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Abstract: Problems such as population growth, continuous stirred tank reactor (CSTR), and ideal
gas have been studied over the last four decades in the fields of medical science, engineering, and
applied science, respectively. Some of the main motivations were to understand the pattern of such
issues and how to obtain the solution to them. With the help of applied mathematics, these problems
can be converted or modeled by nonlinear expressions with similar properties. Then, the required
solution can be obtained by means of iterative techniques. In this manuscript, we propose a new
iterative scheme for computing multiple roots (without prior knowledge of multiplicity m) based
on multiplicative calculus rather than standard calculus. The structure of our scheme stands on
the well-known Schröder method and also retains the same convergence order. Some numerical
examples are tested to find the roots of nonlinear equations, and results are found to be competent
compared with ordinary derivative methods. Finally, the new scheme is also analyzed by the basin of
attractions that also supports the theoretical aspects.

Keywords: multiplicative derivative; nonlinear equations; Schröder method; order of convergence

MSC: 65H05; 65G99

1. Introduction

In the seventeenth century, Newton and Leibnitz created the differential and integral
calculus concept based on subtraction and addition operations. Later in the 1970s, Gross-
man and Katz [1] developed a different definition of differential and integral calculus that
utilized the multiplication and division operation instead of addition and subtraction. This
definition of differential and integral calculus is named multiplicative calculus. In 2008,
Bashirov et al. [2] contributed to multiplicative calculus and its applications. After this,
some authors worked on some applications of multiplicative calculus in different areas
such as biology [3], science and finance [4], biomedical sciences [5], economic growth [6],
etc. From the above discussion, we can say that the multiplicative calculus approach has an
important role in the field of applied sciences [7–17].

In 2016 and 2020, Özyzpici et al. [18] and Ali Özyzpici [19] suggested a new way to
solve nonlinear equations with the help of a multiplicative calculus approach (MCA). The
numerical results of these methods [18,19] have been found to be much better compared
with iterative techniques with a standard calculus approach. In these studies [18,19], re-
searchers focused only on the simple root of nonlinear equations. They did not discuss
multiple roots because finding the multiple roots of nonlinear expressions is a more com-
plicated and challenging task compared to simple roots. Retaining the same convergence
order and lengthy, complicated calculations, the complex body structure of the iterative
method and computational efficiency are also other reasons. In addition, most of the
iterative methods for multiple roots required prior knowledge of multiplicity m, which is
not practically possible to obtain in advance. According to our best knowledge, we have
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no iterative method based on the multiplicative calculus approach for multiple roots of
nonlinear equations in the available literature.

While keeping these things in mind, we propose a new iterative technique for multiple
roots with unknown multiplicity based on MCA. According to our best knowledge, we are
the first to report such a scheme with a multiplicative calculus approach that can handle
multiple roots. In addition, our scheme does not require prior knowledge of multiplicity
m. The structure of our scheme stands on the well-known Schröder method. We compare
our scheme with existing methods on the basis of absolute error difference between two
consecutive iterations, order of convergence, number of iterations, CPU timing, the graphs
of absolute errors, and bar graphs. We found that our methods perform much better in all
ways of comparison. Finally, we study the basin of attraction of our method, which also
supports the numerical results.

The details of the paper are as follows: Section 2 states the proposed multiplicative
method; Section 3 represents the convergence analysis of suggested methods; Section 4
demonstrates the experimental work of newly constructed schemes; Section 5 is devoted to
the graphical analysis of new methods; the last Section 6 depicts the concluding remarks.

1.1. Some Basic Terminologies

Definition 1 ([2]). The nonlinear function g : Ω ⊂ R→ R is multiplicative differentiable (g*) at
x or on Ω if it is positive and differentiable at x or on Ω, and it is defined as

g∗(x) =
d∗g
dx

= limh→0

(
g(x + h)

g(x)

) 1
h
,

g∗(x) = limh→0(4∗g)
1
h = e

g′(x)
g(x) ,

= e(ln◦g)
′(x).

(1)

In a similar pattern, the higher-order multiplicative derivative is defined as

g∗∗(x) = e(ln◦g
∗)′(x) = e(ln◦g)

′′(x), (2)

and, more generally,

g∗(n)(x) = e(ln◦g)
(n)(x), n = 0, 1, 2, . . . (3)

where (ln ◦ g) = ln(g(x)). Note in Equation (3) that n = 0 means no multiplicative
derivative and it depicts the original function g(x) = 1.

