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Abstract: This work analyses the effect of electromagnetic fields on cartilaginous cells in human joints
and the nutrients that flow from the synovial fluid to the cartilage. The perturbation approach and
the generalised dispersion model is used to solve the governing equation of momentum and mass
transfer. The dispersion coefficient increases with dimensionless time. It aids in grasping the level of
nutritional transport to the synovial joint. Low-molecular-weight solutes have a lower concentration
distribution at the same depth in articular cartilage than high-molecular-weight solutes. Thus,
diffusion dominates nutrition transport for low-molecular-weight solutes, whereas a mechanical
pumping action dominates nutrition transport for high-molecular-weight solutes. The report says
that the cells in the centre of the cartilage surface receive more nutrients during imbibition and
exudation than the cells on the periphery, and the earliest indications of cartilage degradation emerge
in the uninflected regions. As a result, cartilage nutrition is considered necessary to joint mobility. It
also predicts that, as the viscoelastic parameter increases, the concentration in the articular cartilage
diminishes, resulting in the cartilage cells receiving less nutrition, which might lead to harmful effects.
The dispersion coefficient and mean concentration for distinct factors, such as the Hartmann number,
porous parameter, and viscoelastic parameters of gel formation, have been computed and illustrated
through graphics.
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1. Introduction

The synovial joint, which is responsible for the biomechanics of the knee joint, plays an
essential role in the movement of living things such as humans and animals. A load-bearing
bone with protected ends makes up a synovial joint. Knee joints are one of the body’s most
extensive and complicated joints. According to Alshehri and Sharma [1], articular cartilage
is the thin layer of connective tissue that protects the articulating ends of bones in synovial
joints (movable joints in the body, such as the knee, hip, and shoulder).

The primary idea of this study is how magnetotherapy aids in the treatment of human
joint cartilage, rheumatoid illnesses, and other diseases, such as osteoporosis. Articular
cartilage and synovial fluid work together to keep joints lubricated. Damage to the artic-
ular cartilage may cause the synovial fluid to have poor rheological qualities, eventually
affecting the joints’ performance. Due to their importance in joint lubrication, the rheo-
logical features of synovial fluid are of interest. The arrangement and functions of human
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joints are covered in synovial anatomy and physiology. Flow mechanics, heat and mass
transfer, and reaction kinetics influence synovial bio-lubrication. According to Zahn and
Shenton [2], both electric and magnetic fields affect current conductivity through tissue
(cartilage) and lubricant. The electric field inside the body reflects the movement of current
through the conducting body tissues and affects the system’s physiological behaviors. A mag-
netic field surrounds the body. This would induce currents to travel in circuitous directions if
it were clear.

Researchers are interested in studying non-Newtonian and MHD flow because of
their various physical configurations and applications. Akbar et al. [3] explored the peri-
staltic flow of Jeffrey nanofluid convective boundary constraints in an asymmetric channel.
Faghiri et al. [4] examined the non-Newtonian fluid in a circular tube with a non-uniform
heat flux. An analysis of the hydromagnetic hyperbolic-tangent liquid with radiation, a
heat source, and stratification was determined by Gulzar et al. [5]. Based on a convective
boundary condition, Khan et al. [6] numerically delineated the magnetic field on the
boundary layer of Sisko liquid at the surface. Attar et al. [7] introduced an analytical
solution to nonlinear fractional differential equations using Akbari-Ganji’s method. Hos-
sain et al. [8] depicted the effects of a cylinder on natural convection in a square cavity.
Bhuvaneswari et al. [9] examined the magnetoconvection within a cavity with a magnetic
effect. Sivasankaran et al. [10] investigated the MHD mixed convection in a lid-driven cav-
ity. The effect of MHD on microchannel heat sinks was deliberated by Narrein et al. [11].
Sivasankaran and Narrein [12] studied the MHD convective flow in a trapezoidal mi-
crochannel heat sink. Sivasankaran et al. [13] also presented the MHD discrete heating in
free convection in a porous container.Several researchers have completed significant work
on hydromagnetic convective effects in recent years, including Sivasankaran et al. [14];
Bindhu et al. [15]; Bhuvaneswari et al. [16]; Rashad et al. [17]; Niranjan et al. [18]. Other
related articles have also appeared in recent publications [19–25].

