracy and merit-
seeking performance of the sparrow search algorithm, based on the previous work, in this
paper, an improved sparrow search algorithm PGL-SSA is proposed. The main work is
as follows: (1) First, we analyze the influence of the population initialization method on
the advantages and disadvantages of the initial solution and the convergence speed of the
algorithm, consider the improvement of the performance of the algorithm by initializing
the population with various chaotic mappings, and propose the population initialization
of the sparrow search algorithm by the piecewise mapping instead of pseudo-random
numbers to improve the population diversity of the algorithm. (2) Second, we address
the problem of convergence of the algorithm into a local optimum, and we propose a
Gaussian difference variation [6] strategy to update the individual positions and improve
the ability of the algorithm to jump out of the local optimum through the optimal individual
perturbation. (3) Third, we consider the balance between the early and late iterations of
the algorithm to ensure that the global and local search capabilities of the algorithm are
balanced. The proposed linear differential decreasing inertia weight [7] strategy enhances
the global search ability of the algorithm in the early iteration, fully traverses the solution
space to avoid the local optimum, and accurately searches for the optimal solution in the
late iteration to improve the convergence accuracy of the algorithm. The optimization
results for the CEC test function show that the improved algorithm in this paper has
significant improvement in convergence accuracy, convergence speed and global search
ability compared with the comparison algorithm, with obvious advantages. The simulation
results of the PID controller for the HVAC system show that the PID controller optimized
by this algorithm has high accuracy, fast response speed and strong robustness, which
proves the effectiveness of this algorithm.

The Heating, Ventilation and Air Conditioning (HVAC) system has time-varying, time-
lagging, strong coupling, non-linear and other characteristics, resulting in the application
of traditional PID control methods in both engineering practice and theory being unable
to achieve a good control effect, which leads to long-term inefficient operation of the
HVAC system, as energy consumption is generally high [8,9]. At present, the parameter
adjustment of the HVAC system PID controller is often carried out by empirical rules
and trial and error. In order to make the system reach the preset temperature quickly,
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designers are used to setting higher parameters, which leads to unstable system operation
and repeated changes of room temperature. The parameter adjustment of the HVAC system
PID controller by an optimization algorithm [10,11] can greatly reduce the response time
of the HVAC system, improve the control accuracy and loop control performance of the
HVAC system and achieve the purpose of energy saving [12,13].

At present, the advanced control strategies and theoretical research of HVAC systems
have been relatively mature, and various optimization algorithms have emerged [14].
Reference [15] proposed a method based on neural network optimization to optimize the
PID controller of HVAC systems. Reference [16] proposed a PID parameter optimization
method based on a Flower Pollination Algorithm (FPA) to obtain higher system control
accuracy. Reference [17] proposed a Self-aggregating Moth Flame Optimization (SMFO)
to optimize the PID parameters and introduced the light intensity attraction feature of
the firefly algorithm into the conventional Moth Flame Optimization (MFO) to improve
the optimization performance of the algorithm. Reference [18] proposed a new SOA-SSA
hybrid algorithm based on the Seeker Optimization Algorithm (SOA) and the Salp Swarm
Algorithm (SSA), which achieved better results in the optimization of PID parameters. In
this paper, the improved sparrow search algorithm PGL-SSA is applied to the direction of
HVAC system control optimization, which fully improves the system control accuracy and
robustness.

The rest of this article is organized as follows: Section 2 introduces the principle and
structure of SSA. Section 3 introduces the improvement strategy of PGL-SSA. Section 4
presents the overall structure and the flow chart of PGL-SSA. Sections 5 and 6 introduce the
experimental results and analysis based on benchmark functions and engineering problems.
Section 7 summarizes the entire text.

2. Sparrow Search Algorithm

The sparrow search algorithm is a swarm intelligence optimization algorithm proposed
based on the foraging and anti-predatory behavior of sparrow groups. The foraging process
is a finder–follower model incorporating a reconnaissance warning mechanism. In the
iterative process, the discoverer position is updated by the following equation:

Xt+1
i,j =

Xt
i,j · exp

(
−i

α · iter max

)
R2 < ST

Xt
i,j + Q · L R2 ≥ ST

(1)

Among them: Xt+1
i,j represents the j-th dimensional position of the i-th individual in

the t-th generation of the population; α denotes a uniformly distributed random number
within (0, 1]; Q denotes a random number obeying normal distribution; L is a 1 × d matrix,
where each element is 1; itermax denotes the maximum number of iterations; R2 and ST
are the warning value and the safety threshold, respectively; ST takes the value 0.6. When
R2 < ST, this means that there is no predator around and the discoverer can conduct a
global search; if R2 ≥ ST, this means that some sparrows have discovered the predator,
and all sparrows have to take relevant actions.

A formula for updating the position of followers in sparrow populations:

Xt+1
i,j =


Q · exp

(
Xt

w − Xt
i,j

i2

)
i >

n
2

Xt+1
b +

∣∣∣Xt
i,j − Xt+1

b

∣∣∣·
A+ · L i ≤ n

2

(2)

where A is a 1 × D dimensional matrix with elements randomly assigned to 1 or −1; Xt
w

denotes the location of the sparrow with the worst fitness value at the t-th iteration of
the population; Xt+1

b denotes the location of the sparrow with the best fitness value at the
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t + 1-th iteration of the population; when i > n
2 , it means that the i-th joiner has a low

fitness value and needs to shift its foraging area to obtain more energy; when i ≤ n
2 , the i-th

joiner has the optimal fitness value and will search for a random location near the current
optimal location to explore foraging.

Overall, 10–20% of individuals in the population act as scouts (SD), and its position
update formula is as follows:

Xt+1
i,j =


Xt

b + β ·
∣∣∣Xt

i,j − Xt
b

∣∣∣ fi > fg

Xt
i,j + K ·


∣∣∣Xt

i,j − Xt
w

∣∣∣
( fi − fw) + ε

 fi = fg
(3)

in which Xb is the current global optimal position; β is a standard normally distributed
random number with mean 0 and variance 1; K is a uniformly distributed random number
in the interval [−1, 1]. fi represents the current individual fitness value, fg represents the
current global optimal fitness value, fw represents the current global worst fitness value,
and ε is the minimum constant to avoid the denominator being zero.

The analysis of the iterative process of the sparrow search algorithm reveals that the
performance of the sparrow search algorithm is related to the quality of individuals in the
initialized population and the location of individual updates. The initial population is
randomized, which is likely to lead to low quality of the initial individuals and affect the
performance of the algorithm. At the same time, the single way of updating the position
of individuals in the population is easy to fall into the local optimum, which leads to the
stagnation of the search.

3. Sparrow Search Algorithm Enhancement Strategy

In response to the above analysis, this paper adopts three strategies to improve the
sparrow search algorithm. The strategies are as follows:

(1) Improving the population initialization by piecewise mapping to increase the
population diversity, improve the initial solution quality, and enhance the convergence
speed of the algorithm.

(2) Introducing the Gaussian difference variation into the individual position updating
process, and perturbing the individual by Gaussian difference to improve the ability of the
algorithm to jump out of the local optimum.

(3) Coordinating the global and local search ability of the algorithm by linear differ-
ential decreasing inertia weights. The algorithm is able to coordinate the global and local
search capabilities by linear differential decreasing inertia weights to ensure the global
search while accurately locking the optimal solution.

