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Abstract: We propose a new optimal iterative scheme without memory free from derivatives for
solving non-linear equations. There are many iterative schemes existing in the literature which
either diverge or fail to work when f ′(x) = 0. However, our proposed scheme works even in
these cases. In addition, we extended the same idea for iterative methods with memory with the
help of self-accelerating parameters estimated from the current and previous approximations. As
a result, the order of convergence increased from four to seven without the addition of any further
functional evaluation. To confirm the theoretical results, numerical examples and comparisons with
some of the existing methods are included which reveal that our scheme is more efficient than the
existing schemes. Furthermore, basins of attraction are also included to describe a clear picture of the
convergence of the proposed method as well as some of the existing methods.
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1. Introduction

Many problems in computational sciences and other disciplines can be modelled in
the form of a non-linear equation or systems. In particular, a large number of problems
in applied mathematics and engineering are solved by finding the solutions of these
equations. In the literature, there are several iterative methods that have been designed by
using different procedures to approximate the simple roots of a non-linear equation,

f (x) = 0, (1)

where f : I ⊆ R→ R is a real function defined in an open interval I. To find the roots of
Equation (1), we look towards iterative schemes. A lot of iterative methods of different
convergence orders already exist in the literature (see [1,2] and the references therein) to
approximate the roots of Equation (1). Out of them, the most eminent one-point iterative
method without memory is the quadratic convergent Newton–Raphson scheme [3] given by

yn = xn −
f (xn)

f ′(xn)
, n = 0, 1, . . . (2)

One drawback of this method is that when f ′(xn) = 0, the method fails, which
confines its applications. The first objective and inspiration to design iterative methods
for solving this kind of problem are to obtain the highest order of convergence with the
least computational cost. Therefore, a lot of researchers are interested in constructing
optimal multipoint methods [4] without memory, in the sense of Kung Traub conjecture [5]
which states that multipoint iterative methods without memory, requiring n + 1 functional
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evaluations per iteration, have a convergence order at most 2n. Among them, an optimal
fourth-order iterative method was developed by Kou et al. [6] defined by

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = xn −
f (xn)2 + f (yn)2

f ′(xn)( f (xn)− f (yn))
, n = 0, 1, . . .

(3)

Further, Kansal et al. proposed an optimal fourth-order iterative method [7] in param-
eters α( 6= 1) and β defined by

yn = xn −
f (xn)

f ′(xn)
, n = 0, 1, . . .

xn+1 = xn −

 α + 1

α±
(

f (xn)2 + (β− 2α− 2) f (xn) f (yn)− β(α + 1) f (yn)2

f (xn)2 + β f (xn) f (yn)

)1/2

 f (xn)

f ′(xn)
.

(4)

Soleymani developed an optimal fourth-order method [8] given by

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = yn −
f ′(xn)2

f ′(xn)2 − 2 f (xn) f (yn)

f (yn)

f ′(xn)

(
1 +

f (yn)2

f (xn)2

)(
1 +

f (yn)2

f ′(xn)2

)(
1 +

f (xn)2

f ′(xn)2

)
,

n = 0, 1, 2, . . .

(5)

Furthermore, an optimal-order method was proposed by Chun et al. [9] given by

yn = xn −
2
3

f (xn)

f ′(xn)
,

xn+1 = xn +
f ′(xn) + 3 f ′(yn)

2 f ′(xn)− 6 f ′(yn)

f (xn)

f ′(xn)
, n = 0, 1, 2, . . .

(6)

On the other hand, sometimes it is possible to increase the order of convergence
without any new function evaluation based on acceleration parameter(s) which appear
in the error equation of the multipoint methods without memory. It was Traub [3], who
slightly altered Steffensen’s method [10] and presented the first method with memory
as follows:  γ0, x0 are suitably given, wn = xn + γn f (xn), 0 6= γn ∈ R,

xn+1 = xn −
f (xn)

f [xn, wn]
, n = 0, 1, 2, . . .

(7)

This method has an order of convergence of 2.414. Still, if we use a better self-accelerating
parameter, there are apparent chances that the order of convergence will increase.

Following the steps of Traub, many authors are constructing higher-order methods
with and without memory. Among many others, Chicharro et al. [11] presented a bi-
parametric family of order four and then developed a family of methods with memory
having a higher order of convergence without further increasing the number of functional
evaluations per iteration. In [12], the authors presented a derivative-free form of King’s
family with memory. The authors in [13] developed a tri-parametric derivative-free fam-
ily of Hansen–Patrick-type methods which requires only three functional evaluations to
achieve optimal fourth-order convergence. Then, they extended the idea with memory
as a result of which the R-order convergence increased from four to seven, without any
additional functional evaluation.
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The development of such methods has increased over the years. Some applications
of these iterative methods can be seen in [14–17]. Thus, by taking into consideration these
developments, we further attempt to propose an iterative method without memory and
then convert it into a more efficient method with memory such that the order of convergence
is increased without any further functional evaluation.

