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Abstract: Building information systems use topological tables to implement the transition from
two-dimensional line drawings of the geometry of buildings to digital three-dimensional models of
linear complexes. The topological elements of the complex are named and the topological relations
of the complex are described by arranging the element names in topological tables. The efficient
construction and modification of topological tables for complete buildings is investigated. The
topology of a linear complex with nodes, edges, faces, and cells is described with 12 tables. Three
of the tables of a complex are independent of each other and form a basis for the construction of
the other tables. A highly efficient construction algorithm with complexity O (number of cells) for
typical buildings with an approximately constant number of edges per face and faces per cell of
is presented. In practice, building designs and their digital models are frequently modified. A
modification algorithm is presented, whose complexity equals that of the construction algorithm.
Examples illustrate that the efficient algorithms permit the replacement of the conventional focus
on the topology of building components by a focus on the topology of the entire building. A set of
properties of the original, which are not explicitly described by the topological tables, for example,
the orientation of surfaces and multiply connected domains, are analyzed in the paper. An overview
of the research dealing with the topological attributes that are not contained in topological tables
concludes the paper.

Keywords: linear complex; cell; polyhedral partition; topological modeling; topological tables;
topology; neighborhood

1. Introduction

It is a widely held view that the goal of achieving interoperability of the software
packages of various vendors by introducing the Industry Foundation Classes has not been
reached. The aim of our research is to make a new attempt to advance interoperability
by making the description of the topology and the geometry of buildings with digital
models explicit and complete. Information is called explicit if it is described with variables.
Information that must be derived from data with algorithms is called implicit. Our research
pursues several novel concepts. In addition, some aspects of the construction of building
information models, for which solutions have been found in the past, are reconsidered and
modified to suit our new point of view.

Buildings have been planned and constructed for centuries using two-dimensional
line drawings showing scaled projections of the shape of buildings on flat surfaces. A
projection is defined by the location of the observer, the direction of view and the location
of the projection surface.

The contents of a typical line drawing is restricted to a subset of the components of the
building. An elevation shows the components that are visible for an external observer with
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a horizontal direction of view. The content of a plan is determined by placing a horizontal
cut at a selected level of the building and showing the components which are visible to an
observer with a downward direction of view if the part of the building above the cut is
removed. The content of a cross-section is determined by placing a vertical cut through
the building and showing the components that are visible to an observer with a horizontal
direction of view if the part of the building on one side of the cut is removed. Similar
procedures are applied to describe components of buildings with elevations, plans and
cross-sections. Figure 1 shows typical line drawings of a simple building without floor and
roof.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 2 of 12 
 

 

The contents of a typical line drawing is restricted to a subset of the components of 
the building. An elevation shows the components that are visible for an external observer 
with a horizontal direction of view. The content of a plan is determined by placing a hor-
izontal cut at a selected level of the building and showing the components which are vis-
ible to an observer with a downward direction of view if the part of the building above 
the cut is removed. The content of a cross-section is determined by placing a vertical cut 
through the building and showing the components that are visible to an observer with a 
horizontal direction of view if the part of the building on one side of the cut is removed. 
Similar procedures are applied to describe components of buildings with elevations, plans 
and cross-sections. Figure 1 shows typical line drawings of a simple building without floor 
and roof. 

A A

PLAN BB

B B

SECTION AA  
Figure 1. Line drawings showing a plan and a section of a building. 

Information is transferred during the traditional planning and construction process 
by passing the set of drawings describing the building on paper from the author to the 
reader of the drawings. A trained reader uses his imagination to assemble a virtual three-
dimensional model of the building from the two-dimensional information contained in 
the elevations, plans and cross-sections. The assembly process of the reader is not the in-
verse of the drawing process of the author. 

The author selects some of the attributes of the three-dimensional original as explicit 
data in the two-dimensional line drawings. The included geometric data are incomplete 
and the topology is not explicit. For example, the drawings do not contain explicit data 
that relate a point in the plan to a specific point in an elevation or a section. Typically, a 
point in a plan corresponds to many points in an elevation or a section. 

