
Citation: Smith, B.I.; Chimedza, C.;

Búhrmann, J.H. Treatment Effect

Performance of the X-Learner in the

Presence of Confounding and

Non-Linearity. Math. Comput. Appl.

2023, 28, 32. https://doi.org/

10.3390/mca28020032

Academic Editors: Hans Beushausen

and Sebastian Skatulla

Received: 18 January 2023

Revised: 17 February 2023

Accepted: 21 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

Treatment Effect Performance of the X-Learner in the Presence
of Confounding and Non-Linearity
Bevan I. Smith 1,* , Charles Chimedza 2 and Jacoba H. Bührmann 1,*

1 The School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand,
Johannesburg 2000, South Africa

2 School of Statistics and Actuarial Science, University of the Witwatersrand, Johannesburg 2000, South Africa
* Correspondence: bevan.smith@wits.ac.za (B.I.S.); joke.buhrmann@wits.ac.za (J.H.B.)

Abstract: This study critically evaluates a recent machine learning method called the X-Learner,
that aims to estimate treatment effects by predicting counterfactual quantities. It uses information
from the treated group to predict counterfactuals for the control group and vice versa. The
problem is that studies have either only been applied to real world data without knowing the
ground truth treatment effects, or have not been compared with the traditional regression methods
for estimating treatment effects. This study therefore critically evaluates this method by simulating
various scenarios that include observed confounding and non-linearity in the data. Although
the regression X-Learner performs just as well as the traditional regression model, the other base
learners performed worse. Additionally, when non-linearity was introduced into the data, the
results of the X-Learner became inaccurate.

Keywords: treatment effects; counterfactuals; confounding

1. Introduction

In order to improve graduation rates, universities employ various interventions for
students to participate in such as extra face-to-face tutorials [1], supplementary videos [2],
orientation programs [3], early alert processes [3], and grants [3]. The aim is to improve
various student outcomes, such as retention and graduation [3] or final grades [1,2,4].
The challenge however, is being able to accurately estimate if the interventions improve
outcomes, i.e., to estimate true treatment effects. Interventions in higher education settings,
such as extra tutorials or online videos, are generally observational studies, not randomized
studies [3–7]. This is due to students self-selecting to attend the intervention and not
being randomly assigned. The problem with observational studies is that the estimation
of the treatment effects generally introduces bias thereby not yielding accurate treatment
effect estimations [8]. Traditional ways of estimating treatment effects in observational
studies include regression, propensity score matching (PSM) [9,10], and inverse probability
of treatment weighting (IPTW) [10]. Regression methods fit a regression model to the
observed data, including confounding features, and estimate the treatment effect coefficient.
Matching methods aim to measure treatment effects by creating a counterfactual group by
matching observations in treated and control groups. However, this causes the dataset to
shrink due to needing to match cases that balance the treated and control groups.

Recently, a new method called the X-Learner has been introduced, that uses machine
learning to estimate treatment effects in observational studies [11]. It has been applied
in higher education studies to estimate treatment effects [1,4,12]. This method estimates
treatment effects not by balancing the control and treated datasets to obtain counterfactuals
(as in PSM), but by predicting counterfactuals and including them in the treatment effect
estimation. Because of not needing to balance the groups, the full dataset is preserved and
no observations are lost [13]. Although this counterfactual prediction method (X-Learner)
shows promise, the problems are the following:
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• The above-mentioned studies [1,4,12], were carried out on real-life data where the
true treatment effects were not known. Studies are therefore required where the true
treatment effect is known, in order to evaluate the accuracy of the X-Learner method.
Smith et al. [1] attempted to validate the X-Learner method by comparing it with
PSM estimations; however the ground truth average treatment effect (ATE) was still
not known. Beemer et al. [4] and Beemer et al. [12] applied this method to student
performance data but did not attempt to validate with alternative methods.

• Kunzel et al. [11] did carry out simulation studies with known treatment effects;
however they did not compare these results with traditional regression methods for
estimating treatment effects. This is important because as we will see, the X-Learner
method is a multi-step complicated computation, and if it does not provide clear
benefits over traditional methods, then it might not be worthwhile.