1.2. Some Results on Multiplicative Differentiation

Consider g and h to be multiplicative differentiable and ψ to be ordinary differentiable
functions. Let c be a positive constant; then, we have

1. (c)∗ = 1
2. (cg)∗(x) = g∗(x)
3. (g ◦ h)∗(x) = g∗(x)h∗(x)

4. ( g
h )
∗(x) = g∗(x)

h∗(x)

5. (gψ)∗(x) = g∗(x)ψ(x).g(x)ψ′(x)

6. (g ◦ ψ)∗(x) = g∗ψ(x)ψ′(x)

Definition 2. Suppose g : Ω ⊂ R→ R+ is a positive nonlinear function. Then, the multiplicative
nonlinear equation is defined as

g(x) = 1. (4)
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Theorem 1 ([20]). Let g : Ω→ R be (n+ 1) times multiplicative differentiable in an open interval
Ω. Therefore, for any x, x + a ∈ Ω, ∃ a number η ∈ (0, 1) such that

g(x + a) = ∏n
l=0

(
g∗(l)(x)

) al
l!
(

g∗(n+1)(x + ηa)
) an+1

(n+1)! . (5)

2. Proposed Schemes

Here, we consider the well-known Schröder Method defined as

xk+1 = xk −
g(xk)g′(xk)

(g′(xk))
2 − g(xk)g′′(xk)

, ∀k = 0, 1, 2, · · · . (6)

We replace the ordinary derivative g′(xk) and g′′(xk) of the function g(xk) with multi-
plicative derivative ln(g∗(xk)) and ln(g∗∗(xk)) in the method (6) and obtain the following
iterative method to solve the nonlinear equation:

Multiplicative Schröder Method (MSM)

xk+1 = xk −
ln(g(xk))ln(g∗(xk))

(ln(g∗(xk)))
2 − ln(g(xk))ln(g∗∗(xk))

, ∀k = 0, 1, 2, · · · . (7)

3. Convergence Analysis

Theorem 2. Assume the sufficiently multiplicative differentiable function g : Ω ⊆ R → R+

with r1 multiplicative root in an open interval Ω. Whenever x0 is sufficiently close to r1, the
multiplicative Schröder scheme (7) has quadratic convergence.

Proof. Let r1 be a multiplicative root of function g(x) such that g(r1) = 1. Since the
function g(x) is sufficiently multiplicative differentiable, by using Equation (5) and the
error equation ek = r1 − xk, we have

g(r1) = 1 = g(xk)g∗(xk)
ek g∗∗(xk)

e2
k
2 g∗∗∗(c1)

e3
k
6 , (8)

g(r1) = 1 = g(xk)g∗(xk)
ek g∗∗(c2)

e2
k
2 , (9)

where c1, c2 are between r1 and xk. Now, raising the power of (8) by ln(g∗(xk)) gives

1 = g(xk)
ln(g∗(xk))g∗(xk)

ln(g∗(xk))ek g∗∗(xk)
ln(g∗(xk))

2 e2
k g∗∗∗(c1)

ln(g∗(xk))
6 e3

k , (10)

and raising the power of (9) by ek ln(g∗∗(xk)) gives

1 = g(xk)
ek ln(g∗∗(xk))g∗(xk)

ln(g∗∗(xk))e2
k g∗∗(c2)

ln(g∗∗(xk))
e3
k
2 . (11)

Dividing (10) by (11) gives

g(xk)
ln(g∗(xk))

(
g∗(xk)

ln(g∗(xk))

g(xk)
ln(g∗∗(xk))

)ek
 g∗∗(xk)

ln(g∗(xk))
2

g∗(xk)
ln(g∗∗(xk))

e2
k
 g∗∗∗(c1)

ln(g∗(xk))
6

g(c2)
ln(g∗∗(xk))

2

e3
k

= 1. (12)
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After using the natural log on both sides of (12) and the properties of the natural log,
one can have

ln(g∗(xk))ln(g(xk)) + ln

(
g∗(xk)

ln(g∗(xk))

g(xk)
ln(g∗∗(xk))

)
ek + ln

 g∗∗(xk)
ln(g∗(xk))