Tandon et al. [26] have consistently proposed the use of magnetic fields for treating
synovial joints. According to Rudraiah et al. [27], finding the dispersion coefficient using
Gill and Sankarasubramanian’s [28] generalised dispersion model is beneficial in the
dispersion of nutrients in synovial fluid. Using Taylor’s dispersion model, Ng et al. [29]
examined the effect of a fixed charge density on the electrohydrodynamic transport of
synovial fluid constituents such as hyaluronic acid, glycoprotein, and other molecules to
artificial or natural joints. Khan et al. [30] investigated the effect of the generated magnetic
field on synovial fluid in an asymmetric channel with the peristaltic movement of non-
Newtonian fluid. Nagaraj et al. [31] used the Taylor dispersion coefficient to investigate
nutrients’ dispersion of synovial fluid into cartilage under the effect of electric and magnetic
fields for both artificial and natural joints. There are some other related papers in recent
publications [32,33].

In a flow of synovial fluid, Ramakrishnan and Swetha [34] investigated the thickness
on the porous plate on axial velocity and skin friction in the human joints with teh required
BJR slip states. Beretta et al. [35] reviewed the scientific literature on the effect of applied
fields on microorganisms. Vijayakumar and Ratchagar [36] conducted a thorough analysis
of unsteady convective diffusion to look at how nutrients and other proteins are transported
from synovial fluid to articular cartilage. The authors of this paper investigated the model
for the synovial fluid, also known as joint fluid and located in the knee joints, by examining
the nutritional transportation of generalised dispersion with the effect of an electric and
magnetic field. The behaviour of the synovial fluid was analysed using the perturbation
technique and the generalised dispersion model. The exact solution is plotted graphically
and explained in detail.

2. Formulation of the Problem

We introduced the following acceptable assumptions to define a mathematically
tractable problem. Knee joints are among the body’s most complex and essential joints. The
knee connects the femur (thighbone) to the shinbone (tibia). Figure 1 represents the physical
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configuration of the human knee joint (Tandon et al. [37], and Alshehri and Sharma [1]).
Viscoelastic fluid was used to represent synovial fluid because of its elasticity, which is
important for lubricating joints. Articular cartilage is a very elastic material. Introducing
the standard lubrication theory hypothesis into the Navier–Stokes equation of motion and
ignoring the variation in pressure normal to very thin lubrication films, the investigation is
subjective, with the following assumptions:

• A 2D, electrically conducting, viscous and incompressible synovial fluid is considered.
• Flow of fluid is laminar and steady.
• A constant magnetic field of strength B0 is applied in the transverse direction.
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Figure 1. Physical Configuration of the human knee joint.

Under these assumptions, the governing differential equations of momentum, conti-
nuity, and concentration of the fluid film (synovial fluid) region are as follows: [37,38]:

0 = −∂ p̂
∂x̂

+ η̂
∂

∂ŷ

[
∂û
∂ŷ
− K0

(
∂û
∂ŷ

)3
]
− B2

0σ0û− µ

k
û + ρ̂eÊx (1)

∂û
∂x̂

+
∂v̂
∂ŷ

= 0 (2)

∂Ĉ
∂t̂

+ û
∂Ĉ
∂x̂

= D̂

(
∂2Ĉ
∂x̂2 +

∂2Ĉ
∂ŷ2

)
(3)

with boundary conditions
∂û
∂ŷ

=
−α√

k
û at ŷ = h, (4)

∂û
∂ŷ

=
α√
k

û at ŷ = −h, (5)

Ĉ(0, x̂, ŷ) =


Ĉ0, |x̂| ≤ x̂s

2
0, |x̂| > x̂s

2

(6)

∂Ĉ
∂ŷ

(t̂, x̂,−h) =
∂Ĉ
∂ŷ

(t̂, x̂, h) = 0 (7)
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Ĉ(t̂, ∞, ŷ) =
∂Ĉ
∂x̂

(t̂, ∞, ŷ) = 0 (8)

Equations (4) and (5) represents Beavers and Joseph [39] slip condition at lower and higher
porous surfaces.