Therefore, the main aim of this study was to carry out a critical study of the X-Learner
method by performing simulation studies where the true treatment effect, ATEtrue, was
known and where the X-Learner was compared with traditional regression methods. This
study is important for determining to what extent this method can be used to measure
treatment effects in higher education (and elsewhere) on real life datasets. Due to observa-
tional studies generally possessing bias due to confounding, all simulations in this study
included a single feature confounding. We also aimed to study how non-linearity affected
the results.

The X-Learner is known as a meta-learner, since it can use any supervised learning
model as a base learner, to perform computations [13]. The models used in our study were
linear regression, lasso regression, and random forest. This is, as far as we know, the first
study to simulate this method investigating how confounding, non-linearity and different
supervised learning models affect the treatment effect estimations. Kunzel et al. [11]
simulated unobserved confounding whereas we simulated observed confounding. They
used random forest and Bayesian regression trees (BART), whereas we introduced linear
regression and lasso regression. The results of the X-Learner were compared with the
ground truth treatment effects, as well as standard methods for estimating treatment effects,
namely traditional regression and a naive method.

Main Contributions

The X-Learner was compared with traditional regression methods for estimating treat-
ment effects. The X-Learner used three base learners, namely linear model, regularized
linear model (lasso), and random forest to estimate known treatment effects. In all sim-
ulations, the traditional regression methods outperformed every X-Learner in terms of
estimating the true treatment effect. In general, the X-Learner linear model performed
better than the lasso model which performed better than the random forest base learner,
when the simulated data were linear. When the data were non-linear, random forest tended
to perform better than lasso. The main contribution of this work is that for the simulated
condition of single feature confounding and non-linearity, the X-Learner presents no clear
benefits over traditional regression methods. Although the X-Learner using a regression
base learner, performs just as well as the traditional regression model, it requires a number
of extra steps to perform just as well. The other base learners performed much worse
than the traditional methods. Additionally, when non-linearity was introduced into the
data, the results of the X-Learner became inaccurate. It may perform well under different
circumstance, but did not outperform traditional methods under the range of scenarios
presented in this study.

2. Related Work

Estimating treatment effects in studies in education were traditionally carried out
using approaches, such as regression [5,14,15] and propensity score matching [1,16]. The
use of machine learning methods for predicting student performance has been seen for
approximately twenty years in the literature [17,18]. Other online studies using machine
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learning included [19–21]. However, the use of machine learning for predicting treatment
(or causal) effects in educational studies is relatively new [2,4].

As introduced above, estimating counterfactuals are the key to causal inference. Coun-
terfactuals can be used to investigate causality in questions like “If there had been more
police patrols would the attack at the bus stop have been prevented?” Regression type
models have been used to evaluate counterfactuals [22]. The use of counterfactuals in
machine learning has become popular of late, and is drawing a lot of attention[23].

Recently, new machine learning methods called meta-learners have been introduced to
the literature where machine learning methods have been applied to estimating treatment
effects. These meta-learners are methods that use machine learning models, such as random
forest [2,24], regression trees [11,25], k-nearest neighbors [11] as base learners to estimate
treatment effects. Currently, there are three primary meta-algorithms in the literature,
namely the S-Learner, T-Learner, and X-Learner [11,13].

The use of these meta-learners has not seen widespread use in studies in education.
Until now, only three studies have been found that use the X-Learner in educational
settings [1,4,12]. Beemer et al. [4] applied the X-Learner to real life data with the hope of
estimating individual treatment effects for students. The aim was to carry out personalized
learning. In a follow up study, Beemer et al. [12] used the same methods to compare
treatment effects of online vs. in-person teaching. Smith et al. [2] applied the X-Learner
to predict treatment effects for students but went a step further by aiming to validate the
results by comparing with the more traditional propensity score method. The problem
with the above three studies is that the X-Learner was applied to real life data without
knowing the true treatment effect. This is the challenge when applying causal inference
to real life data: the ground truth treatment effects are not known. This forms the main
impetus for the need of this study. How does the X-Learner perform when we do know the
true treatment effect? This is done via simulation.