3.1. Piecewise Chaos Mapping

The current optimization algorithm often uses pseudo-random numbers for popula-
tion initialization [19], and in most cases, using chaotic mappings instead of pseudo-random
numbers in the population initialization process can achieve better results [20]. Piecewise
chaotic mappings are typical representatives of chaotic mappings, which are ergodic and
random, and their mathematical expressions are as follows:

Xk+1 =



Xk
P

, 0 ≤ Xk < P
Xk − P
0.5− P

, P ≤ Xk < 0.5
1− P− Xk

0.5− P
, 0.5 ≤ Xk < 1− P

1− Xk
P

, 1− P ≤ Xk < 1

(4)
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Among them, P is the control parameter, and the values of P and X are in the range of (0, 1).
This paper firstly analyzes some chaotic maps (logistic map, tent map, chebyshev

map, piecewise map, iterative map, intermittency) commonly used in the field of swarm
intelligence. The iterative distribution of six chaotic maps is shown in Figure 1.

(a) (b)

(c) (d)

(e) (f)

Figure 1. The distribution of 1000 iterations of six chaotic mappings, (a) logistic mapping, (b) tent
mapping, (c) iterative mapping, (d) intermittency mapping, (e) chebyshev mapping, and (f) piecewise
mapping.

Secondly, the SSA algorithm is improved by six chaotic mappings for population
initialization, and the improved algorithm is simulated and tested on some test functions
with a population size of 50, dimension of 30, and the maximum number of iterations of
1000; the test results are shown in Figure 2.
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(a)

(b)

Figure 2. Iteration curves of 6 chaotic mapping improved SSA algorithms for different types of test
functions, (a) for high-dimensional single-peaked function, (b) for high-dimensional multi-peaked
function.

From Figure 1, it can be seen that the piecewise chaos mapping has both ergodic
and non-repeatable spatial distribution compared to the other five chaos mappings. From
Figure 2, it can be seen that the SSA algorithm initialized by piecewise chaotic mapping has
good performance in both test functions compared with other chaotic mapping initialized
by the SSA algorithm. In a comprehensive analysis, the SSA algorithm with piecewise
chaos mapping is used to improve the population initialization.

3.2. Gaussian Differential Variance

The application of traditional differential variation strategy can improve the conver-
gence speed of the algorithm but also increase the possibility of the algorithm falling into
the local optimum, while Gaussian differential variation can generate a larger perturbation
in the vicinity of the current variant individual, making the algorithm more likely to jump
out of the local optimum [21].

The position of individual sparrows is updated by applying the Gaussian difference
variation strategy, the Gaussian difference between the position of the current optimal
sparrow, the position of the current individual sparrow and the random individual in the
sparrow population to generate a larger perturbation near the current variant individual
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to avoid the algorithm to fall into the local optimum, and the mathematical expression of
Gaussian difference variation is as follows:

X(t + 1) = p1 · f1 · (X∗ − X(t))+

p2 · f2 · (Xrand − X(t)) (5)

where p1 and p2 are the weight coefficients; f1 and f2 are the Gaussian distribution function
coefficients that generate a Gaussian distribution random number function with mean 0
and variance 1; X∗ is the current optimal individual position; Xrand is the position vector
of random sparrow individuals; and X(t) is the current sparrow individual position.

The individual perturbation of each sparrow by differential variables and Gaussian
distribution function coefficients increases the individual diversity of the sparrow popula-
tion, which ensures the convergence speed of the algorithm while avoiding the algorithm
to fall into local optimum.

3.3. Linear Differential Decreasing Inertia Weights

A larger inertia weight has a good effect on the global search ability of the algorithm,
while a smaller inertia weight is more beneficial to improve the local search ability of
the algorithm [22,23]. In order to better balance the global and local search ability of the
algorithm, a larger inertia weight is introduced in the early stage of the search to enhance
the global search ability and fully traverse the solution space to avoid falling into the local
optimum. In the later stage of the search, the local search capability is enhanced to improve
the precision search capability. A typical Linear Decreasing Inertia Weight (LDIW) strategy
is formulated as follows:

w = wmax − (wmax − wmin ) ·
t
k

(6)

Among them, t is the number of current iterations; K is the total number of iterations; wmax
takes the value 0.9; and wmin takes the value 0.4.

The disadvantage of linear decreasing inertia weights is that the slope is constant,
which leads to premature local convergence of the algorithm, and if the initial iteration of
the population is poorly positioned and the number of iterations keeps accumulating, it
is very likely that the algorithm will fall into a local optimum at the end of the iteration.
Therefore, a linear differential decreasing inertia weight is introduced in this paper, and the
formula is as follows: 

dw
dt

=
2 · (wmax − wmin )

k2 · t∫ wmax

w(t)
dw =

2 · (wmax − wmin )

k2

∫ t

0
τdτ

w = wmax −
wmax − wmin

k2 · t2

(7)

The inertia weight of this strategy is a quadratic function of time. At the beginning
of the iteration, w changes slowly, which helps the algorithm to fully traverse the solution
space at the beginning of the iteration and find the solution with better fitness. In the later
iterations, w changes rapidly, and the algorithm can converge quickly after finding the
optimal solution and lock the optimal solution precisely to improve the operation efficiency.

4. Improved Sparrow Search Algorithm

The original sparrow search algorithm will converge to the origin and the optimal
value point; when the origin and the current optimal value point overlap, the algorithm
performance is excellent, whereas when the optimal value point and the origin do not
overlap, the sparrow population will wander between the two points, resulting in a signifi-
cant decline in the performance of the algorithm. Therefore, the original sparrow search
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algorithm is eliminated to converge to the origin, while the jump search method is changed
to move to the optimal value point.

The simplified formula for modifying discoverer location updates is as follows:

Xt+1
i,j =

{
Xt

i,j · (1 + Q) R2 < ST

Xt
i,j + Q R2 ≥ ST

(8)

The discoverer position update formula with linear differential decreasing inertia
weights is introduced as:

Xt+1
i,j =

{
w · Xt

i,j · (1 + Q) R2 < ST

w · Xt
i,j + Q R2 ≥ ST

(9)

The original follower position update formula is modified by randomly assigning the
sum of the difference between the location of the optimal sparrow and the optimal location
in the full dimension to the original follower position update formula as follows:

Xt+1
i,j =


Q · exp

(
Xt

worst − Xt
i,j

i2

)
i >

n
2

Xt+1
P + 1

D ∑D
j=1(rand{−1, 1}.(∣∣∣Xt+1

P − Xt
i,j

∣∣∣)) i ≤ n
2

(10)

The PGL-SSA algorithm increases the sparrow population diversity by introducing
piecewise chaotic mapping, Gaussian difference variation and linear differential decreasing
inertia weight strategy to enhance the ability of the algorithm to jump out of the local
optimum, while balancing the global search and local search ability of the algorithm, and
its specific implementation steps are as follows:

Step 1: The parameters are set; each parameter includes population size N, number
of discoverers M, number of followers (N −M), number of sparrows for reconnaissance
warning (0.1− 0.2)N, dimension of the objective function Dim, upper and lower bounds
lb, ub of initial values, and maximum number of iterations itermax;

Step 2: Apply the piecewise chaotic sequence in Equation (4) to initialize the popula-
tion and generate N D-dimensional vectors;