The dimensionless form of Equations (1) and (3) is created using

u =
û
ũ

; ξs =
x̂s

hPe
; η =

ŷ
h

; p =
p̂

ρũ2 ; ξ ′ =
x̂

hPe
; τ =

D̂t̂
h2 ; ρe =

ρ̂eh
ε0V

; Ex =
Êxh
V

;

φ =
Ĉ
Ĉ0

;

Hence,
∂2u
∂η2 − 3 ε

(
∂u
∂η

)2 ∂2u
∂η2 − s2u = s3(1− αcη) + s1 (9)

and
∂φ

∂τ
+ u

∂φ

∂ξ ′
=

1
Pe2

∂2φ

∂ξ ′2
+

∂2φ

∂η2 (10)

where, s1 = Re
Pe

∂p
∂ξ , s2 = M2 +

1
Da

, s3 =
WePeX0αc

2
, M2 =

B2
0σ0h2

η̂
, We =

εũ2

η̂
, Re =

ρũh
η̂

,

Pe =
ũh
D̂

, σ =
h√
k

, ε = K0ũ2

h2 , Da = k
h2 , η̂ = µ

ρ

Axial coordinate moving with an average velocity is defined as x̂1 = x̂− tũ and its
non-dimensional form ξ = ξ ′ − τ, ξ = x̂1

hPe . Now, (10) becomes,

∂φ

∂τ
+ Ǔ

∂φ

∂ξ
=

1
Pe2

∂2φ

∂ξ2 +
∂2φ

∂η2 (11)

with conditions of ψ
∂u
∂η

= −ασu at η = 1 (12)

∂u
∂η

= ασu at η = −1 (13)

φ(0, ξ, η) =

{
1, |ξ| ≤ ξs

2
0, |ξ| > ξs

2
(14)

∂φ

∂η
(τ, ξ,−1) =

∂φ

∂η
(τ, ξ, 1) = 0 (15)

φ(τ, ∞, η) =
∂φ

∂ξ
(τ, ∞, η) = 0 (16)

3. Method of Solution
3.1. Velocity Distribution

Let us incorporate the perturbation approach to solve (9) as follows:

u = u0 + ε u1 + O(ε2) (17)

where,
u0 = A1e−

√
s2η + A2e

√
s2η − s1

s2
− s3

s2
2
(1− αcη) (18)
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u1 = 2C3 cosh Mη − 3
2

C3
1 M3

(
cosh 3Mη

4M
− η sinh 3Mη

)
(19)

s4 = (ασ−√s2), s5 = (ασ +
√

s2), s6 = − s3

s2
2

αc + ασ

(
s1

s2
+

s3

s2
2

)
, s7 = s5e−

√
s2 ,

s8 = s4e
√

s2 , s9 = −
[

s3

s2
2

αc + ασ

(
s1

s2
+

s3

s2
2
(1− αc)

)]
,

A1 =
1
s4
(s6 − s5 A2), A2 =

s9(s6 − s4)

(s7s5 − s4s9)
,

The normalized axial velocity components acquired from Equation (17) are

Ǔ =
u− ũ

ũ

where,

ũ = 2

(
A1(1− e−

√
s2) + A2(−1 + e

√
s2)√

s2

)
+ 2s20 + αc +

(1− e−3
√

s2)s10ε + (−1 + e3
√

s2)s11ε

12s
3
2
2

+
(1− e−2

√
s2)s14ε + (−1 + e2

√
s2)s15ε

3s
3
2
2

+

(1 + e
√

s2(−1 +
√

s2))s12ε + (1− e−
√

s2(1 +
√

s2))s13ε

s
3
2
2

+

A3(1− e−
√

s2)ε + A4(−1 + e
√

s2)ε√
s2

, s10 = 2εA2
1s2

2, s11 = 2εA2
2s2

2,

s12 =
A2s2

3αc

s2
2
− A1 A2

2s2
2, s13 =

A1s2
3αc

s2
2
− A2

1 A2s2
2, s14 =

2A2
1s3αc√
s2

, s15 =
2A2

2s3αc√
s2

,

s16 = −
(

3(−s10 + s11)