The fundamental idea behind meta-learners is to train machine learning models on
treated and control groups separately and then use these models in various combinations to
estimate treatment effects. In the literature there have been similar ideas that train separate
models on the control and treated groups. For example, Jennifer Hill trained Bayesian
additive regression trees (BART) on linear and non-linear data in simulation studies, with
the aim of estimating treatment effects [25]. Athey and Imbens trained separate random
forest models on the treated and control groups [26]. Both of these methods estimated
treatment effects using Equation (1). The difference between their method and the X-
Learner method, is the estimation of the counterfactuals as shown above. Furthermore,
both studies assume unconfoundedness whereas ours introduces observed confounding.

3. Observational Studies and Treatment Effects

Traditional ways of estimating treatment (causal) effects are either to carry out a
randomized control trial (RCT), the gold standard of experimental studies [8], or controlling
for observed confounders in observational (non-randomized) studies [27]. Although the
benefits of randomized trials are evident, we often only have access to observational data,
which generally produces biased treatment effects due to self-selection confounding [8,28].
An example of an observational study is where we are aiming to estimate the treatment
effect of online educational videos on the grades of university students. The treated group
would be those students that watched supplementary online videos and the control group
would be those that did not. Therefore, the treatment is the watching of videos. The
important idea here is that in an observational study, the students self-selected to watch the
videos thereby potentially introducing confounding.

Treatment effects can be measured via the average treatment effect, ATE seen in
Equation (1), which is the difference between the expected outcome of the treated and
control groups:

ATE = E(Yt)− E(Yc). (1)
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However, in observational studies, ATE is generally not the true treatment effect, but a
naive effect containing bias due to confounding. Equation (1) will therefore, in general, not
estimate the true treatment effect. The true ATE in observational studies can be computed
using Equation (2) [28],

ATE = π(E(Yt)− E(Ŷt)) + (1− π)(E(Ŷc)− E(Yc)), (2)

where Ŷt and Ŷc are the counterfactual outcomes (introduced earlier) for the treated and
control groups, respectively, and Yt and Yc are the actual outcomes of the treated and
control groups, respectively. The quantity π refers to the fraction of observations receiving
the treatment, called the participation rate. It is important to note that the counterfactual
outcomes cannot be measured (this is the fundamental problem of causal inference [29]),
and the challenge here is to find a method that can predict the counterfactuals.

4. Confounding Bias in Observational Studies

In observational studies, bias due to confounding occurs when both the outcome Y
and the treatment T are caused by a common parent X [13], shown in the directed acyclic
graph (DAG) in Figure 1. An example of confounding is where students are assigned (or
self-select) an intervention (T), say extra videos or tutorials, based on their current grades
(X), which also affect the outcome (Y). The problem is that T possesses inherent bias that
does not result in the true ATE when applying Equation (1). The phenomenon seen in
Figure 1 is also known as the backdoor path, where association from T to Y is not only
direct but via X (the backdoor).

Figure 1. Directed acyclic graph showing confounding.

Ideally, we want T to be independent of X so that the unbiased treatment effect [8] of
T on Y can be measured, shown in Figure 2. The scenario in Figure 2 can take place if we
randomize which students take the treatment and thereby eliminate any causal relationship
T has with X. This is however not always possible due to ethical reasons: we can not and
should not refuse any students access to an academic intervention.

Figure 2. Directed acyclic graph showing no confounding.

If we cannot randomize, as in the case of observational studies, we can block the
backdoor path between T and Y, either by regression or matching techniques [13].

The Counterfactual

The idea behind either randomization in randomized trials or controlling/adjusting
(from observational studies), is that we are trying to create a counterfactual scenario. A
counterfactual is where everything remains the same, and only one thing changes, i.e., the
treatment. In confounding in Figure 1 this was not the case. As T was changing, so was X:
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T was a function of X. The goal is that only T would change. That is where Figure 2 comes
in which is to keep everything else fixed, while only changing the treatment. Practically,
we create counterfactuals by having two groups that are statistically identical, and then
only change the treatment. These groups are known as treatment and control.

The whole aim of the X-Learner therefore is to try to compute counterfactuals in order
to estimate true treatment effects. The method is presented next.