The reader adds implicit information to the explicit information of the line drawing 
to create his mental model of the original. Persons with different knowledge, skill and 
professional experience add different implicit information to the same set of line draw-
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is a source of error, vagueness and inconsistency in engineering practice. 
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Figure 1. Line drawings showing a plan and a section of a building.

Information is transferred during the traditional planning and construction process
by passing the set of drawings describing the building on paper from the author to the
reader of the drawings. A trained reader uses his imagination to assemble a virtual three-
dimensional model of the building from the two-dimensional information contained in the
elevations, plans and cross-sections. The assembly process of the reader is not the inverse
of the drawing process of the author.

The author selects some of the attributes of the three-dimensional original as explicit
data in the two-dimensional line drawings. The included geometric data are incomplete
and the topology is not explicit. For example, the drawings do not contain explicit data
that relate a point in the plan to a specific point in an elevation or a section. Typically, a
point in a plan corresponds to many points in an elevation or a section.

The reader adds implicit information to the explicit information of the line drawing
to create his mental model of the original. Persons with different knowledge, skill and
professional experience add different implicit information to the same set of line drawings,
thus creating different mental models of the same original. The implicit information is a
source of error, vagueness and inconsistency in engineering practice.

The aim of our research is to use the speed and the storage capacity of the digital envi-
ronment to lessen the amount of implicit information in engineering. The two-dimensional
line drawings describing the shape of buildings are replaced by digital three-dimensional
models with exact topology and robust geometry. The mapping between original and model
is bijective, such that the information and insight gained with the model can be applied to
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the original and vice versa. Because the graphic computer interfaces are two-dimensional,
and perspectives distort the shape of buildings, the three-dimensional computer model
cannot be presented directly to the engineer. Therefore, conventional line drawings remain
a valuable tool to visualize shape in engineering practice. However, the line drawings for
the user are prepared upon demand from a complete three-dimensional computer model
of the entire building.

In our digital approach, the building is described by a three-dimensional model of
the shape and location of the surfaces of its components and of the interfaces between its
components. The model is called a linear complex if all of its surfaces and interfaces are
flat and bounded by straight lines. Figure 2 shows the linear complex for the building in
Figure 1. The domains of a linear complex are nodes, edges, surfaces and cells that are
path-connected. An edge is a straight-line segment connecting its end nodes. A face is a
flat area bounded by the edges of the polygonal curves of its boundary. A cell is a volume
bounded by the faces of the polyhedral surfaces of its boundary.

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 3 of 12 
 

 

dimensional line drawings describing the shape of buildings are replaced by digital three-
dimensional models with exact topology and robust geometry. The mapping between 
original and model is bijective, such that the information and insight gained with the 
model can be applied to the original and vice versa. Because the graphic computer inter-
faces are two-dimensional, and perspectives distort the shape of buildings, the three-di-
mensional computer model cannot be presented directly to the engineer. Therefore, con-
ventional line drawings remain a valuable tool to visualize shape in engineering practice. 
However, the line drawings for the user are prepared upon demand from a complete 
three-dimensional computer model of the entire building. 

In our digital approach, the building is described by a three-dimensional model of 
the shape and location of the surfaces of its components and of the interfaces between its 
components. The model is called a linear complex if all of its surfaces and interfaces are 
flat and bounded by straight lines. Figure 2 shows the linear complex for the building in 
Figure 1. The domains of a linear complex are nodes, edges, surfaces and cells that are 
path-connected. An edge is a straight-line segment connecting its end nodes. A face is a 
flat area bounded by the edges of the polygonal curves of its boundary. A cell is a volume 
bounded by the faces of the polyhedral surfaces of its boundary. 

 
Figure 2. Linear complex for the building shown in Figure 1. 

The geometry of a three-dimensional linear complex is specified with the coordinates 
of its nodes that are stored in a node table. The contact between the domains of the com-
plex is described with the established concept of topological tables. The method is illus-
trated with the unit cube in Figure 3. Unique names are assigned to the domains of the 
complex: n1 to n8 for the nodes, e1 to e12 for the edges, f1 to f6 for the faces and c1 for the cell. 