8
√

s2
+

s12 + s13

2
√

s2
− 2(s14 − s15)

3
√

s2
+ ασ

(
s10 + s11

8s2
+

s14 + s15

3s2

))
,

s17 = s5e−
√

s2 , s18 = s4e
√

s2 , s20 =
s1

s2
− s3

s2
2

, s19 =

− 3(−s10e−3
√

s2 + s11e3
√

s2)

8
√

s2
+

s12e
√

s2 + s13e−
√

s2

2
√

s2
+

2(s14e−2
√

s2 − s15e2
√

s2)

3
√

s2
+

ασ

(
s10e−3

√
s2 + s11e3

√
s2

8
√

s2

s12e
√

s2 + s13e−
√

s2

2
√

s2
+

s14e−2
√

s2 − s15e2
√

s2

3
√

s2

)

3.2. Generalized Dispersion Model (GDM)

In order to establish the mean concentration that is valid for τ, we adopted the GDM
of Gill and Sankarasubramanian [28].

φ(τ, ξ, η) = φm(τ, ξ) +
∞

∑
k=1

fk(τ, η)
∂kφm

∂ξk (20)

where,

φm(τ, ξ) =
1
2

1∫
−1

φ(τ, ξ, η)dη (21)

Integrating (11), we obtain

∂φm

∂τ
=

1
Pe2

∂2φm

∂ξ2 +
1
2

1∫
−1

∂2φ

∂η2 dη − 1
2

∂

∂ξ

1∫
−1

Ǔ φ dη (22)

Using Equation (20) in (22), we obtain
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∂φm

∂τ
=

1
P2

e

∂2φm

∂ξ2 −
1
2

∂

∂ξ

1∫
−1

Ǔ
(

φm(τ, ξ) + f1(τ, η)
∂φm

∂ξ
(τ, ξ) + . . .

)
dη (23)

Rewriting the above equation, we obtain

∂φm

∂τ
=

∞

∑
k=1

Kk(τ)
∂kφm

∂kξ
(24)

Making use of Equation (24) in (23) we obtain

K1
∂φm

∂ξ
+ K2

∂2φm

∂ξ2 + K3
∂3φm

∂ξ3 + . . . =
1

P2
e

∂2φm

∂ξ2 −
1
2

∂

∂ξ

1∫
−1

Ǔ(φm(τ, ξ)

+ f1(τ, η)
∂φm

∂ξ
+ f2(τ, η)

∂2φm

∂ξ2 (τ, ξ) + . . .)dη (25)

Comparing the coefficient ∂φm
∂ξ , ∂2φm

∂ξ2 . . . we get,

Ki(τ) =
δij

P2
e
− 1

2

1∫
−1

U fi−1(τ, η)dη, (i = 1, 2, 3, . . . and j = 2) (26)

where, Kroneckar delta δij =

{
1, i f i = j
0, i f i 6= j

Incorporating Equation (20) in (11), we acquire

∂

∂τ

(
φm(τ, ξ) + f1(τ, η)

∂φm

∂ξ
(τ, ξ) + f2(τ, η)

∂2φm

∂ξ2 (τ, ξ) + . . .
)

+Ǔ
∂

∂ξ

(
φm(τ, ξ) + f1(τ, η)

∂φm

∂ξ
(τ, ξ) + f2(τ, η)

∂2φm

∂ξ2 (τ, ξ) + . . .
)

=
1

P2
e

∂2

∂ξ2

(
φm(τ, ξ) + f1(τ, η)

∂φm

∂ξ
(τ, ξ) + f2(τ, η) + . . .

)
+

∂2

∂η2

(
φm(τ, ξ) + f1(τ, η)

∂φm

∂ξ
+ . . .