5. X-Learner Method

For a dataset where a treatment was administered, the method for predicting the
counterfactuals and computing the treatment effect is as follows:

1. Split the entire dataset into treated and control groups.
2. Train a machine learning model Mt on the treated group and a model Mc on the

control group.
3. Predict treated group counterfactual, Ŷt, by feeding the treated group input features,

Xt, into the control group model Mc. Predict control group counterfactual, Ŷc, by
feeding the control group input features, Xc, into the treatment model Mt.

4. Estimate the true treatment effect using Equation (2).

This method therefore uses supervised learning to estimate counterfactuals by predict-
ing what the treated group would have obtained, had they received the control and what
the control group would have obtained, had they received the treatment. The idea behind
this method is that we feed the input features of a certain group, into a model that was
trained on other features of another group. That model then “imprints” its characteristics
onto the input features. Therefore, for example, feeding the control group input features
into the treated model, will imprint the treatment group characteristics onto the control
group to thereby estimate the control group counterfactual. Similar for the treatment group.
Furthermore, as mentioned earlier, using this method with Equation (2) preserves the use
of the entire dataset [13].

6. Simulations

To evaluate the X-Learner, we performed various simulations. All simulations in-
cluded a single observed confounding feature and half the simulations were based on linear
relationships and half were non-linear. The aim was to ascertain how well the X-Learner
performs when confounding and non-linearity are present, with different base machine
learning models. The models being used as base learners were linear regression, lasso
regression, and random forest.

6.1. Dataset Features

Our generated dataset, shown in Table 1, comprised seven input features (including a
treatment indicator), and a target output feature. The dataset mimics data from a university
course, where the input features represent grades and demographic features of students,
and the output is a final course grade. The binary variables Gender and Bursary were
simulated using a Binomial distribution since the number of observation in each groups can
be varied [30]. A normal distribution was assumed for continuous data. This is consistent
with other studies where normality was assumed in the data generating process [2,31].
Table 1 presents the input features and how the data for each feature was generated. The
three grades features, x1, x3, and x6 describe grades for three courses (A, B, and C) that a
student could have in a semester, with mean values of 50%, 45%, and 70%, respectively. The
Age feature describes the age distribution of first year students. Gender is slightly skewed
to one side with a probability of 0.6, as in the case of real-world data [1]. We further included
a government Bursary feature with a probability of receiving the bursary equal to 0.3. The
sample size generated for each simulation was 1000 and for each simulation we carried out
500 iterations. Other educational studies used samples sizes between approximately 200
and 10,000 [32,33] and, therefore, our sample size of 1000 was considered suitable [34,35].
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Furthermore, typical cohort sizes of first year engineering courses are approximately
1000 [2].

Table 1. Description of generated data.

Name Description Distribution

x1 Grades A Normal, µ = 50, sd = 5
x2 Age Normal, µ = 20, sd = 2 (minimum of 18)
x3 Grades B Normal, µ = 45, sd = 6
x4 Gender Binomial, prob = 0.6
x5 Bursary Binomial, prob = 0.3
x6 Grades C Normal, µ = 70, sd = 7
T Treatment see Equation (4)

The following simulations were run which are elaborated on in the subsequent sections.

1. Simulation A: Confounding; linear dataset.
2. Simulation B: Confounding, non-linear (squared) dataset.

For each category above, we tested the methods on a range of true treatment ef-
fects (ATEtrue) and participation rates, π. The following simulations were run which are
elaborated on in the subsequent sections.

6.1.1. Simulation A: Linear and Confounding

We first generated a linear dataset with single feature confounding (as per Figure 2).
The structural causal model (SCM) is shown in Equation (3). Y was generated from the
input features plus a Gaussian error of zero mean and standard deviation of 1. All variable
were simulated to be independent and no multi-collinearity existed between features. The
only variables that had dependent relationships were treatment variables T, x3, and the
outcome Y.

Y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + ATEtrueT +N (0, 1) (3)

Arbitrary values for the coefficients were chosen as follows: β0 = 0.4, β1 = 0.6,
β2 = 0.4, β3 = 0.9, β4 = 0.7, β5 = 0.4, and β6 = 0.4. These coefficients were used for all
subsequent simulations.

