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Abstract: Regression models in which the response variable has a compound distribution have
applications in actuarial science. For example, the aggregate claim amount in a vehicle insurance
portfolio can be modeled using a compound Poisson distribution. In this paper, we propose a
regression model, wherein the response variable is assumed to have a compound Conway–Maxwell–
Poisson (CMP) distribution. This distribution is a parsimonious two-parameter Poisson distribution
that accounts for both over- and under-dispersed count data, making it more suitable for application
in various fields. A two-part methodology in the framework of a generalized linear model is proposed
to estimate the parameters. Additionally, a method to obtain the prediction interval of the response
variable is developed. The workings of the proposed methodology are illustrated through simulated
data. An application of the compound CMP regression model to real-life vehicle insurance claims
data is presented.

Keywords: aggregate claims distribution; compound CMP regression model; generalized linear
models; prediction intervals

1. Introduction

Compound regression models have applications in various research fields, including
economics and finance. In economic consumer theory, for example, compound Poisson
regression models are often used to examine the factors that account for the expenditures
incurred by tourists during their stay at a location. The factors may include length of stay,
type of holiday accommodations, age, occupation, socio-economic status of the tourist, etc.
See Gómez-Déniz and Pérez-Rodríguez [1]. In actuarial risk theory, the aggregate claim
amount incurred by the insurance company against the claims made by the policyholders
is modeled using compound models. See Klugman et al. [2] and Bahnemann [3] for a
detailed discussion on compound models, their distributional properties and applications
in insurance claim modeling. Jørgensen and Paes De Souza [4] applied the compound
Poisson regression model to determine the impact on the conditional mean of the aggregate
claim amount caused by factors such as age and model of the vehicle, exposure, deductibles,
etc., in the context of car insurance. In this paper, we propose a compound regression
model using a two-parameter Poisson distribution. On this topic, some mathematical
backgrounds are presented below in order to fix the notations. Let

S =
N

∑
j=1

Yj, (1)

denote the random sum, where the distributions of the random variables N and Y1, Y2, . . . , YN
are assumed to be discrete and continuous, respectively. Moreover, (Yj)s are assumed to
be independent and identically distributed. Therefore, in the sequel, we refer to Yjs as Y.
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Further, N and Y in general are assumed to be independent. The above-mentioned S is a
compound random variable. Suppose Yj represents the claim amounts on an insurance
portfolio, N denotes the number of claims made, then S represents the aggregate claim
amount. When N has a Poisson distribution, the distribution of S is known as the com-
pound Poisson distribution. Though the Poisson distribution is often used in constructing
compound distributions, it is not suitable for modeling over- or under-dispersed count data.
As an alternative to the Poisson distribution, one can use a generalized Poisson distribution
(Consul and Jain [5]) to model count data that are either over- or under-dispersed. Recently,
Shmueli et al. [6] studied a two-parameter Poisson distribution developed by Conway
and Maxwell [7] known as the Conway–Maxwell–Poisson (CMP) distribution. This is
a two-parameter flexible generalization of the Poisson distribution that can model both
over- and under-dispersed data and has the feature to include the Poisson, geometric and
Bernoulli distributions as special cases. A detailed discussion on the properties of this distri-
bution and its applications can be found in Sellers et al. [8]. Also, Sellers and Premeaux [9]
contains a detailed review on CMP regression models. In the context of compound dis-
tributions, assuming the CMP and binomial distributions for N and Y in Equation (1), a
discrete compound CMP-binomial distribution is developed by Saavithri et al. [10].

Considering the Poisson distribution as the counting distribution, compound Poisson
regression models are available in the literature. See Frees et al. [11], Andersen and
Bonat [12], and Delong et al. [13]. However, its applicability is limited to data with equi-
dispersed counts. To allow for flexibility in the compound regression models in terms of
accommodating dispersed counts, a counting distribution that can model both over- and
under-dispersed data should be considered. This serves as motivation to use the CMP
distribution as the counting distribution to build a compound regression model.

The goal of this work is to create a regression model for S using a CMP distribution
for N. The present work is novel because of the distribution used for N and its convolution
with the distribution of Y. The problem of obtaining prediction intervals for the response
variable S is also addressed. The parameters of the compound regression model are
estimated using the generalized linear model (GLM) approach in two cases. In the first case,
we assume that data on S are available but not on N and Y. We assume data on both N
and Y are available in the latter case. For this case, a two-part likelihood-based estimation
procedure is developed within the framework of the GLM. A methodology to obtain the
prediction interval (PI) for the response variable of the proposed compound regression
model is developed.