)
(27)

Modifying the terms and employing

∂k+1φm

∂τ∂ξk =
∞

∑
i=1

Ki(τ)
∂k+iφm

∂ξk+i

we obtain

[
∂ f1
∂τ
− ∂2 f1

∂η2 + Ǔ + K1(τ)

]
∂φm

∂ξ
+

[
∂ f2
∂τ
− ∂2 f2

∂η2 + f1Ǔ + K1(τ) f1 + K2(τ)−
1

P2
e

]
∂2φm

∂ξ2

+
∞

∑
k=1

[
∂ fk+2

∂τ
− ∂2 fk+2

∂η2 + fk+1 Ǔ + fk+1 K1(τ) +

(
K2(τ)−

1
P2

e

)
fk

+
k+2

∑
i=3

Ki fk+2−i

]
∂k+2φm

∂ξk+2 = 0 (28)
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with f0 = 1. Comparing the coefficients of ∂kφm
∂ξk (k = 1, 2, 3, . . .) in (28) and setting it equal to zero,

we obtain

∂ f1
∂τ

=
∂2 f1
∂η2 − Ǔ − K1(τ) (29)

∂ f2
∂τ

=
∂2 f2

∂η2 − f1 Ǔ − K1(τ) f1 − K2(τ) +
1

P2
e

(30)

∂ fk+2
∂τ

=
∂2 fk+2

∂η2 − fk+1 Ǔ − K1(τ) fk+1 −
(

K2(τ)−
1

P2
e

)
fk −

k+2

∑
i=3

Ki fk+2−i (31)

To obtain Ki’s we have fk’s and its respective initial and boundary constraints,

fk(0, η) = 0 (32)
∂ fk
∂η

(τ,−1) = 0 (33)

∂ fk
∂η

(τ, 1) = 0 (34)

1∫
−1

fk(τ, η)dη = 0, (35)

for k = 1, 2, 3, . . .
From Equation (26) for i = 1, we obtain

K1(τ) = 0 (36)

From Equation (26) for i = 2, we obtain K2 as,

K2(τ) =
1

P2
e
− 1

2

1∫
−1

Ǔ f1dη (37)

To evaluate K2(τ),
let f1 = f10(η) + f11(τ, η) (38)

where f10(η) is not dependent on τ and pertains to an infinite wide slug and f11 is
τ-dependent, satisfying

d f10

dη
= 0 at η = ±1 (39)

1∫
−1

f10dη = 0 (40)

Using the (38) in (29) gives

d2 f10

dη2 = Ǔ (41)

∂ f11

∂τ
=

∂2 f11

∂η2 (42)



Math. Comput. Appl. 2023, 28, 3 8 of 15

Solving the Equation (41) with conditions (39) and (40) is

f10 =
1

72s2
2

e−3
√

s2η(−s10ε− e6
√

s2ηs11ε− 6e
√

s2ηs14ε− 6e5
√

s2ηs15ε +

36e4
√

s2η(2A2s2 − ε(2A4s2 + s12(−2 +
√

s2η))) +

36e2
√

s2η(2A1s2 − ε(2A3s2 + s13(2 +
√

s2η))) +

12e3
√

s2ηs2
2(3s20η2 + αcη3 + 6(A5 + ηA6))) (43)

where
A5 = − 1

48
√

s2s2e3
√

s2
(12e3

√
s2 s2
(
−2A1 + 2A2 + 2ε(A3 − A4) +

√
s2(αc + 2s20)

)
−

12e2
√

s2
(
2A1s2 − ε

(
2A3s2 + s13

√
s2 + s13

))
+

12e4
√

s2
(
2A2s2 + ε

(
−2A4s2 + s12

(
−√s2

)
+ s12

))
+ e3

√
s2 (ε(s10 − s11 + 4(3s12 + 3s13 + s14 − s15))) +

s10ε− s11e6
√

s2 ε + 4s14e
√

s2 ε− 4s15e5
√

s2 ε);

A6 = − 1

9 12s3/2
2 s2e3

√
s2
(9e3

√
s2 s2(24sA1 − 24sA2 + 24ε(sA4 − sA3 ))−

108e2
√

s2
(
2sA1 s2 − ε

(
2sA3 s2 + s13

(√
s2 + 3

)))
+

108e4
√

s2
(
2sA2 s2 − ε

(
2sA4 s2 + s12

(√
s2 − 3

)))
+ 9e3

√
s2 s3/2

2 s2(24sA5 + αc + 4s20) +

e3
√

s2 ε(−(s10 − ss11 + 9(36s12 + 36s13 + s14 − s15))) + s10ε− ss11 e6
√

s2 ε + 9s14e
√

s2 ε− 9s15e5
√

s2 ε)
Equation (42) represents thermal conduction and its solution satisfies f11(τ, η) = − f10(η)