Confounding was introduced via a single feature, x3, to simulate an observational
study. That is, we made x3 a parent of both T and Y, as shown in Figure 1, introducing a
backdoor path. Treatment was now dependent on a single observable feature. Confounding
was simulated as per the treatment assignment in Equation (4): if any student obtained
below 41% for their x3 grade, they would attend the intervention, i.e., receive treatment and
be encoded as 1. If any student obtains above 49% they would not attend the intervention,
and be encoded as 0. Between 41% and 49% we generated a probability of 0.5 based on a
normal distribution, indicating that in this region there is a 50% probability of the students
receiving the treatment.

T =


1 if x3 < 41%
0 if x3 > 49%
0.5 probability between 41% and 49%

(4)

6.1.2. Simulation B: Non-Linear (Squared) and Confounding

The previous simulation was linear in all the features. We next generated non-linearity
by squaring x1 in the data generating process. Since we are not fitting a model to existing
data but generating non-linear data, we chose to simply square x1 as shown below. The
remainder of the features all had a linear relationship with Y and coefficients as per above.
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Confounding was introduced in the same manner as the linear simulations. The SCM is
seen in Equation (5):

Y = β0 + β1x2
1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + ATEtrueT +N (0, 1) (5)

6.1.3. Range of ATEtrue Values

A further aim was to study a range of true ATE values. ATEtrue was varied as follows:
[50, 10, 1]. The aim of varying ATEtrue as shown was to determine if large treatment effects
(50) would affect the method differently to smaller ones (10, 1).

After generating the data, we then estimated ATE using the Equation (6) which is
similar to Equation (2):

ATEsim = π(E(Yt)− E(Ŷt)) + (1− π)(E(Ŷc)− E(Yc)) (6)

We therefore computed ATEsim using the X-Learner method (see pseudocode in
Section 6.1.4) for a range of true treatment effects.

6.1.4. Pseudocode for Simulating the X-Learner Method

The pseudocode for the simulations is presented below (Pseudocode 1).

Pseudocode 1 for each run of a simulation of the X-Learner method

1. Generate data: x1 to x6, T and Y as per Table 1 and Equations (3) and (5)
depending on type of simulation.
2. Split dataset into treated and control groups.
3. Train the three models (linear model Mt, lasso Lt, random forest Rt) on treated group;
train the three models (linear model Mc, lasso Lc, random forest Rc) on control group.
4. Feed treated group input features x1 to x6 into linear model Mt, lasso Lt, random forest Rt
to predict treated group counterfactual Ŷt for each model;
feed control group x1 to x6 into Mt, Lt and Rt to predict control group counterfactual Ŷc
for each model.
5. Compute ATEsim for the three models, as per Equation (2) and store.

7. Linear Regression, Lasso and Random Forest Models

This study made use of three models to carry out the X-Learner predictions in the
simulations: linear regression, lasso regression, and random forest. Linear regression was
used as a base model. Lasso regression and random forest were used to see if they perform
better than linear regression when non-linearity and confounding are present in the data.

The linear regression model is a basic parametric model using ordinary least squares
to estimate the coefficients.

The lasso model [36] is a regularized regression model that is able to shrink to zero
correlated features by introducing a penalty on the coefficients as follows:

λ
p

∑
j=1
|β j| (7)

where λ is a penalty, p is the number of features, and β refers to the coefficients in the
parametric model. When training the lasso models, 10-fold cross validation was employed
to obtain the λ values that minimize the mean-squared-error during training. Once the λ
values were obtained, they were utilized in the lasso models to carry out predictions.

The third model random forest, is an ensemble method that generates multiple decision
trees and averages the outcome for regression problems such as the one in this study. It is a
non-parametric machine learning model that generates each tree by carrying out bootstrap
aggregating on the observations and random selection of a subset of the features. This
allows for the trees in the ensemble to be decorrelated and produce superior results when
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compared with single decision trees. They also are able to handle non-linearity well due to
their non-parametric nature [36].

8. Baseline Methods

The X-Learner used three base models, linear (LM), lasso, and random forest (RF). We
further compared the X-Learner (using the three models) against two baseline methods:
one being the traditional regression method (Reg) and the other being the naive method
(Naive). The regression method is simply to fit a regression model to the data, including
the confounding variable and to read off the treatment indicator coefficient. The naive
method computes the average treatment effect as per Equation (1), by simply computing
the average outcome of treatment and control and calculating the difference.