However, another important aspect of an iterative scheme to be considered is its
stability, which is the analysis that tells us how dependent the scheme of the initial guesses
used is. In this regard, a comparison between iterative methods by using the basins of
attraction was developed by Ardelean [18]. This motivates us to work on the optimal-order
methods and their with memory variants along with their basins of attraction.

The rest of the paper is organized as follows. Section 2 contains the development of a
new iterative method without memory and the proof of its order of convergence. Section 3
covers the inclusion of memory to develop a new iterative method with memory and its
error analysis. Numerical results for the proposed methods and comparisons with some of
the existing methods to illustrate our theoretical results are given in Section 4. Section 5
depicts the convergence of the methods using basins of attraction. Lastly, Section 6 collates
the conclusions.

R-Order of Convergence

For finding the R-order convergence [19] of our proposed method with memory, we
make use of the following Theorem 1 given by Traub.

Theorem 1. Suppose that (IM) is an iterative method with memory that generates a sequence
{xm} (converging to the root ξ) of approximations to ξ. If there exists a non-zero constant ζ and
non-negative numbers sj, 0 ≤ j ≤ k, such that the inequality,

| εm+1 |≤ ζ
k

∏
j=0
| εm−j |sj

holds, then the R-order of convergence of the iterative method (IM) satisfies the inequality,

OR((IM), ξ) ≥ t∗,

where t∗ is the unique positive root of the equation,

tk+1 −
k

∑
j=0

sjtk−j = 0. (8)

2. Iterative Method without Memory and Its Convergence Analysis

We aim to construct a new two-point derivative-free optimal scheme without memory
in this section and extend it to a memory scheme.

If the well-known Steffensen’s method is combined with Newton’s method, we obtain
the following fourth-order scheme:

yn = xn −
f (xn)2

f (wn)− f (xn)
,

xn+1 = yn −
f (yn)

f ′(yn)
,

(9)

where wn = xn + f (xn). To avoid the computation of f ′(yn), the authors in [20] approxi-
mated it by the derivative m′(yn) of the following first-degree Padé approximant:

m(t) =
a1 + a2(t− yn)

1 + a3(t− yn)
, (10)
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where a1, a2 and a3 are real parameters to be determined satisfying the following conditions:

m(xn) = f (xn), (11)

m(yn) = f (yn), (12)

m(wn) = f (wn). (13)

Using these conditions, the derivative of the Padé approximant evaluated in yn is given as

m′(yn) =
f [xn, yn] f [yn, wn]

f [xn, wn]
. (14)

Using (14) in the second step of (9), they presented the following scheme:
yn = xn −

f (xn)2

f (wn)− f (xn)
,

xn+1 = yn −
f (yn) f [xn, wn]

f [xn, yn] f [yn, wn]
,

(15)

where wn = xn + f (xn). This scheme is optimal in the sense of the Kung–Traub conjecture
having an order of convergence of four with three functional evaluations per iteration,
f (xn), f (yn) and f (wn).

Now, in order to extend the method with memory, we devise the idea of introducing
two parameters γ and λ in (15) and we present a modification in this method as follows:

yn = xn −
f (xn)

f [xn, wn] + λ f (wn)
,

xn+1 = yn −
f (yn)( f [xn, wn] + λ f (wn))

( f [xn, yn] + λ f (wn)) f [yn, wn]
,

(16)

where wn = xn + γ f (xn).
This modified scheme yields the optimal order of convergence 4 having three func-

tional evaluations per iteration, f (xn), f (yn) and f (wn).
Next, we establish the convergence results for our proposed family without memory

given by Equation (16).

Theorem 2. Suppose that f : D ⊂ R→ R is a real function suitably differentiable in a domain
D. If ξ ∈ D is a simple root of f (x) = 0 and an initial guess x0 is sufficiently close to ξ, then the
iterative method given by Equation (16), converges to ξ with convergence order p = 4 having the
following error relation,

en+1 = (1 + f ′(ξ)γ)2(λ + c2)
(
(2 + f ′(ξ)γ)λc2 + 2c2

2 − c3

)
e4

n + O(en)
5,

where en = xn − ξ, ξ is a simple root of f (x) = 0 and cn =
f (n)(ξ)
n! f ′(ξ)

, n = 2, 3, . . .