f11 =
∞

∑
n=1

Bne−λ2
nτ cos(λnη) (44)

where, Bn = −2
1∫

0

f10(η) cos(λnη)dη

Substituting (43) and (44) in Equation (38), we obtain,

f1 =
1

72s2
2

e−3
√

s2η(−s10ε− e6
√

s2ηs11ε− 6e
√

s2ηs14ε− 6e5
√

s2ηs15ε + 36e4
√

s2η(2A2s2 −

ε(2A4s2 + s12(−2 +
√

s2η))) + 36e2
√

s2η(2A1s2 − ε(2A3s2 + s13(2 +
√

s2η))) +

12e3
√

s2ηs2
2(3s20η2 + αcη3 + 6(A5 + ηA6)) +

eα2
c τ−3

√
s2−π2τ cos(πη)

24π4s
3
2
2 (s2 + π2)2(4s2 + π2)(9s2 + π2)

(π4s10(π
2 + s2)

2(π2 + 4s2)ε− e6
√

s2 π4s11(π
2 + s2)

2(π2 + 4s2)ε+ 4e
√

s2 π4s14(π
2 + s2)

2(π2 + 9s2)ε−
4e5
√

s2 π4s15(π
2 + s2)

2(π2 + 9s2)ε− 12e2
√

s2 π4(π2 + 4s2)(π
2 + 9s2)(2A1s2(π

2 + s2)−
(s2(s13(3+

√
s2 + 2A3s2) +π2(s13 + s13

√
s2 + 2A3s2))ε) + 12e4

√
s2 π4(π2 + 4s2)(π

2 + 9s2)(2A2s2(π
2

+ s2)− (s2(s12(−3+
√

s2 + 2A4s2)+π2(s12(−1+
√

s2)+ 2A4s2))ε)+ e3
√

s2 (−24A1π4s2(π
2 + s2)(π

2

+ 4s2)(π
2 + 9s2) + 24A2π4s2(π

2 + s2)(π
2 + 4s2)(π

2 + 9s2) + 12s
3
2
2 (π

2 + s2)
2(π2 + 4s2)(π

2 +
9s2)(−4αc + π2(4A6 + 2s20 + αc)) + π4(2π4s2(3s10 − 3s11 + 96s12 + 96s13 + 22s14 − 22s15 +
168(A3 − A4)s2) + π2s2

2(9s10 − 9s11 + 900s12 + 900s13 + 76s14 − 76s15 + 1176(A3 − A4)s2) +
4s3

2(s10 − s11 + 9(36s12 + 36s13 + s14 − s15 + 24(A3 − A4)s2) + π6(s10 − s11 + 4(3s12 + 3s13 +

s14 − s15 + 6A3s2 − 6A4s2)))ε)) +
eα2

c τ−3
√

s2−4π2τ cos(2πη)

24π2s
3
2
2 (s2 + π2)(s2 + 4π2)2(9s2 + 4π2)

(−π2s10(π
2 + s2)

2(4π2

+ s2)ε + e6
√

s2 π2s11(π
2 + s2)(4π2 + s2)

2ε− e
√

s2 π2s14(4π2 + s2)
2(4π2 + 9s2)ε + e5

√
s2 π2s15(4π2 +

s2)
2(4π2 + 9s2)ε + 12e2

√
s2 π2(π2 + s2)(4π2 + 9s2)(2A1s2(4π2 + s2)− (s2(s13(3 +

√
s2 + 2A3s2)

+ 4π2(s13 + s13
√

s2 + 2A3s2))ε)− 12e4
√

s2 π2(π2 + s2)(4π2 + 9s2)(2A2s2(4π2 + s2)− (s2(s12(−3
+
√

s2 + 2A4s2) + 4π2(s12(−1 +
√

s2) + 2A4s2))ε) + e−3
√

s2 (−3s2(π
2 + s2)(4π2 + s2)(4π2 + 9s2)