Please note that this linear regression baseline method should not be confused with
using regression inside the X-Learner, as per Section 7. They baseline regression method is
to fit a linear regression model to the entire dataset as is done traditionally.

There are therefore five methods for estimating ATE and comparing it with the true
ATE: three X-Learner methods and two baseline methods.

9. Software

The simulations were run in R [37] using the RStudio integrated development envi-
ronment [38]. The glmnet [39] and caret [40] packages were used for lasso and random
forest, respectively.

10. Results

Here we report two main results. The first is to compare the ATE estimation of the
different methods using Equation (6). As mentioned, we simulated this 500 times and
plotted the distribution of ATEsim results for each of the five methods. The second result is
to compare the results based on the participation rate.

10.1. ATE Estimation for the Different Methods

For all the scenarios, five ATE quantities were compared with ATEtrue: two baseline
methods, Reg and Naive, and three X-Learner methods, LM, lasso, and RF. The results
were compared using boxplots to visualize the distribution of predicted treatment effects.

Figure 3 presents results for where the ground truth treatment effect ATEtrue = 50,
for both linear and non-linear simulations. The horizontal red lines in all the subsequent
figures refer to ATEtrue. In the linear data simulations, the traditional regression model,
Reg, and the X-Learner linear model (LM) performed accurately whereas Naive, Lasso, and
RF did not have any overlap in their distributions. Therefore, none of those mentioned had
any estimations that equaled the true ATE. Naive appears to have performed the worst
which is not surprising since it computed the difference between the mean treatment and
control groups which contain bias.

For the non-linear simulations, again we find that Reg and LM perform the best.
Lasso performed poorly. It showed a distribution that was even further from ATEtrue
than for the linear results. RF on the other hand, appears to have more overlap with
the true values, when compared with the RF linear results. This may be due being able
to handle non-linearity well. The Naive results are now shown to have a much larger
range of results with some overlap of the true values. This large range is most likely due
to introducing non-linearity. For all non-linear results, there is a larger spread of values
suggesting instability.
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Figure 3. Box plots of the ATE estimations for the five methods where ATEtrue = 50. (a) linear.
(b) non-linear.

For the remaining results for ATEtrue = 10 and 1 (Figures 4 and 5), we see similar
patterns as those for ATEtrue = 50. Reg and LM performs well on both linear and non-linear
data; Naive is the worst performer on the linear data but has overlap on the non-linear
data; Lasso performs poorly on linear and non-linear (i.e., no overlap) and RF performs
better on the non-linear data.
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Figure 4. Box plots of the ATE estimations for the five methods where ATEtrue = 10. (a) linear.
(b) non-linear.
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Figure 5. Box plots of the ATE estimations for the five methods where ATEtrue = 1. (a) linear.
(b) non-linear.

Mean, standard deviation, and t-test p-value results for ATEtrue = 50, are presented
in Tables 2 and 3. The results show that the p-values for Reg and LM are not significant,
indicating they are not statistically different from ATEtrue (95% confidence interval). This
means they predict the true treatment effect well. However, the rest of the methods were
statistically different (p-value < 0.05).
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Table 2. Summary results for ATEtrue = 50, linear.

Method Mean SD p-Value

Naive 43.0 19.9 0.00
Reg 50.0 0.06 1.28
LM 49.9 1.62 0.98

Lasso 51.0 0.11 0.00
RF 48.1 0.14 0.00

Table 3. Summary results for ATEtrue = 50, non-linear.

Method Mean SD p-Value

Naive 43.6 22.8 0.09
Reg 50.5 1.74 0.10
LM 50.0 1.66 0.10

Lasso 5.04 5.32 0.00
RF 44.1 0.14 0.00

10.2. Effect of Participation Rate

Here we look at how the participation rate affects the estimation of each method. For
sake of brevity, we only look at ATEtrue = 10. Figure 6 shows the results of the Naive
method for participation rates of 10%, 50%, and 90%. For the linear dataset, the 50% rates
show results closer to ATEtrue than for the more imbalanced participation rates. For non-
linear, all three participation rates overlap ATEtrue but the 50% has the narrowest range
and median line close to ATEtrue. The results suggest that higher imbalance pushes results
further from the true results and non-linearity introduces much larger ranges.
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Figure 6. ATEtrue = 10 estimations for different participation rates for Naive method. Note that the
scales of the two figures are not the same. (a) Naive linear. (b) Naive non-linear.