The rest of the paper is organized as follows: The compound CMP regression model
is given in Section 2. In Section 3, the estimation of the parameters of the proposed
regression model using the GLM approach is discussed. Section 4 deals with the suggested
methodology for obtaining the prediction intervals for the compound CMP regression
model. A numerical illustration of the estimation procedure using simulated data and
an application to real-life vehicle insurance claims data is presented in Section 5. The
conclusion of the paper is given in Section 6.

2. Compound CMP Regression Model

The probability mass function (pmf) of the random variable N having the CMP
distribution is given by

P(N = n) =
λn

(n!)νZ(λ, ν)
, n = 0, 1, 2, . . . , λ > 0, ν ≥ 0, (2)

where Z(λ, ν) = ∑∞
j=0 λj/(j!)ν is the normalizing constant. Some important remarks on

this distribution are given below. The parameters λ and ν are the location and dispersion
parameters, respectively. This pmf is not defined for λ ≥ 1 and ν = 0. The mean and

variance of N are given by E(N) = λ
∂ ln Z(λ, ν)

∂λ
and V(N) = λ

∂E(N)

∂λ
, respectively. When
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ν = 1, the CMP distribution reduces to the Poisson distribution. For ν > 1, the distribution
is under-dispersed, and for ν < 1, it is over-dispersed.

Since the location parameter λ of the CMP distribution does not represent its mean, a
mean reparameterized form of the distribution is used in building the compound regression
model. The pmf of N under the mean-reparametrization is given by

P(N = n) =
(

µ1 +
eφ − 1

2eφ

)neφ

(n!)−eφ

Z(µ1, φ)
, n = 0, 1, 2, . . . , µ1 > 0, φ ∈ R, (3)

where Z(µ1, φ) = ∑∞
j=0

(
µ1 +

eφ − 1
2eφ

)jeφ

1
(j!)eφ is the normalizing constant. When φ =

0, the distribution reduces to the Poisson distribution. For φ > 0, the distribution is
under-dispersed, and for φ < 0, it is over-dispersed. See Ribeiro Jr et al. [14]. Here,

µ1 ≈ λ1/ν − ν− 1
2ν

corresponds to the mean of the distribution and φ = ln(ν). This
approximation works reasonably well for ν ≤ 1 or λ > 10ν. The mean and variance of N
are E(N) = µ1 and V(N) = µ1e−φ, respectively.

Convolutions can be used to obtain the probability density function (pdf) of the
random sum S defined in Equation (1). In Equation (1), N = 0 implies S = 0. Let p0 denote
the probability mass at S = 0. Since S is not continuous at zero, the pdf of S is represented
as a generalized pdf in terms of Dirac delta function as

f (s) = p0δ(s) +
∞

∑
i=1

g∗iY (s)P(N = i), s ≥ 0, (4)

where δ(s) is the Dirac delta function such that
∫ ∞

0 δ(s)ds = 1. Here, P(N = i) denotes the
pmf of the CMP distribution defined in Equation (3), and g∗iY (.) denotes the pdf of the i-fold
convolution of Y, whose distribution is assumed to be continuous with support in R+.
Note that p0 = P(N = 0) = Z(µ1, φ)−1. In this paper, the distribution of Y is considered to
be a mean reparameterized gamma distribution. Based on Jorgensen [15] (Chapter 3), the
pdf of Y is given by

gY(y; µ2, ψ) =
1

Γ(ψ)

(
ψ

µ2

)ψ

yψ−1 exp
(
−ψy

µ2

)
, y > 0, µ2 > 0, ψ > 0, (5)

where µ2 denotes the mean of Y, ψ denotes the dispersion parameter and Γ(.) denotes the
gamma function. This form is taken for mathematical convenience and to accommodate
asymmetry in the distribution of Y. For example, in the context of insurance claim modeling,
the individual claim amounts are always positive and often right-skewed. Since the gamma
distribution is closed under convolution, we obtain

g∗iY (y) =
1

Γ(ψ)

(
ψ

iµ2

)ψ

yψ−1 exp
(
− ψy

iµ2

)
, y > 0, µ2 > 0, ψ > 0. (6)

Using Equations (3) and (6) in Equation (4), we obtain

f (s) = p0δ(s) +
sψ−1ψψ

Z(µ1, φ)µ
ψ
2 Γ(ψ)

∞

∑
i=1

(
µ1 +

eφ − 1
2eφ

)ieφ

(i!)−eφ

iψ exp
(
−ψs
iµ2

)
, s ≥ 0. (7)

The pdf of S defined in Equation (7) is called the compound CMP gamma pdf. For the
random sum defined in Equation (1), we have{

E(S) = E(N)E(Y),
V(S) = E(N)V(Y) + V(N)[E(Y)]2.

(8)



Math. Comput. Appl. 2023, 28, 39 4 of 14

See, for instance, Bahnemann [3] (Chapter 4). Using Equation (8), the mean and
variance of the compound CMP gamma distribution given in Equation (7) are obtained as{

E(S) = µ1µ2,
V(S) = µ2

2µ1[ψ
−1 + e−φ].