1n 2n

3n4n

5n 6n

7n8n

1f

3f

2f4f

5f

6f

1e

2e

3e

4e

5e
6e

7e

8e

9e
10e

11e

12e

 
Figure 3. Topological domains of a unit cube c1. 

Figure 2. Linear complex for the building shown in Figure 1.

The geometry of a three-dimensional linear complex is specified with the coordinates
of its nodes that are stored in a node table. The contact between the domains of the complex
is described with the established concept of topological tables. The method is illustrated
with the unit cube in Figure 3. Unique names are assigned to the domains of the complex:
n1 to n8 for the nodes, e1 to e12 for the edges, f 1 to f 6 for the faces and c1 for the cell.
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Several topological tables are constructed for a complex. For each table, a key domain
type, for example, edge, and a value domain type, for example, node, are specified. The
name of the table is the composite of the key and value types, for example, edge–node–table.
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The first column of the table contains all instances of the key type, for example, edges e1 to
e12 of the cube. The first column of each row of the table contains a key domain. The other
columns contain value domains that are in contact with the key domain. For example, the
row of the edge–node–table whose first column contains edge e3 as key contains nodes n3
and n4 as values. Tables 1–4 show the 12 topological tables of the unit cube.

Table 1. Topological Tables (node–edge, node–face and node–cell) for a unit cube.

Node–Edge–Table Node–Face–Table Node–Cell–Table

Node Edges Node Faces Node Cells

n1 e1, e4, e9 n1 f1, f4, f5 n1 c1
n2 e1, e2, e10 n2 f1, f2, f5 n2 c1
n3 e2, e3, e11 n3 f2, f3, f5 n3 c1
n4 e3, e4, e12 n4 f3, f4, f5 n4 c1
n5 e5, e8, e9 n5 f1, f4, f6 n5 c1
n6 e5, e6, e10 n6 f1, f2, f6 n6 c1
n7 e6, e7, e11 n7 f2, f3, f6 n7 c1
n8 e7, e8, e12 n8 f3, f4, f6 n8 c1

Table 2. Topological Tables (edge–node, edge–face and edge–cell) for a unit cube.

Edge–Node–Table Edge–Face–Table Edge–Cell–Table

Edge Nodes Edge Faces Edge Cells

e1 n1, n2 e1 f1, f5 e1 c1
e2 n2, n3 e2 f2, f5 e2 c1
e3 n3, n4 e3 f3, f5 e3 c1
e4 n1, n4 e4 f4, f5 e4 c1
e5 n5, n6 e5 f1, f6 e5 c1
e6 n6, n7 e6 f2, f6 e6 c1
e6 n7, n8 e6 f3, f6 e6 c1
e8 n5, n8 e8 f4, f6 e8 c1
e9 n1, n5 e9 f1, f4 e9 c1
e10 n2, n6 e10 f1, f2 e10 c1
e11 n3, n7 e11 f2, f3 e11 c1
e12 n4, n8 e12 f3, f4 e12 c1

Table 3. Topological Tables (face–node, face–edge and face–cell) for a unit cube.

Face–Node–Table Face–Edge–Table Face–Cell–Table

Face Nodes Face Edges Face Cells

f1 n1, n2, n5, n6 f1 e1, e5, e9, e10 f1 c1
f2 n2, n3, n6, n7 f2 e2, e6, e10, e11 f2 c1
f3 n3, n4, n7, n8 f3 e3, e7, e11, e12 f3 c1
f4 n1, n4, n5, n8 f4 e4, e8, e9, e12 f4 c1
f5 n1, n2, n3, n4 f5 e1, e2, e3, e4 f5 c1
f6 n5, n6, n7, n8 f6 e5, e6, e7, e8 f6 c1

Table 4. Topological Tables (cell–node, cell–edge and cell–face) for a unit cube.

Cell–Node–Table Cell–Edge–Table Cell–Face–Table

Cell Nodes Cell Edges Cell Faces

c1 n1, n2, n3, n4,
n5, n6, n7, n8 c1

e1, e2, e3, e4,
e5, e6, e7, e8,
e9, e10, e11,

e12

c1 f1, f2, f3, f4, f5, f6

The matrix in Table 5 summarizes the topological tables of linear complexes.
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Table 5. Matrix of the Topological Tables Trs.