For the traditional regression methods in Figure 7, the higher imbalance (0.1 and 0.9)
result in larger ranges of ATE predictions; for both linear and non-linear. Therefore, degree
of imbalance appears to affect the ATE prediction.

Moving on to the X-Learner LM method (Figure 8), higher imbalance (0.1 and 0.9)
show larger ranges than 0.5, as before. This suggests that if there is large imbalance,
this might cause overlap with the true value, but often it will be incorrect. The 0.5 rates
have much narrower ranges. Again we see for non-linear data, the ranges are very large,
compared with linear.
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Figure 7. ATEtrue = 10 estimations for different participation rates for Regression method. Note that
the scales of the two figures are not the same. (a) Reg linear. (b) Reg non-linear.
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Figure 8. ATEtrue = 10 estimations for different participation rates for X-Learner LM method. Note
that the scales of the two figures are not the same. (a) X-Learner LM: linear. (b) X-Learner LM:
non-linear.

The results for X-Learner Lasso are shown in Figure 9. Higher imbalance is seen to
push results further from ATEtrue and increases the spread of results. When we introduce
non-linearity, higher imbalance is shown to push results egregiously far from ATEtrue. In
non-linearity, the error seems to be magnified considerably more.

Similar results are found for X-Learner RF, shown in Figure 10. Higher imbalance
results in estimations that are further from the true value than the 0.5 and higher imbalance
causes larger ranges of values.
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Figure 9. ATEtrue = 10 estimations for different participation rates for X-Learner Lasso method. Note
that the scales of the two figures are not the same. (a) X-Learner Lasso: linear. (b) X-Learner Lasso:
non-linear.
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Figure 10. ATEtrue = 10 estimations for different participation rates for X-Learner RF method. Note
that the scales of the two figures are not the same. (a) X-Learner RF: linear. (b) X-Learner RF:
non-linear.

11. Discussion

This study presents, as far as we know, the first simulation study investigating the
performance of the X-Learner method in the presence of observed confounding and non-
linearity, as well as evaluating three supervised learning models and comparing it with
traditional methods. It was vital to compare this method with a traditional method to
determine if it is worth it to carry out the extra complex steps.

The main finding of this study is that the X-Learner presents no clear benefits over
the traditional regression method, for the scenarios simulated here. It may outperform
traditional methods under different scenarios not covered here, such as for non-constant
treatment effects [11]. However, in our study, the traditional regression method of esti-
mating treatment effects by computing the treatment indicator coefficient, outperforms
the X-Learner method: in both linear and non-linear data simulations. Fitting a regression
model and obtaining the treatment effect coefficient, provides sufficiently accurate results.
The X-Learner LM (i.e., X-Learner with regression base learner) performs just as well as
the traditional regression model; however, it requires extra work to compute and does not
provide any clear benefits for that extra work. In their study where they introduce the
X-Learner, Kunzel et al. [11] suggest that the X-Learner is able to perform well when the
treatment effects are non-constant treatment effects ATE and when there is high imbalance.
In our study, we kept our ATE constant so it is hard to compare our results with theirs.
However, our results show that with higher imbalance, the X-Learner performs worse that
with perfect balance.