(9)

To build a compound regression model for S, let X = (~1, ~X1, ~X2, . . . , ~Xp) denote
the design matrix where ~Xi, i = 1, 2, . . . , p are the column vectors corresponding to the
covariates Xi, i = 1, 2, . . . , p and~1 is the vector of 1′s. Following the GLM procedure given
in De Jong et al. [16] (Chapter 5), the model is built by regressing S on X using the log-link
function. This is because the log-link function guarantees that the expected value of the
response variable is positive. Let µ denote the expected value of S. Then, the compound
CMP gamma regression model is given by

µ = exp (Xδ), (10)

where δ = (δ0, δ1, . . . , δp)′ is a (p + 1)× 1 vector of regression parameters. In the context of
modeling vehicle insurance claims data, S may denote the aggregate claim amount, and the
covariates may denote the driver’s age, vehicle type, and so on. In the sequel, the method
of estimating the regression parameters using the likelihood approach is discussed.

3. Parameter Estimation

Consider a sample ~s = (s1, s2, . . . , sr)′ of r observations on S. Let D(> 0) positive
values in ~s and r − D zeros exist. Note that D can be assimilated to be random and
D ∼ Binomial(r, 1− p0), where p0 = Z(µ1, φ)−1. Therefore, the likelihood function L
based on~s and D = d is

L =

(
r
d

)
pr−d

0 (1− p0)
d

d

∏
k=1

f (s+k )

=

(
r
d

)(
1

Z(µ1, φ)

)r−d(
1− 1

Z(µ1, φ)

)d d

∏
k=1

f (s+k ), (11)

where f (s+k ) =
sψ−1

k ψψ

(Z(µ1, φ)− 1)µψ
2 Γ(ψ)

∑∞
i=1

(
µ1 +

eφ − 1
2eφ

)ieφ

(i!)−eφ

iψ exp
(
−ψsk
iµ2

)
.

Thus, the log-likelihood function l based on~s and D = d is obtained as

l(µ1, µ2, φ, ψ;~s) = ln
((

r
d

))
− r ln(Z(µ1, φ)) + (ψ− 1)

d

∑
k=1

ln(sk)−
d

∑
k=1

ψ ln(µ2) + dψ ln(ψ)

− d ln(Γ(ψ)) +
d

∑
k=1

ln

[
∞

∑
i=1

(
µ1 +

eφ − 1
2eφ

)ieφ

(i!)−eφ

iψ exp
(
−ψsk
iµ2

)]
. (12)

Since E(N) = µ1 and E(Y) = µ2, from Equation (9), we obtain µ = µ1µ2. Let the
elements of the design matrix X be xkl , l = 0, 1, . . . , p; k = 1, 2, . . . , d with the kth row given

by xk = (1, xk1, xk2, . . . , xkp). Replacing µ2 with
µ

µ1
and µ with exp (Xδ) in Equation (12),

the log-likelihood function based on~s and D = d becomes

l(δ, µ1, φ, ψ;~s) = ln
((

r
d

))
− r ln(Z(µ1, φ)) + (ψ− 1)

d

∑
k=1

ln(sk)−
d

∑
k=1

ψ ln

(
e∑

p
l=0 xkl δl

µ1

)

+ dψ ln(ψ)− d ln(Γ(ψ)) +
d

∑
k=1

ln

[
∞

∑
i=1

{(
µ1 +

eφ − 1
2eφ

)ieφ

(i!)−eφ

iψ exp
(
−ψskµ1

ie∑
p
l=0 xkl δl

)}]
. (13)
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The maximum likelihood (ML) estimates of the parameters in Equation (13) can be
obtained by solving the (p + 4) log-likelihood equations simultaneously. However, these
equations are non-linear, and therefore closed-form solutions cannot be obtained. Hence,
iterative algorithms based on numerical methods can be used to solve the equations to get
the estimates for the parameters. Let δ̂ denote the ML estimate of δ. By the asymptotic
property of the ML estimators, for large r, the following distribution approximation holds:

Σ1/2
δ (δ̂− δ) ∼ Np+1(0, I),

where δ and Σδ denote the mean vector and the covariance matrix of δ̂, respectively. Using
Equation (10), an estimate of the expected value of S given the covariates X can be obtained
as µ̂ = exp (Xδ̂).

Assume that data on S are unavailable, but data on N and Y are. This can happen in
such situations as, for example, when modeling the aggregate claim amount when one has
data on the claim frequency (N) and the individual claim amounts (Y). Using N and Y, we
can compute the value of S and then build the regression model using the method described
above. However, it is computationally more challenging to compute the estimates due to
the presence of an infinite sum in the log-likelihood function. To reduce the computational
difficulty, we can use N and Y to build two separate regression models to obtain µ̂. Towards
this, a two-part GLM methodology is proposed to estimate µ assuming N and Y to be (1)
independent and (2) dependent.