Step 3: Calculate the fitness value fi of all individuals in the population, record the
current best individual fitness value fg and the corresponding position Xb, and record the
current worst individual fitness value fw and the corresponding position Xw;

Step 4: Update the discoverer and follower positions by Equations (9) and (10);
Step 5: Therandomly selected 10%–20% individuals in the species sparrow flock are

used as scouts, and the scout positions are updated by Equation (3);
Step 6: During the iteration of the algorithm, the diversity of individuals is generated

by perturbation of the difference variables to make the algorithm converge quickly. After
one complete iteration, the fitness value fi and the population average fitness value favg
are recalculated for each individual of the population, and when fi < favg, the Gaussian
difference variation is performed according to Equation (5), and the pre-variation individual
is replaced by the post-variation individual if it is better than the pre-variation individual;

Step 7: Update the historical optimal position Xb and the corresponding fitness value
fg of the sparrow population, and the worst position Xw and the corresponding fitness
value fw of the population;

Step 8: Determine whether the number of iterations of the algorithm reaches the
maximum or the accuracy of the solution reaches the requirement, the loop ends if the
requirement is reached; otherwise, return to Step 4.

The flow chart of PGL-SSA is shown in Figure 3.
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Figure 3. Flow chart of PGL-SSA.

5. Simulation Experiments and Results Analysis
5.1. CEC Test Functions

In order to verify the feasibility of the algorithm in this paper, simulation tests are con-
ducted by CEC benchmark functions. The CEC test functions [24,25] are shown in Table 1:
F1–F5 are continuous single-peaked functions, which are used to test the convergence
speed and accuracy of the algorithm, and F6–F11 are complex non-linear multi-peaked
functions, which are used to test the global search ability and the ability to jump out of the
local optimum. F12–F21 are fixed dimensional multi-peak test functions.
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Table 1. Test Functions.

Type Title Function Interval Dimension Min

Sphere F1(x) = ∑n
i=1 x2

i [−100, 100] 30/100 0
Schwefel 2.22 F2(x) = ∑n

i=1|xi|+ ∏n
i=1|xi| [−10, 10] 30/100 0

Single peak Quadric F3(x) = ∑n
i=1

(
∑i

j=1 χj

)2
[−100, 100] 30/100 0

Schwefel 2.21 F4 = maxi{|xi|, 1 6 i 6 n} [−100, 100] 30/100 0
Step F5(x) = ∑n

i=1([xi + 0.5])2 [−100, 100] 30/100 0

Schwefel 2.26 F6(x) = ∑n
i=1−

(
xi sin

(√
|xi|
))

[−500, 500] 30/100 −418.9829d

Rastrigin F7(x) = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12] 30/100 0

Ackley F8(x) = −20 exp

−0.2

√√√√ 1
D

D

∑
i=1

x2
i


− exp

(
1
D

D

∑
i=1

cos(2πxi)

)
+ 20 + e

[−32, 32] 30/100 0

Griewank F9(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 [−600, 600] 30/100 0

Multi-peak Penalized

F10(x) =
π

D
{10 sin2(πyi) +

D−1

∑
i−1

(yi − 1)2

[
1 + 10 sin2(πyi+1)

]
+ (yD − 1)

+
D

∑
i−1

u(xi, 10, 100, 4)yi = 1 +
xi + 1

4

u(xi, a, k, m) = {
k(xi − a)mxi > a
0− a < xi < a
k(−xi − a)mxi < a

[−50, 50] 30/100 0

Penalized2
F11(x) = 0.1{sin2(3πxi) +

D

∑
i=1

(xi − 1)2

[
1 + sin2(3πxi)

]
+ (xD − 1)2

[1 + sin2(2πxD)]}+
D

∑
i−1

u(xi, 5, 100, 4)

[−50, 50] 30/100 0

Foxholes
F12(x) =

(
1

500 +
25

∑
j=1

1

j + ∑2
i=1
(

xi − aij
)6

)−1
[−65.5360, 65.5360] 2 0.998004

Kowalik
F13(x) = ∑11

i=1

(
ai −

x1
(
b2

i + bix2
)

b2
i + bix3 + x4

)−1
[−5, 5] 4 0.0003075

Six Hump
Camel Back F14(x) = 4x2

1 − 2.1x4
1 + 1/3x6

1 + x1x2 − 4x2
2 + x4

2 [−5, 5] 2 −1.03163

Branin F15(x) =
(

x2 −
5.1
4π2 x2

1 +
5
π

x1 − 6
)2

+

10
(

1− 1
8π

)
cos x1 + 10

[−5, 5] 2 0.398

Fixed
dimensional
multi-peak

Goldstein
Price

F16(x) = [1 + (x1 + x2 + 1)2(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)
]

× [30 + (2x1 − 3x2)
2

×
(

18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)
]

[−5, 5] 2 3

Hartman 3 F17(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij
(

xj − pij
)2
)

[0, 1] 3 −3.86

Hartman 6 F18(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij
(

xj − pij
)2
)

[0, 1] 6 −3.32

Langermann
5 F19(x) = −∑5

i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0, 10] 4 −10.1532

Langermann
7 F20(x) = −∑7

i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0, 10] 4 −10.4029

Langermann
10 F21(x) = −∑10

i=1

[
(X− ai)(X− ai)

T + ci

]−1
[0, 10] 4 −10.5364
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5.2. Experimental Anvironment and Parameter Settings

The experimental platform is a PC with Win11 operating system, Intel(R) Core(TM)
i7-8750H CPU@ 2.20 GHz, 8 GB RAM, PyCharm 2021.2.3 platform to simulate the algorithm
in this paper.

The improved sparrow search algorithm (PGL-SSA) is compared with the original
sparrow search algorithm (SSA), the particle swarm algorithm [26,27] (PSO), and the
gray wolf optimization algorithm [28] (GWO). The population size N = 50, dimension
Dim = 30/100, and the maximum number of iterations is 500. The parameters of each
algorithm are set as Table 2.

Table 2. Each algorithm parameter setting.

Algorithm Parameters

PSO W1 = 0.9; C1, C2 = 2; Vmin = −5, Vmax = 5
GWO α decreases linearly from 2 to 0; r1, r2 ∈ [0, 1]
SSA M = 0.7N; ST = 0.6; SD = 0.2N
PGL-SSA M = 0.7N; ST = 0.6; SD = 0.2N

Due to the randomness of the algorithms, the four algorithms were run 30 times
independently by the CEC benchmarking function to eliminate the chance error, and the
experimental results of each algorithm are shown in Table 3 with the optimal values of each
index bolded.

Table 3. Results and comparison of different algorithms for 21 benchmark functions.