Value Domains

Key Domains s = 0: Nodes s = 1: Edges S = 2: Faces s = 3: Cells

r = 0: node X T01 T02 T03
r = 1: edge T10 X T12 T13
r = 2: face T20 T21 X T23
r = 3: cell T30 T31 T32 X

2. Construction of the Dependent Topological Tables

The topological tables in Table 5 are not independent. Three independent tables form
a base from which the other nine tables can be derived. The base tables can be chosen in
several ways. In our research, the domain types are ranked according to their dimension
from 0 for nodes to 3 for cells. The three base tables are chosen such that the rank of the key
domain exceeds the rank of the value domains by 1. The rows of the key domains of the
base tables therefore contain the following value domains:

• Edge–node–table: the row with key edge ej contains the nodes of edge ej.
• Face–edge–table: the row with key face fk contains the edges of face fk.
• Cell–face–table: the row with key cell cm contains the faces of cell cm.

The three base tables define the contacts between the domains of the linear complex,
whereas the other topological tables are constructed to support navigation in the complex.
For example, the node–edge–table contains the edges of the complex that are in contact
with a specified node, and the cell–node–table contains the nodes of a specified cell. An
efficient algorithm has been developed for the construction of the dependent topological
tables. The algorithm is based on the property that a base table with a key of rank n contains
value domains of rank n − 1. The workflow in the algorithm consists of four nested loops,
which operate on the basis tables to construct the dependent tables:

1. The outer loop 1 traverses the cells c of the complex in the first column of the
cell–face–table.

2. The first inner loop 2 traverses the faces in row c of the cell–face–table and performs
the following operations for each face f:

• face f is added to row c of the cell–face–table (optional);
• cell c is added to row f of the face–cell–table.

3. The second inner loop 3 traverses the edges in row f of the face-edge–table and
performs the following operations for each edge e:

• edge e is added to row c of the cell–edge–table;
• edge e is added to row f of the face–edge–table (optional);
• face f is added to row e of the edge–face–table;
• cell c is added to row e of the edge–cell–table.

4. The third inner loop 4 traverses the nodes in row e of the edge–node–table and
performs the following operations for each node n:

• node n is added to row c of the cell–node–table;
• node n is added to face f of the face–node–table;
• node n is added to edge e of the edge–node–table (optional);
• cell c is added to row n of the node–cell–table;
• face f is added to row n of the node–face–table;
• edge e is added to row n of the node–edge–table.

The operations, which are marked as optional, can be omitted in the algorithm because
they construct the three base tables. The algorithm is conveniently implemented by storing
each table in a map, using the key domain as key of the map entry and the set of value
domains in the row of the table as value of the map entry.
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It is noted that the algorithm attempts to put some domains into the same map more
than once. For example, if a cell has two faces f 1 and f 2 with a common edge e, the algorithm
attempts to enter edge e in the cell–edge–map once when in traverses the edges of face
f 1, and a second time when it traverses the edges of face f 2. The method, which adds
domains to a table, must suppress multiple entry of the same domain. The algorithm has
been implemented and tested on the Java platform.

The complexity of the algorithm that constructs the dependent topological tables is
determined by counting the attempted number of domain additions to the dependent
tables in the four loops. The optional operations not counted:

• Loop 1 is performed Nc times, where Nc is the number of cells in the complex.
• Loop 2 is performed Nf times per cycle of loop 1, where Nf is the average number of

faces per cell. There is 1 addition per cycle of the loop.
• Loop 3 is performed Ne times per cycle of loop 2, where Ne is the average number of

edges per face. There are 3 additions per cycle of the loop.
• Loop 4 is performed twice per cycle of loop 3, because each edge has two nodes. There

are 5 additions per cycle of the loop.

The total number of attempted additions to the dependent topological tables is:

Nt = Nc Nf (1 + Ne (3 + 2 × 5)) = Nc Nf (1 + 13Ne) ≈ 13 Nc Nf Ne (1)

Nt—total number of attempted domain additions to the dependent tables.
Nc—number of cells in the linear complex.
Nf—average number of faces per cell.
Ne—average number of edges per face.