3.1. Independent Compound Regression Model

Using Equation (9), we have µ = µ1µ2. The proposed two-part GLM method is
implemented by building two separate regression models, namely, the CMP regression
model and the gamma regression model, for the means of N and Y, respectively. Given
the data on N, Y and X, the estimated mean of S is computed as µ̂ = µ̂1µ̂2. Here, µ̂1 and µ̂2
are obtained by regressing N and Y separately on X. Using the log-link function, we have
µ1 = E(N) = eXα, µ2 = E(Y) = eXβ, where α = (α0, α1, . . . , αp)′ and β = (β0, β1, . . . , βp)′

denote the set of regression parameters.
Let ~n = (n1, . . . , nm)′ denote m observations on N. For each nk > 0, let there be nk

observations on Y denoted by ykj, j = 1, 2, . . . , nk, k = 1, 2, . . . , m. Let ~̄y = (ȳ1, ȳ2, . . . , ȳm)′

where ȳk =

{
∑nk

j=1 ykj/nk if nk > 0

0 if nk = 0.
Let the design matrix X be of order m× (p + 1) with elements xkl , k = 1, 2, . . . , m; l =

0, 1, . . . , p. Since the distribution of Y has positive support, zeros in ~̄y, if any, are not to
be considered. The corresponding sample observation in ~̄y and the observed covariate
matrix X are not included when building the gamma regression model. Let q denote
the number of observations for which ȳk = 0, k = 1, 2, . . . , m and let t = m − q. Fol-
lowing Garrido et al. [17], the distribution of Y ∼ gamma(µ2, ψ) is equivalent to Ȳ|N ∼

gamma
(

µ2,
ψ

N

)
for independently identically distributed Y1, . . . , YN . Using the pmf of N

given in Equation (3) with µ1 = eXα, the corresponding log-likelihood function is given by

l(α, φ;~n) =
m

∑
k=1

eφ

[
nk ln

(
e∑

p
l=0 xklαl +

eφ − 1
2eφ

)
− ln(nk!)

]
−

m

∑
k=1

ln
(

Z(e∑
p
l=0 xkl αl , φ)

)
. (14)

The ML estimates for the (p+ 1) regression parameters are obtained by simultaneously
solving the corresponding log-likelihood equations. Let α̂ = (α̂0, α̂1, . . . , α̂p)′ denote the
ML estimate of α. Then the ML estimate of µ1 is obtained as µ̂1 = eXα̂. In similar lines, the
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ML estimate of β, namely, β̂ = (β̂0, β̂1, . . . , β̂p)′, is obtained using the likelihood function
corresponding to the conditional pdf of Ȳ given N = n. The conditional pdf is given by

f (ȳ|n; µ2, ψ) =
1

Γ(ψ/n)

(
ψ/n
µ2

)ψ/n
ȳ(ψ/n)−1 exp

(
− ψȳ

nµ2

)
, ȳ > 0. (15)

Taking µ2 = eXβ in Equation (15), the log-likelihood function is obtained as

l(β, ψ; ~̄y) = −t ln
(

Γ
(

ψ

n

))
+

tψ
n

ln
(

ψ

n

)
+

t

∑
k=1

[(
ψ

n
− 1
)

ln(ȳk)−
ψȳk

ne∑
p
l=0 xkl βl

− ψ

n

p

∑
l=0

xkl βl

]
. (16)

The likelihood equations for α and β are, respectively, given by

m

∑
k=1

xkl(nk − e∑
p
l=0 xklαl ) = 0 (17)

and
t

∑
k=1

xklnk

e∑
p
l=0 xkl βl

(ȳk − e∑
p
l=0 xkl βl ) = 0, l = 0, 1, . . . , p. (18)

Since Equations (17) and (18) are non-linear, iterative procedures can be used to solve
them. As an alternate, one can use the in-built functions cmp() and glm(., family=“gamma”)
available in R to obtain α̂ and β̂. Using α̂ and β̂, the ML estimate of the expected value of
S, namely, µ̂ = µ̂1µ̂2, can be computed. By the asymptotic property of the ML estimators,
we have

Σ1/2
α (α̂− α) ∼ Np+1(0, I)

and
Σ1/2

β (β̂− β) ∼ Np+1(0, I).