Function Algorithm
Dim = 30 Dim = 100

Mean Std Best Mean Std Best

PSO 1.88 × 100 4.27 × 10−1 1.28 × 100 1.10 × 102 6.59 × 100 1.02 × 102

F1
GWO 2.35 × 10−33 2.53 × 10−33 4.46× 10−34 3.05 × 10−15 6.03 × 10−16 2.36 × 10−15

SSA 1.45 × 10−55 2.91 × 10−55 0.0 4.57 × 10−82 6.46 × 10−82 0.0
PGL-SSA 1.72× 10−222 0.0 0.0 2.75× 10−203 0.0 0.0

PSO 5.65 × 100 9.29 × 10−1 4.64 × 100 2.19 × 102 5.75 × 101 1.61 × 102

F2
GWO 6.62 × 10−20 3.65 × 10−20 2.49 × 10−20 1.56 × 10−9 6.59 × 10−10 9.02 × 10−10

SSA 2.90 × 10−44 5.81 × 10−44 0.0 9.61 × 10−31 9.61 × 10−31 5.65 × 10−59

PGL-SSA 4.79× 10−263 0.0 0.0 3.70× 10−294 0.0 0.0

PSO 8.29 × 101 1.43 × 101 6.69 × 101 9.91 × 103 2.53 × 103 7.37 × 103

F3
GWO 2.69 × 10−9 3.59 × 10−9 1.15 × 10−11 1.13 × 102 5.62 × 101 5.71 × 101

SSA 1.07 × 10−88 2.15 × 10−88 0.0 0.0 0.0 0.0
PGL-SSA 0.0 0.0 0.0 0.0 0.0 0.0

PSO 2.06 × 100 1.81 × 10−1 1.82 × 100 1.08 × 101 1.32 × 100 9.48 × 100

F4
GWO 2.86 × 10−8 2.36 × 10−8 7.67 × 10−9 1.03 × 10−1 5.25 × 10−2 5.07 × 10−2

SSA 1.45 × 10−58 2.91 × 10−58 0.0 3.04 × 10−50 3.04 × 10−50 0.0
PGL-SSA 0.0 0.0 0.0 0.0 0.0 0.0

PSO 1.73 × 100 6.97 × 10−1 6.85 × 10−1 8.71 × 101 4.47 × 100 8.27 × 101

F5
GWO 4.54 × 10−1 3.36 × 10−1 6.63 × 10−5 8.57 × 100 5.39 × 10−2 8.51 × 100

SSA 2.40 × 10−7 4.48 × 10−7 5.38 × 10−11 8.27 × 10−8 6.22 × 10−8 2.05 × 10−8

PGL-SSA 2.19× 10−9 2.22× 10−9 5.56× 10−13 4.48× 10−9 4.26× 10−11 4.44× 10−9

PSO 5.50 × 103 3.56 × 102 5.05 × 103 3.18 × 104 3.38 × 103 2.84 × 104

F6
GWO 5.93 × 103 2.95 × 102 5.47 × 103 2.52 × 104 5.93 × 102 2.46 × 104

SSA 2.90 × 103 2.54 × 103 6.64 × 100 1.16 × 102 1.16 × 102 1.96 × 10−1

PGL-SSA 5.04× 10−1 3.92× 10−1 1.50× 10−3 1.27× 100 1.22× 100 4.97× 10−2

PSO 1.43 × 102 1.59 × 101 1.26 × 102 6.76 × 102 4.42 × 100 6.72 × 102

F7
GWO 3.42 × 100 4.21 × 100 1.13 × 10−13 3.90 × 100 3.90 × 100 1.90 × 10−11

SSA 2.47 × 10−224 3.75 × 10−225 0.0 1.95 × 10−211 4.34 × 10−212 0.0
PGL-SSA 0.0 0.0 0.0 0.0 0.0 0.0

PSO 3.05 × 100 3.43 × 10−1 2.55 × 100 7.50 × 100 2.98 × 10−1 7.21 × 100

F8
GWO 4.09 × 10−14 1.74 × 10−15 3.95 × 10−14 1.13 × 10−8 3.76 × 10−9 7.60 × 10−9

SSA 4.44× 10−16 0.0 4.44× 10−16 4.44× 10−16 0.0 4.44× 10−16

PGL-SSA 4.44× 10−16 0.0 4.44× 10−16 4.44× 10−16 0.0 4.44× 10−16
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Table 3. Cont.

Function Algorithm
Dim = 30 Dim = 100

Mean Std Best Mean Std Best

PSO 1.67 × 10−1 2.27 × 10−2 1.24 × 10−1 1.03 × 100 6.45 × 10−3 1.02 × 100

F9
GWO 2.31 × 10−3 4.63 × 10−3 0.0 7.16 × 10−15 1.66 × 10−16 6.99 × 10−15

SSA 5.14 × 10−199 4.32 × 10−200 0.0 4.47 × 10−207 1.25 × 10−208 0.0
PGL-SSA 0.0 0.0 0.0 0.0 0.0 0.0

PSO 3.38 × 100 1.46 × 100 1.68 × 100 1.19 × 101 2.77 × 100 7.80 × 100

F10
GWO 3.29 × 10−2 1.64 × 10−2 2.03 × 10−2 1.85 × 10−1 2.45 × 10−2 1.43 × 10−1

SSA 1.05 × 10−8 1.70 × 10−8 1.09 × 10−9 2.54 × 10−9 3.74 × 10−9 4.10 × 10−10

PGL-SSA 3.83× 10−9 4.40× 10−9 9.87× 10−14 8.05× 10−10 6.94× 10−10 8.41× 10−11

PSO 7.70 × 10−1 3.71 × 10−1 4.43 × 10−1 3.05 × 102 1.25 × 102 2.13 × 102

F11
GWO 3.26 × 10−1 2.92 × 10−1 6.23 × 10−5 5.92 × 100 3.76 × 10−1 5.49 × 100

SSA 6.10 × 10−8 3.95 × 10−8 1.19 × 10−8 1.02 × 10−7 9.70 × 10−8 1.06 × 10−8

PGL-SSA 2.39× 10−8 2.07× 10−8 5.29× 10−10 3.57× 10−8 2.94× 10−8 1.65× 10−9

Dim = 2

PSO 2.48 × 101 4.95 × 10−1 1.99 × 100

F12
GWO 1.99 × 100 9.92 × 10−1 9.98 × 10−1

SSA 7.82 × 100 4.84 × 100 2.98 × 100

PGL-SSA 9.98× 10−1 4.35× 10−12 9.98× 10−1

Dim = 4

PSO 1.27 × 10−3 5.22 × 10−4 7.50 × 10−4

F13
GWO 3.15 × 10−4 1.23× 10−8 3.08 × 10−4

SSA 3.41 × 10−4 2.66 × 10−6 3.38 × 10−4

PGL-SSA 3.07× 10−4 6.55 × 10−6 3.07× 10−4

Dim = 2

PSO −1.03× 100 4.06 × 10−5 −1.03× 100

F14
GWO −1.03× 100 2.45× 10−9 −1.03× 100

SSA −1.03× 100 4.28 × 10−5 −1.03× 100

PGL-SSA −1.03× 100 2.10 × 10−5 −1.03× 100

Dim = 2

PSO 3.97 × 10−1 2.15 × 10−4 3.97 × 10−1

F15
GWO 3.97 × 10−1 4.31× 10−7 3.97 × 10−1

SSA 3.97 × 10−1 2.35 × 10−5 3.97 × 10−1

PGL-SSA 3.97 × 10−1 1.31 × 10−5 3.97 × 10−1

Dim = 2

PSO 3.00 × 100 4.59 × 10−4 3.00 × 100

GWO 3.00 × 100 7.20× 10−6 3.00 × 100

F16 SSA 3.00 × 100 2.50 × 10−3 3.00 × 100

PGL-SSA 3.00 × 100 1.00 × 10−3 3.00 × 100

Dim = 3

PSO −3.85× 100 2.16 × 10−3 −3.86× 100

F17
GWO −3.86× 100 3.24× 10−5 −3.86× 100

SSA −3.85× 100 1.99 × 10−3 −3.86× 100

PGL-SSA −3.86× 100 8.08 × 10−4 −3.86× 100

Dim = 6

PSO −3.02× 100 1.45 × 10−1 −3.20× 100

F18
GWO −3.29× 100 4.76 × 10−2 −3.32× 100

SSA −3.27× 100 3.87 × 10−2 −3.31× 100

PGL-SSA −3.29× 100 1.78× 10−2 −3.31× 100

Dim = 4

PSO −1.01× 101 2.01× 10−3 −1.01× 101

F19
GWO −1.01× 101 2.51 × 10−4 −1.01× 101

SSA −1.01× 101 2.53 × 10−3 −1.01× 101

PGL-SSA −1.01× 101 8.42× 10−5 −1.01× 101
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Table 3. Cont.