(8A1π2− 8A2π2 +
√

s2(4π2 + s2)(2s20 + αc))+ pi2(8π4s2(3s10− 3s11 + 96s12 + 96s13 + 22s14− 22s15
+ 168(A3−A4)s2)+π2s2

2(9s10− 9s11 + 900s12 + 900s13 + 76s14− 76s15 + 1176(A3−A4)s2)+ s3
2(s10−

s11 + 9(36s12 + 36s13 + s14 − s15 + 24(A3 − A4)s2) + 16π6(s10 − s11 + 4(3s12 + 3s13 + s14 − s15 +

6A3s2− 6A4s2)))ε))
eα2

c τ−3
√

s2−9π2τ cos(3πη)

648s
3
2
2 (s2 + 9π2)2

(648A1e2
√

s2 (1+ e
√

s2 )s2(9π2 + s2)− 1
π2(π2+s2)(9π2+4s2)

(108e
√

s2 π4s14(π
2 + s2)(9π2 + s2)

2ε− 108e5
√

s2 π4s15(π
2 + s2)(9π2 + s2)

2ε + 3π4s10(9π2 + s2)
2(9π2

+ 4s2)ε− 3e6
√

s2 π4s11(9π2 + s2)
2(9π2 + 4s2)ε + 324e2

√
s2 π4(π2 + s2)(9π2 + 4s2)(s2(s13(3 +

√
s2 +
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2A3s2) + 2A3s2) + 9π2(s13 + s13
√

s2 + 2A3s2))ε) + 324e4
√

s2 π4(π2 + s2)(9π2 + 4s2)(2A2s2(9π2 +

s2)− (s2(s12(−3+
√

s2 + 2A4s2)+ 9π2(s12(−1+
√

s2)+ 2A4s2))ε)+ e3
√

s2 (648A2π4s2(π
2 + s2)(9π2

+ s2)(9π2 + 4s2) + 4s
3
3
s (π

2 + s2)(9π2 + s2)(9π2 + 4s2)(−4αc + 9π2(4A6 + 2s20 + αc)) +
3π4(162π4s2(3s10 − 3s11 + 96s12 + 96s13 + 22s14 − 22s15 + 168(A3 − A4)s2) + 9π2s2

2(9s10 − 9s11 +
900s12 + 900s13 + 76s14 − 76s15 + 1176(A3 − A4)s2) + 4s3

2(s10 − s11 + 9(36s12 + 36s13 + s14 − s15 +
24(A3 − A4)s2) + 729π6(s10 − s11 + 4(3s12 + 3s13 + s14 − s15 + 6A3s2 − 6A4s2)))ε))
Substituting f1 in (38) and integrating this, we acquire numerical solutions of K2(τ) with the support
of the MATHEMATICA 8.0 software.

Similarly, K3(τ), K4(τ), etc., are considerably small in contrast to dispersion coefficient K2(τ).
Then, dispersion model Equation (24) becomes,

∂φm

∂τ
= K2

∂2φm

∂ξ2 (45)

with the help of Fourier Transform method (Rao [40]), we obtain the exact solution of (45), satisfying
Equations (14)–(16),

φm(ξ, τ) =
1
2

[
er f

(
ξs
2 + ξ

2
√

T

)
+ er f

(
ξs
2 − ξ

2
√

T

)]
(46)

where, T =
τ∫
0

K2(η)dη and er f (ξ) = 2√
π

ξ∫
0

e−z2
dz

4. Results and Discussion
With viscoelastic fluid confined by porous layers, the effects of electromagnetic fields and other

physical parameters (M = 0, 0.5, 1, 1.5; We = 10, 15, 20, 25; ε =1, 2, 3, 4; σ = (1, 5, 10)) on cartilaginous
cells are investigated. The perturbation technique and the GDM of Gill and SankaraSubramanian [28]
were used to solve the nonlinear DE (9) and (10) numerically. To investigate the impact of the
emerging parameters, computations were carried out with the parameters Pe = 100, α = 0.1, and
Re = 0.05 fixed. The obtained results were examined for different values of the relevant parameters.