Here, α and Σα denote the mean vector and covariance matrix of α̂, respectively.
Similarly, β and Σβ denote the mean vector and covariance matrix of β̂, respectively. The
standard errors of α̂ and β̂ are the square root of the diagonal elements of the corresponding
covariance matrices. Since α̂ and β̂ do not have closed-form expressions, their standard
errors can be obtained using the sample Hessian matrix. The sample Hessian matrices of
α̂ and β̂, namely, Hα̂ and Hβ̂, are given by Hα̂ = eφ̂eXα̂XX′ and Hβ̂ = ψ̂XX′, respectively.
Since the expressions of the standard errors of the parameters α and β contain the dispersion
parameters φ and ψ, respectively, they may be estimated using the following formulas:

φ̂ = ln

{
(m− (p + 1))

m

∑
k=1

µ̂1k
(nk − µ̂1k)2

}
(19)

and

ψ̂ =
1

(t− (p + 1))

t

∑
k=1

(
ȳk − µ̂2k

µ̂2k

)2
, (20)

where µ̂1k and µ̂2k are the estimated values of µ1 and µ2, respectively, corresponding to the
kth observation.

3.2. Dependent Compound Regression Model

Although independence between N and Y is commonly assumed in compound regres-
sion models, it is rarely observed in practice. For instance, in the framework of modeling
the aggregate claim amounts, it is typical to observe that the claim amounts depend on
the claim frequency as well. See, for example, the work of Garrido et al. [17]. As a result,
N is included as a covariate in the regression model of Ȳ. Let θ represent the regression
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parameter associated with N. Since S denotes a random sum, it can be written as S = NȲ.
The GLM of S through the log-link function is given by Garrido et al. [17] as

µ = eXβ M′N(θ),

where M′N(θ) represents the derivative of the moment generating function of N with
respect to θ. Taking N as CMP, M′N(θ) is obtained as

M′N(θ) =
∞

∑
n=0

neθn
(

µ1 +
eφ − 1

2eφ

)neφ

(n!)−eφ

Z(µ1, φ)
.

Note that if θ = 0, i.e., when N is independent of Ȳ, M′N(θ) = E(N), and thus the
dependent compound regression model will coincide with the independent compound
regression model. The pdf of S under dependent case is given by

fS(s) = fȲ|N(ȳ|n) fN(n),

where fȲ|N(ȳ|n) is indicated in Equation (15) with µ2 = µθ and ψ = ψθ . The corresponding
log-likelihood function is

l(α, β, φ, ψ, θ) = l(α, φ;~n) + l(β, ψ, θ; ~̄y|~n),

where l(α, φ;~n) corresponds to Equation (14). Let the ML estimates of α, β and θ be
denoted as α̃, β̃ and θ̃, where α̃ is obtained using Equation (17). The function l(β, ψ, θ; ~̄y|~n)
corresponds to Equation (16) with µ2 replaced with µθ . To obtain the estimates of β and θ,
the GLM of E(Ȳ|N, X) is used with the log-link function and is defined by µθ = eXβ+θN .
The corresponding likelihood equations of the regression parameters are

t

∑
k=1

nkxkl

e∑
p
l=0 xkl βl+θnk

(ȳk − e∑
p
l=0 xkl βl+θnk ) = 0 (21)

and
t

∑
k=1

n2
k

e∑
p
l=0 xkl βl+θnk

(ȳk − e∑
p
l=0 xkl βl+θnk ) = 0, l = 0, 1, . . . , p. (22)

The dispersion parameter ψθ can be estimated using

ψ̂θ =
1

(t− (p + 1))

t

∑
k=1

(
ȳk − µ̂θk

µ̂θk

)2
,

where µ̂θk is the estimated value of µθ corresponding to the kth observation. In addition,
β̃ and θ̃ can be obtained by solving Equations (21) and (22) through iterative algorithms.

Thus, the estimate of µ is given by µ̃ = eXβ̃ M′N(θ̃). Denote βθ =

[
β
θ

]
(p+2)×1

and its ML

estimate as β̃θ =

[
β̃
θ̃

]
(p+2)×1

. By the asymptotic property of the ML estimators, we have

Σ1/2
βθ

(β̃θ− βθ) ∼ Np+2(0, I).

Here, βθ and Σβθ
denote the mean vector and covariance matrix of β̃θ, respectively. The

standard error of β̃θ corresponds to the square root of the diagonal elements of the sample
Hessian matrix, which is given by Hβ̃θ

= ψ̂θX∗′AX∗, where X∗ is a matrix of order t×
(p + 2) that denotes the design matrix which includes~n. A is a t× t diagonal matrix with
positive elements of~n. Note that Hα̃ = Hα̂.
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4. Prediction Intervals

From the estimates of the regression parameters, we can obtain an estimate of the
expected value of S for some fixed values of the covariates. Given the covariates, it is
frequently useful to predict the actual value of S. In a regression setup, the actual value of
S is related to its expected value as