2

g∗(xk)
ln(g∗∗(xk))

e2
k + O(e3

k) = 0,

ln(g∗(xk))ln(g(xk)) +
(

ln
(

g∗(xk)
ln(g∗(xk))

)
− ln

(
g(xk)

ln(g∗∗(xk))
))

ek+(
ln
(

g∗∗(xk)
ln(g∗(xk))

2

)
− ln

(
g∗(xk)

ln(g∗∗(xk))
))

e2
k + O(e3

k) = 0,

ln(g∗(xk))ln(g(xk)) +
(
(ln(g∗(xk)))

2 − ln(g(xk))ln(g∗∗(xk))
)

ek−

(ln(g∗(xk))ln(g∗∗(xk)))
e2

k
2
+ O(e3

k) = 0.
(13)

Rearranging the terms of the Equation (13), we have

ln(g(xk))ln(g∗(xk))

(ln(g∗(xk)))
2 − ln(g(xk))ln(g∗∗(xk))

= −ek

+
e2

k
2

(
ln(g∗(xk))ln(g∗∗(xk))

ln(g∗(xk))
2 − ln(g(xk))ln(g∗∗(xk))

)
+ O(e3

k).
(14)

Now, using ek = r1 − xk and the root r1 on both sides of the Equation (7), we obtain

r1 − xk+1 = r1 − xk +
ln(g(xk))ln(g∗(xk))

(ln(g∗(xk)))
2 − ln(g(xk))ln(g∗(xk))

,

ek+1 = ek − ek + e2
k(B) + O(e3

k),

ek+1 = e2
k(B) + O(e3

k),

(15)

where B = 1
2

(
ln(g∗(xk))ln(g∗∗(xk))

ln(g∗(xk))
2−ln(g(xk))ln(g∗∗(xk))

)
.

Hence, technique (7) has quadratic convergence.

4. Experimental Work

In this section, some experiments are performed on our iterative method and compared
with the existing methods of similar order of convergence. We contrast our multiplica-
tive Schröder method (MSM) to the well-known classical Schröder method (SM) (6). In
addition, we also compare it with the modified Newton’s method (MNM) [21], which is
defined as

xk+1 = xk −m
g(xk)

g′(xk)
. (16)

The method (16) requires prior knowledge of multiplicity m of the required root. All
the numerical work has been conducted using Mathematica 11. For the ordinary derivative
case, the stopping criterion is |g(xk)| < 10−50, and in the multiplicative derivative case,
|g1(xk)− 1| < 10−50. The iteration index k, CPU timing, and consecutive iteration error
|xk+1 − xk| are presented in Tables 1–6. Finally, the approximate computational order of
convergence (ACOC) ρ is calculated with the following formula:

ρ =
ln
|xp+1−xp |
|xp−xp−1|

ln
|xp−xp−1|
|xp−1−xp−2|

, for each p = 2, 3, . . . (17)

Remark 1. The meaning of expression m(±n) is m× 10±n in all the tables.
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Example 1. Firstly, we consider the population growth model that formulates the following nonlin-
ear function:

g(x) =
1000
1564

ex +
435

1564
(ex − 1)− 1.

In this model, we evaluate the birth rate denoted as x if a specific local area has 1000 thousand
people at first and 435 thousand move into the local area in the first year. Likewise, we assume
1564 thousand individuals toward the finish of one year. The computed results towards the required
zero xr = 0.1009979 . . . are displayed in Table 1. Clearly, the method MSM demonstrates better
results in terms of consecutive error, number of iterations, and CPU timing in comparison with
existing ones.

Table 1. Convergence behavior of the methods MNM, SM, and MSM at approximation x0 = 1.

Schemes k |x(k+1)− x(k)| ρ Total Number of Iterations CPU Time (Seconds)

MNM
2 3.7(−2) 2.000 5 0.203
3 6.7(−4)
4 2.1(−7)

SM
2 1.1(−1) 2.006 6 0.157
3 5.8(−3)
4 1.6(−5)

MSM
2 1.2(−5) 2.001 4 0.062
3 6.4(−12)
4 1.8(−24)

Example 2. Here, we study the nonlinear problem g(x) = xex2 − sin2(x) + 3cox(x)− 4 having
a zero xr = 1.06513 . . . . The evaluated results are demonstrated in Table 2. From the obtained
results in Table 2, we can say that our method is faster than the existing methods since our scheme
converges to the required root in only four iterations compared with the others that required seven
and eight. In addition, our scheme has the lowest absolute error difference and CPU timing among
the mentioned methods.