Figures 2–5 elucidate the results of Equation (37), when used to calculate the dispersion co-
efficient with time, as well as the various impacts of the Hartmann and electric numbers, and the
viscoelastic and porous parameters. According to Equation (37), K′i s for i > 2 are insignificant in
comparison to K2(τ) and can be ignored. Equation (37) represents the unstable diffusion equation
with a time-dependent D̂. This figure shows that, for fixed values of α, Pe, and Re, the dispersion
coefficient increases as τ increases, and becomes free for large τ. These figures demonstrate that
the Kk increases with certain parameters, such as M, ε, We, and σ. The viscosity of the plasma of
diabetics is greater than that of non-diabetics, often resulting in a higher diffusion coefficient for
diabetic patients. The findings of this study are identical to the results of Alshehri and Sharma [1] on
dispersing solutes.

Figure 2. K2 − Pe−2 varying along τ for different M.
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Figure 3. K2 − Pe−2 varying along τ for different We.

Figure 4. K2 − Pe−2 varying along τ for different ε.

Figure 5. K2 − Pe−2 varying along τ for different σ.

The diffusion coefficient was calculated using the mean concentration from Equation (46).
Figures 6–9 show the impacts of on the concentration profile varying along ξ for a fixed time τ. It is
evident that the peak in mean concentration decreases as M, ε, We, and σ increase. It is symmetrical
and bell-shaped at the origin. In the presence of Hartmann number and electric number, the Lorentz
force, a resisting force created by the effects of a transverse magnetic field on an electrically conducting
fluid, reduces the fluid’s velocity and thickens the velocity and concentration boundary layer. The
fluid concentration falls as a result of this. The presence of porous media decreases the velocity and
concentration. We can see that the transfer of essential metabolites such as sugar and amino acids is
quite sluggish, and convective transfer accelerates them from a medical perspective in biomechanics
by means of mean concentration. As a result, the cells in the deep zone may receive fewer nutrients.
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Figure 6. φm varying along ξ for different M.

Figure 7. φm varying along ξ for different We.

Figure 8. φm varying along ξ for different ε.

Figure 9. φm varying along ξ for different σ.
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Figures 10–13 show the impact of various factors (M, We, ε, and σ) on the mean concentration
φm in articular cartilage over time. The concentration decreases as one moves deeper into the articular
surface. The figure also shows that concentration drops when M, ε, We, and σ are high. As time
τ increases, the mean concentration of non-Newtonian fluid approaches zero. Analyzing solute
transport over time is very useful. We can also see that fewer nutrients can flow through the cartilage
pores. This is in good agreement with the results of Bali and Shukla [38].

Figure 10. φm varying along τ for different M.

Figure 11. φm varying along τ for different We.

Figure 12. φm varying along τ for different ε.
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Figure 13. φm varying along τ for different σ.

5. Conclusions
The unsteady convective diffusion model was used to investigate the nutrient dispersion and

other protein transport from the synovial fluid to articular cartilage using the perturbation method.
This study’s key conclusions are

• Dispersion is accelerated by electromagnetic fields and other physical factors.
• In contrast to electromagnetic fields and other physical factors, the mean concentration drops as

axial distance and time increase.
• Cells in the centre receive more nutrients than those in the periphery.
• The dispersion mechanism formula is used by orthopaedic surgeons to assess how well joints

function.

In the future, a mathematical model for articular cartilage regeneration could be created using
the unsteady convective diffusion model, and this study could also be extended to investigate
the spatial and temporal dynamics of nutrient diffusion and extracellular matrix depletion at the
defect site.
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Nomenclature

(û, v̂) Horizontal and normal components of the fluid velocity
(x̂, ŷ) Cartesian coordinates
p̂ Pressure
ũ average velocity
B0 Magnetic induction
k Permeability of porous medium
Êx x component of electric field
Ĉ Species concentration
Ĉ0 Initial species concentration
D̂ Diffusion coefficient
Kk Dispersion coefficient
M Hartmann number
We Electric number
Re Reynolds number
Pe Peclet number
Da Darcy number
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Greek Symbols
µ Dynamic viscosity
η̂ Kinematic viscosity
α Slip parameter
σ0 Electrical conductivity
σ Porous parameter
ε Viscoelastic parameter
φ Concentration
φm Mean concentration
ρe Dimensionless charge density
τ Dimensionless time
ξ Dimensionless axial distance
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