S = Ê(S|X) + ε,

where ε is the error term. Since ε is unobserved, it is not possible to predict the actual S. In
contrast, the prediction interval is a constructed interval that contains the predicted value of
actual S. In this section, a method for calculating the PI for S is proposed. Let S0 denote the
response given the covariate x0 = (1, x01, . . . , x0p). Thus, we have S0 = Ê(S0|x0) + ε, where
Ê(S0|x0) = exp (x0δ̂) = µ̂0 (say). Assuming E(ε) = 0, we get, E(S0) = µ̂0. Additionally,
we have V(S0) = V(µ̂0) + V(ε). Hence, the 100(1− α)% PI for S0 is given by [k1, k2],
such that

P[k1 ≤ S0 ≤ k2] = 1− α, (23)

where α ∈ (0, 1). Here, k1 and k2 correspond, respectively, to the lower
(α

2

)th
and upper(α

2

)th
percentiles of the distribution of S0, which is the compound CMP gamma distribu-

tion with mean E(S0) and variance V(S0). Since V(S0) depends on V(µ̂0), we proceed as
below to obtain an expression for V(µ̂0). To begin, consider

µ̂0 = exp(x0δ̂) =⇒ ln(µ̂0) = x0δ̂. (24)

Using the Taylor series expansion of ln(A) at E(A), we have

ln(A) ≈ ln(E(A)) + (A− E(A))
1

E(A)
.

Thus, we have

E(ln(A)) ≈ ln(E(A)) (25)

and

V(ln(A)) ≈ V(A)

E(A)2 . (26)

Taking A to be µ̂0 in Equations (25) and (26), we obtain E(ln(µ̂0)) ≈ ln E(µ̂0) and

V(ln(µ̂0)) ≈
V(µ̂0)

E(µ̂0)2 . From Equation (24), we establish that

E(ln(µ̂0)) ≈ E(x0δ̂) = x0E(δ̂)

=⇒ E(µ̂0) ≈ exp(x0E(δ̂)) = exp (x0δ) = µ0.

In a similar manner, we obtain

V(µ̂0) ≈ V(ln(µ̂0))E(µ̂0)
2 = V(x0δ̂)µ2

0 = x0V(δ̂)x′0µ2
0

= x0diag(Σδ)x′0µ2
0.

An estimate of V(ε), namely, V̂(ε), can be obtained by dividing the residual sum of
squares (RSS) of the compound CMP regression model by m− (p + 1). Using V(µ̂0) and
V̂(ε), we obtain V(S0). However, obtaining the values of k1 and k2 from Equation (23) is not
easy since the cumulative distribution function of the compound CMP gamma distribution
is not invertible. One may use bootstrap procedures to identify k1 and k2. We propose



Math. Comput. Appl. 2023, 28, 39 9 of 14

below a heuristic method to obtain the PI using the two-part GLM methodology given in
the previous section.

The PI for S0 is obtained using the PIs of N0 and Ȳ0, where N0 = Ê(N0|x0) + ε and
Ȳ0 = Ê(Ȳ0|x0) + ε. Note that Ê(N0|x0) is obtained from the GLM of N on X and Ê(Ȳ0|x0)
is obtained using the GLM of Ȳ on X. Denoting Ê(N0|x0) = µ̂01 and Ê(Ȳ0|x0) = µ̂02, we
have, µ̂01 = exp(x0α̂) and µ̂02 = exp(x0β̂). Proceeding along similar lines for obtaining the
PI for S0, the PIs for N0 and Ȳ0 can be obtained, respectively, as [a1, a2] and [b1, b2], such that

P[a1 ≤ N0 ≤ a2] = 1− α

and
P[b1 ≤ Ȳ0 ≤ b2] = 1− α,

where α ∈ (0, 1). Since N0 has a mean reparameterized CMP distribution given in

Equation (3), a1 and a2 are respectively, the lower
(α

2

)th
and upper

(α

2

)th
percentiles

of the CMP distribution with mean µ̂01 and dispersion parameter φ =
µ̂01

V(µ̂01) + V̂(ε)
,

where V(µ̂01) = x0diag(Σα)x′0µ2
01. Likewise, b1 and b2 correspond respectively, to the

lower
(α

2

)th
and upper

(α

2

)th
percentiles of the mean reparameterized gamma distribu-

tion given in Equation (15) with mean µ̂02 and dispersion parameter ψ =
V(µ̂02) + V̂(ε)

µ̂2
02

,

where V(µ̂02) = x0diag(Σβ)x′0µ2
02. Supposing Σα and Σβ are not known, the corresponding

sample Hessian matrices can be used to compute V(µ̂01) and V(µ̂02). The values of V̂(ε)
of the CMP and gamma regression models can be obtained by dividing the RSS of the
corresponding regression models by m − h and t − h, where h denotes the number of
regression parameters in the model.