Function Algorithm
Dim = 30 Dim = 100

Mean Std Best Mean Std Best

Dim = 4

PSO −1.03× 101 2.50 × 10−3 −1.03× 101

F20
GWO −1.04× 101 2.52 × 10−4 −1.04× 101

SSA −1.03× 101 7.49 × 10−3 −1.04× 101

PGL-SSA −1.04× 101 1.25× 10−4 −1.04× 101

Dim = 4

PSO −1.05× 101 1.46 × 10−2 −1.05× 101

F21
GWO −1.05× 101 2.44 × 10−4 −1.05× 101

SSA −1.05× 101 5.26 × 10−3 −1.05× 101

PGL-SSA −1.05× 101 8.73× 10−5 −1.05× 101

5.3. Comparative Analysis of Optimization Results

The experimental results show that PGL-SSA has good performance in finding the
optimal results under the same conditions for both high-dimensional single-peak functions
and high-dimensional multi-peak functions, and it shows good convergence accuracy and
stability in 30 and 100 dimensions. In terms of mean and standard deviation, PGL-SSA
has the best results for all tested functions, and in functions F1, F2, F3, and F4, PGL-SSA
has improved the mean and standard deviation by several orders of magnitude compared
with the comparison algorithm. In the index of optimal value, PGL-SSA has a significant
advantage over PSO and GWO, and it also has a certain improvement over SSA. For
functions F7 and F9, both PGL-SSA and SSA have good search performance, indicating that
the algorithm itself has some superiority. For function F8, the algorithm is not applicable to
function F8 due to its own limitation.

From the convergence curves in Figures 4 and 5, PGL-SSA has the advantages of fast
convergence speed and high convergence accuracy. The introduction of piecewise mapping
in the initialization process of PGL-SSA effectively improves the population diversity of
the algorithm, improves the quality of the initial solution, and lays the foundation for the
global iterative optimization of the algorithm. The Gaussian difference variation strategy is
introduced in the process of individual update, and the difference variation perturbation
enables individuals to jump out of the local optimum effectively, which improves the
algorithm’s optimization accuracy and ability to jump out of the local optimum. The
introduction of linear differential decreasing inertia weights enables the algorithm to have
good global search ability in the first iteration, and it improves the optimization accuracy
in the second iteration. Under the same accuracy condition, PGL-SSA requires the least
number of iterations and shorter time. The convergence curve of PGL-SSA is different
from the flat curve of GWO and PSO due to the different optimization mechanism of the
algorithm, and it shows a stepwise decrease, which indicates the advantage of PGL-SSA in
moving away from local optimum.

For the fixed-dimensional multi-peak functions F12–F21, from the convergence curves
of each algorithm in Figure 6, it can be seen that PGL-SSA has a good comprehensive search
performance. However, for the functions F15–F17, PGL-SSA’s search results are worse than
GWO, ranking second. The PGL-SSA outperforms the SSA in all test functions in terms of
finding the best results, which fully proves the effectiveness of the improvement strategy.

The comprehensive analysis shows that PGL-SSA outperforms other algorithms in
the iterative search process for both high-dimensional single-peaked functions and high-
dimensional multi-peaked functions. On the fixed-dimensional test function, the overall
performance of PGL-SSA’s comprehensive merit-seeking ability is outstanding and has
certain advantages. The 30- and 100-dimensional simulation results show that PGL-SSA
can fully traverse the search space and precisely lock the optimal solution in the iterative
search process, and its diversity improvement ensures excellent global search capability
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and the ability to jump out of the local optimum, reflecting the good searchability and
stability that further determine the feasibility of its engineering applications.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 4. Different algorithms convergence curves of F1–F11 with 30 dimensions. (a) F1 Convergence
curve. (b) F2 Convergence curve. (c) F3 Convergence curve. (d) F4 Convergence curve. (e) F5
Convergence curve. (f) F6 Convergence curve. (g) F7 Convergence curve. (h) F8 Convergence curve.
(i) F9 Convergence curve. (j) F10 Convergence curve. (k) F11 Convergence curve.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 5. Different algorithms convergence curves of F1–F11 with 100 dimensions. (a) F1 Convergence
curve. (b) F2 Convergence curve. (c) F3 Convergence curve. (d) F4 Convergence curve. (e) F5
Convergence curve. (f) F6 Convergence curve. (g) F7 Convergence curve. (h) F8 Convergence curve.
(i) F9 Convergence curve. (j) F10 Convergence curve. (k) F11 Convergence curve.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 6. Convergence curves of fixed-dimensional peak functions for different algorithms. (a) F12
Convergence curve. (b) F13 Convergence curve. (c) F14 Convergence curve. (d) F15 Convergence
curve. (e) F16 Convergence curve. (f) F17 Convergence curve. (g) F18 Convergence curve. (h) F19
Convergence curve. (i) F20 Convergence curve. (j) F21 Convergence curve.

5.4. Wilcoxon Rank-Sum Test

To further reflect the algorithm optimization performance, the P-values of the 21
benchmark test functions were analyzed using the Wilcoxon rank-sum test [29], and the
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four algorithms were run 30 times independently at a significant level of α = 5%. The
P-values of the rank-sum test for PGL-SSA and the other three compared algorithms are
given in Table 4 (N/A means “not applicable”).

Table 4. Wilcoxon rank sum test for the test function.

Function Algorithm

PGL-SSA/SSA PGL-SSA/GWO PGL-SSA/PSO

F1 4.34 × 10−4 2.87 × 10−11 2.87 × 10−11

F2 4.17 × 10−5 2.87 × 10−11 2.87 × 10−11

F3 7.91 × 10−5 2.87 × 10−11 2.87 × 10−11

F4 1.81 × 10−4 2.87 × 10−11 2.87 × 10−11

F5 5.78 × 10−5 2.87 × 10−11 2.87 × 10−11

F6 1.04 × 10−10 2.87 × 10−11 2.87 × 10−11

F7 3.35 × 10−2 2.87 × 10−11 2.87 × 10−11

F8 N/A 2.87 × 10−11 2.87 × 10−11

F9 1.75 × 10−2 2.87 × 10−11 2.87 × 10−11

F10 2.74 × 10−4 2.87 × 10−11 2.87 × 10−11

F11 1.47 × 10−2 2.87 × 10−11 2.87 × 10−11

F12 1.76 × 10−3 N/A 2.44 × 10−3

F13 N/A 4.64 × 10−1 9.02 × 10−3

F14 4.95 × 10−2 2.75 × 10−1 4.95 × 10−2

F15 N/A 3.74 × 10−1 4.95 × 10−2

F16 4.95 × 10−2 2.75 × 10−1 5.12 × 10−1

F17 4.95 × 10−2 3.71 × 10−1 4.95 × 10−2

F18 4.95 × 10−2 1.94 × 10−1 4.95 × 10−2

F19 4.95 × 10−2 4.95 × 10−2 4.95 × 10−2

F20 4.95 × 10−2 4.95 × 10−2 4.95 × 10−2

F21 4.95 × 10−2 4.95 × 10−2 4.95 × 10−2

As can be seen from Table 4, compared with SSA, PGL-SSA’s search performance is
significant for 18 test functions. Compared with GWO, the performance of PGL-SSA is
significant on 14 test functions. In the fixed-dimensional test functions, the performance of
PGL-SSA has a certain disadvantage compared with GWO due to the different algorithm-
seeking mechanism. Compared with PSO, it is significant on 20 test functions and has an
obvious advantage. In summary, it again shows the superiority of PGL-SSA in terms of the
performance of the optimization search.