In typical buildings, the average number of faces per cell is approximately independent
of the size of the building. Similarly, the average number of edges per face is nearly
independent of the size of the building. The factors Nf and Ne can therefore be treated as
constants in the complexity analysis, such that:

Nt ≈ (13Nf Ne) Nc ≈ const × Nc (2)

The complexity of the algorithm that constructs the dependent topological tables from
the three basis tables is O(Nc) provided the assumption is satisfied that the number of faces
per cell and the number of edges per face are constant.

3. Modification of Linear Complexes

The design of a building proceeds in many design cycles consisting of design steps.
The design steps continuously modify the shape of the linear complex. The modifications
of the complex require the following three types of modifications in its topological tables:

• New domains are added to the complex.
• Old values of attributes of domains are replaced by new values.
• Old domains are removed from the complex.

A design step consists of several modifications. For example, if a new face with new
edges and new nodes is added in a design step, the new edges and nodes must be added in
the same design step. Figure 4 shows a design step in which an octant is cut from the unit
cube in Figure 3. The design step requires the removal of node n6, changes of the attributes
of edges e5, e6 and e10 as well as faces f 1, f 2 and f 6, and addition of nodes n9 to n15, edges
e13 to e21 as well as faces f 7 to f 9. The design step ends with the modification of the face set
of cell c1.
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Table 6 shows the face–node–table of the modified unit cube.

Table 6. Face–node–table for the modified unit cube.

Face Nodes

f1 n1, n2, n10, n9, n13, n5
f2 n2, n3, n7, n15, n11, n10
f3 n3, n7, n8, n4
f4 n4, n8, n5, n1
f5 n1, n2, n3, n4
f6 n5, n13, n14, n15, n7, n8
f7 n9, n10, n11, n12
f8 n9, n12, n14, n13
f9 n11, n14, n15, n12

At the start of a design step, the node table, the three basic topological tables and the
domains objects in the database define the geometry and the contacts of the old domains of
the complex. For every domain that is added to or removed from the complex, or whose
attributes modified, the tables and the domain objects in the data base are treated as follows:

• If a new node, edge, face or cell is added to the complex, it is added to the node–table,
the edge–node–table, the face–edge–table or the cell–face–table, respectively. Some of
the attributes of the new domain can be old domains. The data base object of the new
domain is added to the data base of the complex.

• If attributes of an old domain are changed, the old domain is retained in the node table
or in the topological base table for the domain type. The new attributes replace the old
attributes in the data base object of the domain.

• If an old node, edge, face or cell is removed from the complex, the domain is removed
from the node–table, the edge–node–table, the face–edge–table or the cell–face–table,
respectively. The data base object of the domain is removed from the data base of the
complex.

At the end of the design step, the dependent topological tables are recomputed with
the algorithm that is described above for the initial construction of the dependent tables.
The complexity of the algorithm for the modification of the topological tables of a linear
complex is therefore the same as the complexity of the algorithm for the construction if the
initial tables. The algorithm has been implemented and tested on the Java platform.

Figure 5 shows a modification of the linear complex of the building in Figures 1 and 2.
A part of room 3 is added to room 1 by removing the old wall between rooms 1 and 3 and
extending the wall between rooms 1 and 2 such that it forms a new wall between rooms 1
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and 3. The added domains are marked in red color in the figure. The removed domains
and the modified domains are not marked.
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4. Complete Topological Properties of Domains

The topological tables of a linear complex contain its contact data explicitly. The ques-
tion arises as to whether the topological tables contain the complete topological information
of the complex explicitly. Two examples are presented to show that this is not the case:
the orientation of faces and cells and the multiple connectivity of faces and cells. The
topological concepts, which are introduced in the examples, are described formally and in
detail together with other novel concepts in references [1–3].