As discussed earlier, the X-Learner Lasso and RF methods did not perform well at all. It
was surprising that the X-Learner Lasso performed so poorly. Under linear conditions it was
second best to the linear models. However, under non-linear conditions, its performance
was egregious. The use of regularized regression, such as lasso or ridge regression, to adjust
for confounding, has been used in the literature [41,42]. Franklin et al. [41] compared the
use of ridge and lasso regression with high-dimensional propensity score estimations, to
adjust for confounding in a simulation study. They showed that regularized regression
methods generally performed worse than the traditional propensity score approaches.
Lasso regression aims to eliminate multi-collinearity in models. So if two features are
highly correlated, lasso would aim to remove one of them from the model. However, in
causal inference, if a confounder exists in the data, then we would ideally like to include
it in our model. Leaving a confounder out of the model will bias the treatment effect
coefficient [43]. Therefore, it could be that because the treatment indicator T is a function of
the confounder x3 (see Equation (4)), there exists correlation between T and x3. Therefore,
when applying lasso as the base learner, it aims to reduce one of the features to zero and
may therefore affect the estimation of the treatment effect. In our case there was a −0.6
correlation coefficient between T and x3 and, therefore, might be the reason behind the
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poor performance. Therefore, lasso may be fine if we had correlation existing between two
features where one is not a confounder. However, not if one of the features is a confounder.
This is why it is vital, in any causal inference study, to carry out some form of causal
discovery where we can determine the true causal structure in the data. Furthermore,
lasso regression is based upon the linear regression model, but uses a more restrictive
method for estimating the coefficients (as discussed in Section 7). Lasso can, therefore, be
less flexible than linear regression [36] and may contribute to why it does not outperform
simple X-Learner LM.

Although not applying the same meta-learner method used in our study, [25] com-
pared non-parametric Bayesian additive regression trees (BART) with traditional methods
such as PSM and regression based methods, by fitting models to a treated group and control
group separately. Whereas our method trains models on the treated and control groups and
uses predicted counterfactuals as per Equation (2) [25], only trains models on the treated
and control groups and uses Equation (1). Furthermore, the non-linear simulations in [25]
meant the treatment response was non-linear (heterogeneous), whereas our study kept the
treatment response constant (homogeneous) and made a single feature, x1, non-linear. The
treatment itself in [25] varied as the features varied. In the non-linear simulations in [25]
linear regression performed poorly whereas the non-parametric BART method detects the
non-linearity. This is in contrast to our method where linear regression outperforms our
non-parametric RF method. This could be attributed to [25], making the treatment effect
non-linear, as discussed above, and our work making a feature non-linear.

Although RF never outperforms regression and LM, it does perform better when
non-linearity was introduced. This is most likely due its non-parametric nature that can
handle non-linearity [36]. When training the random forest models, we aimed to tune
the hyperparameters as finely as possible. However, tuning of these parameters is often
a challenging task requiring implementing exhaustive grid search or random grid search
methods with a wide range of random forest hyperparameters. This tuning problem may
be a major contributing factor to the poor predictive performance. This is suggested for
future work as an area for improvement.

To conclude, the results of this study suggest that within the framework we have
constructed, traditional regression methods work better and are much simpler to apply to
a dataset.

Limitations and Recommendations for Future Work

This section discusses the limitations of this study and how it presents opportunities
for further work.

• The confounding simulation was based on a single observable confounding feature
affecting both the treatment and output. We did not look at multiple confounding
features. We anticipate that more confounding would introduce larger errors. Future
work can look at more observable confounders.

• We assumed that the treatment effect was constant. This implies that all treated people
experienced the same effect of the treatment, which is real life is unfeasible. Future
work would introduce non-constant treatment effects into the data.

• We did not simulate hidden confounding which is common in observational studies.
The assumption in this study was no hidden confounding. Future work could study
the results of simulations that include hidden confounding by generating datasets that
include the confounding variable but then exclude it when carrying out methods such
as the X-Learner method.

• More research is needed to understand how different models, such as neural net-
works or boosting will perform. More thorough tuning of model hyperparameters
is suggested for more complex models, such as neural networks, random forest, and
boosting models.

• When estimating treatment effects using model predictions, we used the same model
on both treated and control groups. For example, we used linear regression, or random
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forest, on both groups and estimated treatment effects. Future work could look at
mixing up the models. For example, using a lasso model on a treated group and a
random forest on the control and then estimating treatment effects.

• In a more general sense, it is hoped that future work would incorporate causal infer-
ence into AutoML. AutoML refers to automating the training of machine learning
models [44,45]. Currently, no literature was found that incorporates causal inference
into AutoML applications and this serves as a promising future application. Microsoft
has developed causal inference applications that promise to perform end-to-end causal
inference from raw data.
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