Figure 7 shows the comprehensive performance ranking of the four algorithms on the
21 tested functions. The smaller the curve area, the better the algorithm performance.
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Figure 7. Ranks of 4 algorithms.

5.5. Comparative Time Analysis

To further evaluate the performance of the improved algorithms, all algorithms were
run 30 times independently on 21 test functions and the average running times were
recorded. Figure 8 shows the average running time histogram of the four algorithms.

(a) (b) (c)

Figure 8. Comparison of running time of different algorithms in each dimension. (a) 30D mean
running time, (b) 100D mean running time, (c) Fixed dimension test function running time.

In terms of the running time of the high-dimensional single-peak function and the high-
dimensional multi-peak function, PGL-SSA has obvious advantages over PSO and GWO,
which reflects the good computational efficiency of the PGL-SSA optimization process
to a certain extent. The improved strategy improves the performance of the algorithm
without increasing the complexity of the algorithm. In terms of the running time of the
fixed-dimensional test function, PGL-SSA has a significant increase in the running time
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of the algorithm compared with SSA due to the improved strategy of the optimization
mechanism.

Overall, the results from the CEC benchmark test function show that the performance
of PGL-SSA is significantly better than that of SSA. In the fixed-dimensional test function,
PGL-SSA has a longer running time compared to SSA due to the optimization strategy.
Compared with the other three algorithms, PGL-SSA improves the optimization accuracy
by several orders of magnitude, which has obvious advantages. The superior performance
and algorithmic feasibility of PGL-SSA are fully demonstrated.

5.6. Comparison of PGL-SSA with Different Improved SSA

To further verify the superiority of PGL-SSA, the test functions in Table 1 were com-
pared with the improved sparrow search algorithms CLSSA, SFSSA, GCSSA, and CSSOA
proposed in the Reference [2–4,20] for the optimization search experiments. The general
conditions were based on the SSA parameter settings in Table 2, the sparrow population
size was 50, the maximum number of iterations was 500, and each algorithm was run
30 times independently for each test function to obtain the search results, as shown in
Table 5.

Figure 9 shows the comprehensive performance ranking of the SSA algorithm im-
proved by different strategies on 21 test functions. The smaller the curve area, the better
the algorithm performance.

Figure 9. Ranks of the SSA algorithm improved by different strategies.
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Table 5. Results and comparison of different improved algorithms for 21 benchmark functions.

Function Algorithm Dim Mean Std Best

GCSSA 30 0.0 0.0 0.0
CSSOA 30 7.24 × 10−77 3.43 × 10−76 9.12 × 10−82

F1 SFSSA 30 0.0 0.0 0.0
CLSSA 30 0.0 0.0 3.84 × 10−201

PGL-SSA 30 1.72 × 10−222 0.0 0.0

GCSSA 30 0.0 0.0 0.0
CSSOA 30 2.43 × 10−40 3.74 × 10−40 4.77 × 10−51

F2 SFSSA 30 0.0 0.0 0.0
CLSSA 30 0.0 4.74 × 10−103 2.34 × 10−103

PGL-SSA 30 4.79 × 10−263 0.0 0.0

GCSSA 30 0.0 0.0 0.0
CSSOA 30 4.47 × 10−62 2.84 × 10−61 7.12 × 10−74

F3 SFSSA 30 0.0 0.0 0.0
CLSSA 30 0.0 8.34 × 10−121 4.37 × 10−121

PGL-SSA 30 0.0 0.0 0.0

GCSSA 30 0.0 0.0 0.0
CSSOA 30 7.64 × 10−35 4.37 × 10−34 4.47 × 10−49

F4 SFSSA 30 0.0 0.0 0.0
CLSSA 30 0.0 4.64 × 10−102 7.27 × 10−104

PGL-SSA 30 0.0 0.0 0.0

GCSSA 30 4.14 × 10−9 2.65 × 10−9 1.14 × 10−13

CSSOA 30 4.44 × 10−5 6.24 × 10−5 5.33 × 10−8

F5 SFSSA 30 4.34 × 10−8 2.62 × 10−8 3.26 × 10−11

CLSSA 30 0.0 3.47 × 10−8 4.34 × 10−9

PGL-SSA 30 2.14 × 10−9 2.22 × 10−9 5.56 × 10−13

GCSSA 30 7.33 × 100 1.47 × 100 4.33 × 10−2

CSSOA 30 −2.77× 103 4.74 × 102 4.34 × 100

F6 SFSSA 30 1.47 × 101 4.84 × 101 2.33 × 10−1

CLSSA 30 −9.47× 103 8.47 × 102 −8.04× 103

PGL-SSA 30 5.04 × 10−1 3.92 × 10−1 1.50 × 10−3

GCSSA 30 0.0 0.0 0.0
CSSOA 30 0.0 0.0 0.0

F7 SFSSA 30 0.0 0.0 0.0
CLSSA 30 0.0 0.0 0.0

PGL-SSA 30 0.0 0.0 0.0

GCSSA 30 7.84 × 10−16 0.0 6.47 × 10−16

CSSOA 30 9.43 × 10−16 0.0 9.04 × 10−13

F8 SFSSA 30 8.88 × 10−16 0.0 8.88 × 10−16

CLSSA 30 8.96 × 10−16 0.0 8.96 × 10−16

PGL-SSA 30 4.44 × 10−16 0.0 4.44 × 10−16

GCSSA 30 0.0 0.0 0.0
CSSOA 30 0.0 0.0 0.0

F9 SFSSA 30 0.0 0.0 0.0
CLSSA 30 0.0 0.0 0.0

PGL-SSA 30 0.0 0.0 0.0

GCSSA 30 4.84 × 10−7 4.78 × 10−8 6.43 × 10−9

CSSOA 30 2.44 × 10−5 4.37 × 10−5 7.33 × 10−7

F10 SFSSA 30 4.37 × 10−8 3.24 × 10−8 8.34 × 10−12

CLSSA 30 2.47 × 10−27 1.43 × 10−9 3.74 × 10−10

PGL-SSA 30 3.83 × 10−9 4.40 × 10−9 9.87 × 10−14

GCSSA 30 6.34 × 10−6 2.04 × 10−7 7.44 × 10−9

CSSOA 30 3.47 × 10−5 2.02 × 10−5 4.62 × 10−7

F11 SFSSA 30 4.84 × 10−7 2.73 × 10−7 6.22 × 10−9

CLSSA 30 2.48 × 10−20 2.42 × 10−8 3.77 × 10−9

PGL-SSA 30 2.39 × 10−8 2.07 × 10−8 5.29 × 10−10

GCSSA 2 2.42 × 100 7.62 × 10−1 1.73 × 100

CSSOA 2 1.73 × 100 4.34 × 10−1 1.44 × 100

F12 SFSSA 2 1.02 × 100 7.42 × 10−4 1.02 × 100

CLSSA 2 1.02 × 100 2.43 × 100 1.46 × 100

PGL-SSA 2 9.98 × 10−1 4.35 × 10−12 9.98 × 10−1
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Table 5. Cont.