The PI for S0 given x0 can be constructed using the PIs of N0 and Ȳ0. By virtue of
equality S = NȲ, a trivial PI for S0 given x0 can be taken to be [k1, k2] = [a1b1, a2b2]. When
N is large, it may be useful to know the PI for S0. For example, in modeling aggregate claim
amounts from insurance data, the company may want to know the PI for the aggregate
claim amount for high claim frequencies so that enough funds can be maintained. In this
case, the PI for S0 given x0 can be defined as [a2b1, a2b2]. This definition of PI is used in the
remaining part.

5. Numerical Illustration
5.1. Simulation Study

This section provides a numerical illustration of how to compute the PI for S using
simulated data for the independent and dependent compound regression models. To
generate random samples from the CMP and gamma regression models with a single
covariate ~X1 = (x11, x21, . . . , xm1)

′, generated from a standard normal distribution, the
following steps are implemented:

1. Generate nk, k = 1, 2, . . . , m, from the CMP distribution given in Equation (3) with
mean µ1k = exp(α0 + α1xk1) by fixing α0, α1 and φ. Obtain~n = (n1, n2, . . . , nm)′.

2. For each nk > 0, generate ykj, j = 1, 2, . . . , nk from the gamma distribution given in
Equation (5) with mean µ2k by fixing ψ, β0, β1, and θ, where µ2k = exp(β0 + β1xk1)
for the independent compound regression model and exp(β0 + β1xk1 + θnk) for the
dependent compound regression model. Compute ȳk and obtain ~̄y = (ȳ1, ȳ2, . . . , ȳm)′.

For simulation, the values of the regression parameters are taken as α0 = 0.5, α1 =
0.3, β0 = 1, β1 = 0.5 and θ = 0.5. The dispersion parameter ψ of the gamma distribution
is set to 1.5. To accommodate over-, equi- and under-dispersion in N, three choices of
the dispersion parameter φ, namely, φ = −1.6, 0, and 1.6, are considered. The CMP
and gamma GLMs are fitted to the generated ~n and ~̄y values, using their respective log-
link functions for both the independent and dependent compound regression models.
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All the computations are carried out in R (version 4.1.1). The cmp() function in cmpreg
package (Ribeiro Jr [18]) and the glm() function are used to carry out the CMP and gamma
regression, respectively. To compute the value of M′N(θ̂) in the dependent compound
regression model, the com.expectation() function in compoisson package is employed.
qcom() function in the compoisson package is used to determine the quantile values from
the CMP distribution and the function qgammaAlt() in the EnvStats package is used to
determine quantile values from the gamma distribution. For the above choices of the
parameters, the 95% PI for S is obtained for the independent and dependent compound
regression models under three choices of sample size (m), namely, m = 25, 50 and 100. The
actual S observations, denoted by ~s = (s1, s2, . . . , sm)′, are computed by sk = nk ȳk, k =
1, 2, . . . , m.

The proportion of~s lying within its PI is presented in Table 1 for the various choices of
m and φ. Additionally, the plots of the corresponding prediction bands are displayed in
Tables 2 and 3. From Table 1, it can be observed that, for the choices of the covariate and
coefficients considered, the proportion is large for φ = 1.6 in the independent compound
regression model and for φ = −1.6 in the dependent compound regression model.

Table 1. Proportion of S lying in its respective PIs.

m φ Independent Model Dependent Model

25
−1.6 0.6667 0.9444

0 0.7777 0.8333
1.6 0.8400 0.8400

50
−1.6 0.7353 0.8529

0 0.6500 0.7000
1.6 0.7656 0.8297

100
−1.6 0.6615 0.9077

0 0.7088 0.9493
1.6 0.7777 0.9393

Table 2. Prediction bands of independent compound regression model for over-, equi- and under-
dispersed data.
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Table 2. Cont.
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Table 3. Prediction bands of dependent compound regression model for over-, equi- and under-
dispersed data.
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5.2. Real-Life Application