A row of the face–edge–table contains the edges of a face in arbitrary order. The
explicit topological information for the boundary of the face is the polygonal curve in the
left diagram of Figure 6. Each end node of each edge equals the start node of the edge
with which it is in contact. The information for the polygon is implicit because it must be
derived from the face–edge–table and the edge–node–table with an algorithm.
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The polygonal curve in the left diagram divides the plane containing the face into a
bounded and an unbounded area. Conventionally, the polygonal curve is assumed to be
the boundary of the bounded area. However, the polygonal curve is also the boundary of
the unbounded area. The explicit data in the topological tables do not distinguish between
these two cases.

The edges of a polygonal curve can be directed in the clockwise or in the anticlock-
wise direction around the normal vector of the plane containing the polygon. These two
directions are used to distinguish the bounded and the unbounded area defined by the
polygonal curve. A polygonal curve, whose direction is given, is called oriented. If a
directed polygonal curve is traversed in the forward direction, the area of the polygon
bounded by the curve lies to the left of the observer. A face with an oriented boundary
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curve is called an oriented face. The center and right diagrams of Figure 6 show the two
oriented faces and the directions of their boundary curves.

A row of the cell–face–table contains the faces of a cell in arbitrary order. The face
set does not explicitly define the interior and the exterior of the polyhedron. The faces
form a polyhedral surface that divides the space containing the surface into a bounded and
an unbounded volume. Vectors that are normal to the surface have one of two possible
directions, which are used to distinguish the two volumes defined by the surface. The
normal vectors of the surface of an oriented polyhedron by definition point into the exterior
of the polyhedron as shown in Figure 7.
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The second example for topological attributes of linear complexes, which are not ex-
plicitly contained in topological tables, are multiply connected domains. A path-connected
face is called multiply connected if it contains at least one hole. As a result, there exists a
closed curve consisting of points of the face, which cannot be contracted continuously in-
side the face to a point. Multiply connected faces are not explicitly contained in topological
tables.

A multiply connected face can artificially be reduced to a set of simply connected faces
by triangulation, or by the famous method of cuts applied by Gauss. In our novel approach,
multiply connected faces are treated as intersections of simply connected faces as shown
in Figure 8. This concept becomes possible because the bounded and unbounded areas
defined by a polyhedral curve can be distinguished by their orientation.
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A row of a cell–face–table contains the faces of a cell in arbitrary order. A cell is
multiply connected if it contains at least one hole, such that its boundary consists of at
least two closed polyhedral surfaces. The cell–face–table does not explicitly show whether
the faces of a cell form a single surface or more than one surface. The topological tables
therefore do not show explicitly whether a cell is simply connected or multiply connected
(see Figure 9).
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The examples show that the description of the topology of linear complexes with
topological tables is incomplete. The classical theory of unions and intersections of convex
polyhedra, whose roots go back over centuries, does not solve this problem. A significant
amount of research has been conducted in the past decades to develop more complete
and practicable concepts for the description of the topology of linear complexes. Major
driving forces for the research are the demands in city planning, architectural and engineer-
ing practice for building information models [1–3] and geospatial data management [4,5].
Important progress in the development of topological concepts is documented in refer-
ences [1–44] attached to this paper. The option of using relational data bases rather than
the object-oriented methods presented by the authors is presented in references [4,5]. The
main aspects of the progress are summarized and evaluated in Section 2 of reference [1]. A
new topological paradigm based on partitions of spaces and the inclusion of imaginary
domains is presented in this reference.

5. Conclusions

The investigation of topological tables for linear complexes has shown that these tables
do not contain the complete explicit topological attributes of a linear complex. Two of the
missing attributes, orientation and multiplicity, are presented in Section 4 of the paper.
The question arises as to whether there are other topological attributes, which should be
contained in the digital model as explicit data. A literature survey has been conducted
to search for such attributes. Additional features such as construction by partitioning
instead of assembly to avoid collisions and voids, robustness achieved by topologically
controlled work steps, and models with unbounded as well as imaginary domains have
been discovered or observed. Oriented polygons of edges in planes and dihedral cycles of
faces at edges have been identified as the primary structural elements of linear complexes.
The research is leading to a theory for partition models of linear complexes. Partition
models contain the topological attributes explicitly.
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