Function Algorithm Dim Mean Std Best

GCSSA 4 3.42 × 10−4 4.21 × 10−5 2.77 × 10−4

CSSOA 4 3.21 × 10−4 4.44 × 10−6 3.13 × 10−4

F13 SFSSA 4 3.13 × 10−4 4.88 × 10−6 3.13 × 10−4

CLSSA 4 3.12 × 10−4 2.47 × 10−7 3.12 × 10−4

PGL-SSA 4 3.07 × 10−4 6.55 × 10−6 3.07 × 10−4

GCSSA 2 −1.03× 100 3.77 × 10−4 −1.33× 100

CSSOA 2 −1.03× 100 3.41 × 10−4 −1.03× 100

F14 SFSSA 2 −1.03× 100 4.47 × 10−7 −1.03× 100

CLSSA 2 −1.2× 100 5.37 × 10−16 −1.02× 100

PGL-SSA 2 −1.03× 100 2.10 × 10−5 −1.03× 100

GCSSA 2 3.97 × 10−1 1.77 × 10−4 3.97 × 10−1

CSSOA 2 4.01 × 10−1 5.42 × 10−5 4.01 × 10−1

F15 SFSSA 2 3.99 × 10−1 1.77 × 10−5 3.99 × 10−1

CLSSA 2 4.03 × 10−1 0.0 4.03 × 10−1

PGL-SSA 2 3.97 × 10−1 1.31 × 10−5 3.97 × 10−1

GCSSA 2 3.00 × 100 1.27 × 10−3 3.00 × 100

CSSOA 2 3.00 × 100 1.00 × 10−3 3.00 × 100

F16 SFSSA 2 3.01 × 100 3.77 × 10−15 3.01 × 100

CLSSA 2 3.02 × 100 4.84 × 10−15 3.02 × 100

PGL-SSA 2 3.00 × 100 1.00 × 10−3 3.00 × 100

GCSSA 3 −3.88× 100 6.24 × 10−3 −3.88× 100

CSSOA 3 −3.84× 100 7.37 × 10−3 −3.84× 100

F17 SFSSA 3 −3.86× 100 2.44 × 10−15 −3.86× 100

CLSSA 3 −3.94× 100 2.74 × 10−15 −3.94× 100

PGL-SSA 3 −3.86× 100 8.08 × 10−4 −3.86× 100

GCSSA 6 −3.28× 100 7.34 × 10−1 −3.28× 100

CSSOA 6 −3.34× 100 2.37 × 10−2 −3.34× 100

F18 SFSSA 6 −3.33× 100 1.84 × 10−2 −3.33× 100

CLSSA 6 −3.33× 100 5.74 × 10−2 −3.33× 100

PGL-SSA 6 −3.29× 100 1.78 × 10−2 −3.31× 100

GCSSA 4 −1.01× 101 7.44 × 10−4 -1.01 × 101

CSSOA 4 −1.01× 101 4.47 × 10−4 -1.01 × 101

F19 SFSSA 4 −9.73× 100 8.74 × 10−1 −1.01× 101

CLSSA 4 −1.01× 101 5.44 × 10−8 −1.01× 101

PGL-SSA 4 −1.01× 101 8.42 × 10−5 −1.01× 101

GCSSA 4 −1.04× 101 −1.47 × 10−4 −1.04× 101

CSSOA 4 −1.04× 101 7.33 × 10−4 −1.04× 101

F20 SFSSA 4 −1.04× 101 4.43 × 10−10 −1.04× 101

CLSSA 4 −1.04× 101 1.13 × 10−6 −1.04× 101

PGL-SSA 4 −1.04× 101 1.25 × 10−4 −1.04× 101

GCSSA 4 −1.05× 101 8.66 × 10−5 −1.05× 101

CSSOA 4 −1.05× 101 4.37 × 10−5 −1.05× 101

F21 SFSSA 4 −1.05× 101 4.17 × 10−4 −1.05× 101

CLSSA 4 −1.05× 101 5.64 × 10−8 −1.05× 101

PGL-SSA 4 −1.05× 101 8.73 × 10−5 −1.05× 101

Compared with other improvement algorithms, PGL-SSA proposes a more compre-
hensive fusion improvement strategy from three perspectives: population initialization,
individual strategic position update, and global search ability balance. In the popula-
tion initialization stage, PGL-SSA and CLSSA fully analyze the effects of different chaotic
mapping initialized populations on the algorithm’s search performance. The strategy of
initializing the population by piecewise mapping is finalized by testing the benchmark
function on some chaotic mappings. In the process of individual iterative update, SFSSA
uses a perturbation strategy for individual position update to obtain higher search accuracy.
CSSOA uses a Gaussian variation strategy for individual position update, but the tradi-
tional Gaussian variation strategy increases the convergence speed of the algorithm while
easily making the algorithm fall into local optimum. PGL-SSA uses a Gaussian difference
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variation strategy for individual perturbation, which enables the algorithm to obtain faster
convergence speed while improving the ability of the algorithm to jump out of the local
optimum. PGL-SSA proposes a linear differential decreasing inertia weighting strategy in
balancing the global search ability and local search ability of the algorithm. By adjusting
the weights in the early and late iterations of the algorithm, the algorithm can fully traverse
the solution space in the early iterations while improving the convergence speed of the
algorithm. The optimal solution is precisely locked in the late iteration to improve the
algorithm operation efficiency.

From Table 5, among the 21 test functions, 13 of them can converge to the theoretical
optimal solution and three are infinitely close to the optimal solution. Moreover, PGL-SSA
has the best performance in 17 functions, which indicates that PGL-SSA has excellent
overall optimization level and good accuracy in the 30 independent search. In terms of
mean and standard deviation, PGL-SSA generally performs well, demonstrating high
convergence accuracy and robustness.

From Figure 9, it can be seen that PGL-SSA ranks top in the overall ranking com-
pared with other improved SSAs, which fully demonstrates the feasibility and superior
performance of the PGL-SSA improvement strategy.

6. Application of PGL-SSA for HVAC Control

In the engineering field, most systems can be approximated as first-order inertial
delay systems or second-order inertial delay systems [30,31]. Taking HVAC as an example,
the HVAC indoor constant temperature system is modeled [32,33]. By the law of energy
conservation, the rate of change of energy in the constant greenhouse is equal to the energy
entering the constant greenhouse per unit time minus the energy exiting the constant
greenhouse per unit time, and the mathematical model considering the enclosure structure
and the transfer lag is:

C
dθ1

dt
= (Gcθ3 + qn)−

(
Gcθ1 +

θ1 − θ2

γ

)
(11)

where C is the constant room heat capacity; G is the air supply volume; c is the specific heat
capacity of air; θ1 is the return air temperature; θ2 is the outdoor temperature; θ3 is the air
supply temperature; qn is the indoor heat dissipation; and γ is the thermal resistance of the
enclosure.