Table 2. Convergence behavior of the methods MNM, SM, and MSM at approximation x0 = 0.75.

Schemes k |x(k+1)− x(k)| ρ Total Number of Iterations CPU Time (Seconds)

MNM
2 2.1(−1) 2.938 8 0.078
3 2.1(−1)
4 1.9(−1)

SM
2 9.1(−2) 2.000 7 0.109
3 4.3(−2)
4 6.0(−3)

MSM
2 3.7(−3) 1.998 4 0.062
3 1.1(−5)
4 8.7(−11)

Example 3. Now, we test the methods on the continuous stirred tank reactor problem, which was
converted into the following mathematical expression by Douglas [22]:

κ
2.98(s + 2.25)

(s + 1.45)(s + 2.85)2(s + 4.35)
= −1. (18)

Here, κ denotes the gain of the proportional controller. For the values of κ, the control system is
stable; however, when κ = 0, we have the poles of the open-loop transferred function as the solutions
of the following nonlinear function:

g(x) = x4 + 1.5x3 + 47.49x2 + 83.06325x + 5.123266875. (19)
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The function g(x) has zero −2.85 with multiplicity m = 2. The outcomes of the suggested method
are demonstrated in Table 3 and results are equally competent compared with those of MNM
and SM.

Table 3. Convergence behavior of the methods MNM, SM, and MSM at approximation x0 = −2.5.

Schemes k |x(k+1)− x(k)| ρ Total Number of Iterations CPU Time (Seconds)

MNM
2 8.0(−6) 1.903 4 0.093
3 1.5(−12)
4 5.6(−26)

SM
2 1.6(−4) 2.187 4 0.078
3 5.8(−10)
4 8.1(−21)

MSM
2 3.4(−4) 2.266 4 0.125
3 2.7(−9)
4 1.7(−19)

Example 4. Lastly, we worked on the Van der Waals equation of ideal gas [23], which describes the
characteristics of real gas, and formed it into the following mathematical expression:

g(x) = x3 − 5.22x2 + 9.0825x− 5.2675.

One of its zeros, xr = 1.75, has multiplicity m = 2. The performance of different iterative schemes
has been shown in Table 4 and one can easily conclude that the proposed method MSM converges
much faster to the root than the other methods MNM and SM.

Table 4. Convergence behavior of the methods MNM, SM, and MSM at approximation x0 = 1.9.

Schemes k |x(k+1)− x(k)| ρ Total Number of Iterations CPU Time (Seconds)

MNM
2 9.0(−3) 1.995 6 0.078
3 1.1(−3)
4 2.0(−5)

SM
2 1.7(−3) 2.050 5 0.094
3 5.4(−5)
4 5.0(−8)

MSM
2 1.2(−3) 2.033 5 0.062
3 2.7(−5)
4 1.3(−8)

Example 5. Eigenvalues play a significant role in linear algebra and in many applications of image
processing. However, it is sometimes a tough task to evaluate eigenvalues if we have a matrix of
larger size. So, here, we focus on finding the eigenvalues of the following ninth-order matrix:

B =
1
8



−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 2 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24


,

The characteristic equation of matrix B forms the following polynomial function:
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g5(x) = x(x8 − 29x7 + 349x6 − 2261x5 + 8455x4 − 17663x3 + 15927x2 + 6993x− 24732) + 12960.

This function has a zero x = 3 of multiplicity m = 4. Table 5 reports the results of the proposed
scheme, which are much better in contrast with the available techniques in terms of errors, order of
convergence, and CPU time. Further, no doubt, MSM consumes an equal number of iterations but
with the lowest CPU time and less error.

Table 5. Convergence behavior of the methods MNM, SM, and MSM at approximation x0 = 31
10 .

Schemes k |x(k+1)− x(k)| ρ Total Number of Iterations CPU Time (Seconds)

MNM
2 2.0(−6) 2.000 4 0.156
3 9.2(−13)
4 2.0(−25)

SM
2 2.5(−6) 2.000 4 0.163
3 1.5(−12)
4 5.5(−25)

MSM
2 8.7(−7) 2.000 4 0.125
3 1.8(−13)
4 7.6(−27)

Example 6. Lastly, we applied the proposed methods to the clustering problem defined as

g6(x) = (x− 1)120(x− 2)150(x− 3)100(x− 4)55.