In this section, the proposed two-part methodology to obtain the PI for the compound
CMP gamma regression is applied to real-life vehicle insurance claims data. The dataset
pertains to the average damage claims for privately owned and insured vehicles in Britain
in the year 1975. See Dutang and Charpentier [19]. It consists of 128 observations on five
variables, namely, the owner’s age (X1), car age (X2), model (X3), number of claims (N) and
average claim amount (Ȳ) in pounds. The variable X1 consists of eight categories of age
group; the variable X2, four categories of car age; and the variable X3, four categories of
model. The aggregate claim amount (S) for each observation is obtained by multiplying the
average claim amount by the number of claims. A dispersion test on N, performed using
the function dispersiontest() available in R under AER package, resulted in a dispersion
index of 119.8246 and a p-value of 2.091 × 10−6, indicating that N is over-dispersed.
Similarly, the Kolmogorov–Smirnov test on Ȳ yielded a p-value of 0.7191 to assess the
goodness-of-fit of the gamma distribution. As a result, the CMP distribution can be used
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to model N, whereas the gamma distribution can be used to model Ȳ. To implement the
proposed estimation methodology and validate its performance, 80% of the observations
are randomly chosen as training data and the rest 20% as test data. The observations in the
training data are used to fit the independent and dependent compound regression models.
The owner’s age, car age and car model are the considered covariates in the model. The
in-built functions cmp() function in cmpreg package and the glm() function are used to
obtain the estimates of CMP and gamma regression models, respectively. The estimates
of the regression parameters, their corresponding p-values (in parenthesis) and the AIC
values are given in Table 4. Using the AIC values for the CMP and gamma regression
models, the combined AIC values for the compound regression models are obtained as
2110.31 and 2108.31, respectively. For each observation in the test data, the PI for S is
computed using the estimates of the fitted model. The corresponding prediction band
of the independent and dependent compound regression model is displayed in Figure 1.
From this figure, it can be noted that some observations do not fall within the prediction
band. One reason for this is that these observations have large claim frequencies when
compared with the other observations, and the corresponding limits of the PI based on the
CMP regression are also large. As a result, the limits of the PI of such observations deviate
from their observed values. The proportion of observed S in the test data lying within its PI
is found to be 0.4782 and 0.6956 for the independent and dependent compound regression
models, respectively. Based on the combined AIC values and the proportions, it can be
inferred that the dependent compound regression model provides a relatively better fit for
modeling the aggregate claim amount.

Table 4. Parameter estimates, p-values and AIC for the CMP and gamma regression models for the
real-life data.

Covariates CMP Regression Model Gamma Regression Model
(Independent Case)

Gamma Regression Model
(Dependent Case)

(Intercept) 1.5007
(< 2 × 10−16)

5.7421
(< 2 × 10−16)

5.7754
(< 2 × 10−16)

OwnerAge21–24 1.5885
(< 2 × 10−16)

−0.2010
(0.0670)

−0.1800
(0.0964)

OwnerAge25–29 2.6237
(< 2 × 10−16)

−0.1129
(0.2705)

−0.0497
(0.6357)

OwnerAge30–34 2.7585
(< 2 × 10−16)

−0.3276
(0.0034)

−0.2542
(0.0262)

OwnerAge35–39 2.8854
(< 2 × 10−16)

−0.3150
(0.0047)

−0.2271
(0.0496)

OwnerAge40–49 3.5362
(< 2 × 10−16)

−0.2722
(0.0081)

−0.1140
(0.3528)

OwnerAge50–59 3.3678
(< 2 × 10−16)

−0.1854
(0.0843)

−0.0590
(0.6219)

OwnerAge60+ 3.0280
(< 2 × 10−16)

−0.3054
(0.0036)

−0.2120
(0.0553)

ModelB 1.0255
(< 2 × 10−16)

0.0584
(0.4260)

0.1414
(0.0877)

ModelC 0.6930
(< 2 × 10−16)

0.1083
(0.1387)

0.1500
(0.0450)

ModelD −0.1889
(0.00485)

0.4041
(6.01 × 10−7)

0.3762
(2.40 × 10−6)

CarAge10+ −1.9174
(< 2 × 10−16)

−0.8138
(< 2 × 10−16)

−0.9494
(5.87 × 10−16)

CarAge4–7 −0.1558
(6.65 × 10−5)

−0.0615
(0.3959)

−0.0727
(0.3089)
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Table 4. Cont.
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(Dependent Case)
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Figure 1. Prediction band for the test data under independent model and dependent model.

6. Conclusions

The Poisson distribution is generally used in compound regression models as the
counting distribution. In practice, the Poisson distribution’s equi-dispersion assumption is
frequently violated. The methodology presented in this paper provided a way to handle
non-equi-dispersed count data in the context of compound regression models by using
the CMP distribution. The proposed compound regression model can be used when the
count data are over- or under-dispersed. The estimation of the parameters was carried out
using a two-part GLM approach for the independent and dependent compound regression
models. This approach is less complex and provides separate estimates for the count
and the continuous distribution involved in the model. Since, in practice, knowledge of
the actual value of the response variable rather than its predicted value is more useful,
a methodology to obtain the prediction interval of the response variable was proposed.
An application of the two-part GLM method to real-life data revealed that the dependent
compound regression model performs relatively better than the independent compound
regression model. Thus, in practice, one can start with the dependent compound regression
model and look for the significance of the count variable in the model. If the count variable
is found to be not significant, then the independent compound regression model can be
used. To conclude, the proposed compound CMP regression model could be an alternative
to modeling a compound random variable when the count data are not equi-dispersed.
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