Collation formula:

C
Gc + 1

γ

· dθ1

dt
+ θ1 =

Gcθ3

Gc + 1
γ

+
qn +

1
γ θ2

Gc + 1
γ

(12)

Calculation of time constants for the constant temperature room:

T = RC (13)

Constant greenhouse thermal resistance:

R =
1

Gc + 1
γ

(14)

Constant greenhouse magnification factor:

K =
Gc

Gc + 1
γ

(15)
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The amount of indoor and outdoor interference to convert the amount of air supply
temperature change:

θ4 =
qn +

θ2

γ

Gc
(16)

This leads to the mathematical model of the HVAC room thermostat system:

T
dθ1

dt
+ θ1 = K(θ3 + θ4) (17)

Laplace transform of Equation (17):

(Ts + 1)θ1(s) = K(θ3 + θ4) (18)

Therefore,the process control of the HVAC room thermostat system is a first-order
inertial delay system with the transfer function:

G(s) =
K

Ts + 1
e−τs (19)

6.1. Fitness Function

The fitness value is the only indicator to evaluate the merit of an individual or solution
during the iterative process of the optimization algorithm, and it is used as the basis for
updating the individual strategic position. The fitness function connects the optimization
algorithm to the control system and allows the algorithm to evolve to reach the target value.

The PID control objective function using penalty control to avoid overshoot is as follows:

F =
∫ ∞

0

(
ω1|e(t)|+ ω2u2(t) + ω3|e(t)|

)
dt e(t) < 0 (20)

Among them: e(t) is the system error, u(t) is the controller output, ω1, ω2, ω3 are the
weights, ω1 = 0.999, ω2 = 0.001, ω3 = 100.

6.2. PID Parameter Tuning Simulation Experiment and Result Analysis
6.2.1. Optimal Tuning of PID Parameters for First-Order Inertia Delay Systems

The first-order inertial delay system transfer function is as follows:

G(s) =
1

2s + 1
e−0.1s (21)

The parameters were optimized by four algorithms, PGL-SSA, SSA, PSO and GWO,
each with a population size of 50, a maximum number of iterations of 100, a unit step signal
input, and a sampling time of 0.001 s. The optimized fitness curves and step response
curves of the four algorithms are shown in Figure 10.

For the first-order inertial delay system, the PGL-SSA algorithm has a better finding ac-
curacy as shown by the convergence curve of the adaptation degree. From the step response
curves, it can be seen that the PSSA optimized system has a shorter adjustment time.
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(a)

(b)

Figure 10. Convergence curves and step response curves of different algorithms for first-order inertial
delay systems. (a) Convergence curve. (b) Step response curve.

6.2.2. Optimal Tuning of PID Parameters for Second-Order Underdamped Delay Systems

The classical second-order time-delayed temperature control system transfer function
is selected as follows:

G(S) =
1.6

s2 + 1.5s + 1.6
e−0.1s (22)

The parameters were optimized by four algorithms, PGL-SSA, SSA, PSO and GWO,
each with a population size of 50, a maximum number of iterations of 100, a unit step signal
input, and a sampling time of 0.001 s. The optimized adaptation curves and step response
curves of the four algorithms are shown in Figure 11.
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The convergence curves and step response curves of the four algorithms can show
that the PGL-SSA is more accurate than the other three algorithms for the second-order
delay system. The overshoot and regulation time of the system adjusted by the PGL-SSA
algorithm are better than those of the comparison algorithms, which proves the effectiveness
of the PGL-SSA algorithm.

(a)

(b)

Figure 11. Convergence curves and step response curves of different algorithms for second-order
inertial delay systems. (a) Convergence curve. (b) step response curve.

6.2.3. PMSM System PID Parameter Optimization

An inverter air conditioner has the characteristics of energy saving, high efficiency,
low noise, stable temperature control, etc., and it has been rapidly developed in the field of
HVAC [34]. Permanent Magnetic Synchronous Machine (PMSM) has the characteristics of
fast dynamic response, high operating efficiency, safety and reliability, etc. [35]. Inverter
air conditioners mostly use permanent magnet synchronous motors for inverter control.
Traditional PID control is mostly used for permanent magnet synchronous motors, and
the traditional PID controller parameter adjustment method is difficult to achieve fast and
stable control effect for the increasingly complex control objects [36]. In this paper, the PID
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controller of a permanent magnet synchronous motor is parameterized by PGL-SSA. The
mathematical model of PMSM established in the literature [37] is analyzed. The transfer
function is selected as follows:

G(S) =
1.05

6.8 · 10−6S2 + 2.47 · 10−3S + 0.7925
(23)

The four algorithms of PGL-SSA, SSA, PSO and GWO were used to optimize the
parameters. The population size of each algorithm was 50, the maximum number of
iterations was 100, the unit step signal was the input, and the sampling time was 0.001 s.
The optimized adaptation curves and step response curves of the four algorithms are shown
in Figure 12.

(a) (b)

Figure 12. Convergence curves and step response curves of different algorithms for PMSM systems.
(a) Convergence curve. (b) Step response curve.

From the convergence curves of the different algorithms in Figure 12, we can see that
the PGL-SSA algorithm has faster convergence speed and convergence accuracy than the
comparison algorithms, which indicates that the PGL-SSA algorithm has better performance
in finding the best performance. The step response curve shows that the error and the
adjustment time of the PGL-SSA algorithm are smaller, which indicates that the PGL-SSA
algorithm has better system stability.

7. Conclusions

In this paper, three strategies, piecewise mapping, Gaussian difference variation and
linear differential decreasing inertia weights, are used to improve the basic SSA algorithm.
Firstly, we analyze the effect of population initialization on the initial solution and the
convergence speed of the algorithm, and we propose the population initialization of the
sparrow search algorithm by piecewise mapping instead of pseudo-random numbers to
improve the population diversity and the convergence speed and accuracy of the algorithm.
Secondly, the individual position is updated by the Gaussian difference variation strategy,
and the optimal individual is perturbed to improve the algorithm’s ability to jump out of the
local optimum. In addition, the linear differential decreasing inertia weight strategy is used
to solve the problem of balance between the early and late iterations of the algorithm, which
enhances the global search ability of the algorithm in the early iteration, fully traverses the
solution space to avoid the algorithm falling into local optimum, and accurately searches
for the optimal solution in the late iteration to improve the convergence accuracy of the
algorithm. In order to comprehensively evaluate the performance of the algorithm, 21
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benchmark test functions are used for verification. The simulation results show that
the hybrid improvement strategy proposed in this paper can effectively improve the
performance of the algorithm. Compared with the basic metaheuristic algorithm and the
advanced improvement algorithm, PGL-SSA has higher convergence accuracy and stability.
In addition, PGL-SSA is applied to the direction of HVAC system control optimization,
and the results show that PGL-SSA has higher control accuracy and robustness in the
HVAC system control optimization problem. In future research, the group plans to further
optimize the overall performance of PGL-SSA, improve the operation efficiency of the
algorithm, and further consider applying the algorithm to more engineering fields, such as
microgrid energy-scheduling problems.
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