The function g6(x) has the zeros 1, 2, 3, 4 with multiplicity 120, 150, 100, 55, respectively. In
this example, we approximated the zero 1 with multiplicity 120. In Table 6, the numerical results
are depicted.

Table 6. Convergence behavior of the methods MNM, SM, and MSM at approximation x0 = 9
10 .

Schemes k |x(k+1)− x(k)| ρ Total Number of Iterations CPU Time (Seconds)

MNM
2 3.6(−4) 2.000 4 0.093
3 2.4(−7)
4 1.0(−13)

SM
2 4.4(−4) 2.000 4 0.188
3 3.5(−7)
4 2.2(−13)

MSM
2 4.4(−4) 2.000 4 0.156
3 3.5(−7)
4 2.2(−13)

Remark 2. The graphical error analysis of Examples 1 to 6 is shown in Figure 1. It is clear from all
subfigures of Figure 1 that our method of error reduction is faster than existing methods. In a similar
way, iteration comparisons of different existing methods with our method are given in Figure 2.
Clearly, the proposed method converges to root in less iterations compared with other schemes.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

(e) Example 5 (f) Example 6

Figure 1. Graphical error analysis.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 2. Cont.
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(e) Example 5 (f) Example 6

Figure 2. Iteration analysis.

5. Basin of Attraction

The concept of the basin of attraction confirms the convergence of all the possible
roots of the nonlinear equation within a specified rectangular region. So, we also present
dynamical planes [24] of modified Newton’s method (MNM), ordinary Schröder method
(SM), and multiplicative Schröder method (MSM) on different initial values in the rectan-
gular region [−2.5, 2.5]× [−2.5, 2.5]. We have chosen three problems to analyze the basin
of attraction for comparison of these three methods. Each image is plotted by an initial
guess as an ordered pair of 256 complex points of the abscissa and coordinate axis. If an
initial point does not converge to the required root, it is plotted with black color; otherwise,
different colors are used to represent different roots with tolerance 10−3.

Example 7. The scalar function z2 − 1 has the zeros {−1, 1}. In Figure 3, pink and yellow colors
represent the convergence of zeros and black color for the divergence. It is clear that the proposed
methods are approaching the desired zero.

(a) MNM (b) SM (c) MSM

Figure 3. Dynamical planes of new and existing methods for Example 7.

Example 8. The nonlinear function z3 − 1, having the zeros {1, e
2πi

3 , e
4πi

3 }, is tested and the basin
of attraction is shown in Figure 4. The divergence area is very small in MSM.

Example 9. Lastly, the basin of attraction of the nonlinear function z3 + z with zeros {0,−i, i} is
shown in Figure 5. It is clear that the method SM has a more divergent area in comparison with the
proposed method.



Math. Comput. Appl. 2023, 28, 28 10 of 11

(a) MNM (b) SM (c) MSM

Figure 4. Dynamical planes of new and existing methods for Example 8.

(a) MNM (b) SM (c) MSM

Figure 5. Dynamical planes of new and existing methods for Example 9.

6. Conclusions

In this paper, we proposed a new iterative method with the help of MCA. Schröder’s
iterative method and multiplicative derivatives are the two main pillars of our scheme. We
studied the convergence analysis of the presented method. The suggested scheme did not
require the prior knowledge of multiplicity m. In addition, we also provide a more efficient
solution to the population growth, continuous stirred tank reactor (CSTR), ideal gas, and
academic problems compared with the existing solutions.

We compared our techniques on the basis of (i) the absolute error difference between
two consecutive iterations, (ii) the order of convergence, (iii) the number of iterations,
(iv) CPU timing, (v) the graphs of absolute errors, and (vi) bar graphs. In all six different
ways, we found that our method performs much better in comparison with the existing
methods. Finally, we studied the basin of attraction, the findings of which also support the
numerical results. In future work, we will focus on the multi-point iterative methods for
multiple roots as well as for systems of nonlinear equations. This area will open a new,
veritable Pandora’s Box of iterative methods.
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