Proof. Expanding f (xn) about xn = ξ by the Taylor series, we have

f (xn) = f ′(ξ)(en + c2e2
n + c3e3

n + c4e4
n) + O(en)

5. (17)

Using Equation (17) in the first step of Equation (16), we have
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en,y = yn − ξ =(1 + f ′(ξ)γ)(λ + c2)e2
n + (−(2 + 2 f ′(ξ)γ + f ′(ξ)2γ2)λc2 − (2+

2 f ′(ξ)γ + f ′(ξ)2γ2)c2
2 − (1 + f ′(ξ)γ)((1 + f ′(ξ)γ)λ2 − (2+

f ′(ξ)γ)c3))e3
n + ((5 + 7 f ′(ξ)γ + 4 f ′(ξ)2γ2 + f ′(ξ)3γ3)λc2

2+

(4 + 5 f ′(ξ)γ + 3 f ′(ξ)2γ2 + f ′(ξ)3γ3)c3
2 − (4 + 7 f ′(ξ)γ+

5 f ′(ξ)2γ2 + f ′(ξ)3γ3)λc3 − c2(−(3 + 5 f ′(ξ)γ + 3 f ′(ξ)2γ2+

f ′(ξ)3γ3)λ2 + (7 + 10 f ′(ξ)γ + 7 f ′(ξ)2γ2 + 2 f ′(ξ)3γ3)c3)+

(1 + f ′(ξ)γ)((1 + f ′(ξ)γ)2λ3 + (3 + 3 f ′(ξ)γ + f ′(ξ)2γ2)c4))e4
n+

O(en)
5.

(18)

In addition, the Taylor’s expansion of f (yn) is

f (yn) = f ′(ξ)(en,y + c2e2
n,y + c3e3

n,y + c4e4
n,y) + O(en,y)

5. (19)

Using Equations (17)–(19), we have

f (yn)( f [xn, wn] + λ f (wn))

( f [xn, yn] + λ f (wn)) f [yn, wn]
=(1 + f ′(ξ)γ)(λ + c2)e2

n + (−(2 + 2 f ′(ξ)γ+

f ′(ξ)2γ2)λc2 − (2 + 2 f ′(ξ)γ + f ′(ξ)2γ2)c2
2 − (1+

f ′(ξ)γ)((1 + f ′(ξ)γ)λ2 − (2 + f ′(ξ)γ)c3))e3
n + ((1−

2 f ′(ξ)γ− 2 f ′(ξ)2γ2)λc2
2 + (2 + f ′(ξ)γ + f ′(ξ)2γ2+

f ′(ξ)3γ3)c3
2 − (3 + 5 f ′(ξ)γ + 4 f ′(ξ)2γ2+

f ′(ξ)3γ3)λc3 − c2((−1 + f ′(ξ)2γ2)λ2 + 2(3+

4 f ′(ξ)γ + 3 f ′(ξ)2γ2 + f ′(ξ)3γ3)c3) + (1+

f ′(ξ)γ)((1 + f ′(ξ)γ)2λ3 + (3 + 3 f ′(ξ)γ+

f ′(ξ)2γ2)c4))e4
n + O(en)

5.

(20)

Finally, putting Equation (20) into the second step of Equation (16), we obtain

en+1 = (1 + f ′(ξ)γ)2(λ + c2)
(
(2 + f ′(ξ)γ)λc2 + 2c2

2 − c3

)
e4

n + O(en)
5, (21)

which is the error equation for the proposed optimal scheme given by Equation (16) with a
convergence order of four. This completes the proof.

3. Iterative Method with Memory and Its Convergence Analysis

Now, we present an extension to the method given by Equation (16) by the inclusion
of memory to improve the convergence order without the addition of any new functional
evaluations.

If we clearly observed, it can be seen from the error relation given in Equation (21) that

the order of convergence of the proposed family given by Equation (16) is 4 if γ 6= −1
f ′(ξ)

and

λ 6= −c2. Therefore, if γ =
−1

f ′(ξ)
and λ = −c2 = − f ′′(ξ)

2 f ′(ξ)
, then the order of convergence

of our proposed family can be improved, but this value cannot be reached because the
values of f ′(ξ) and f ′′(ξ) are not practically available. Instead, we can use approximations
calculated by already available information [21]. Hence, the main idea in constructing the
methods with memory consists of the calculation of parameters γ = γn and λ = λn as the
iteration proceeds by the formulae,

γn =
−1

f ′(ξ)
and λn = −c2 = − f ′′(ξ)

2 f ′(ξ)



Math. Comput. Appl. 2023, 28, 48 6 of 17

for n = 1, 2, . . . Further, it is also assumed that the initial estimates γ0 and λ0 must be
chosen before starting the iterations. Thus, we give an estimation for γn and λn given by

γn =
−1

N′3(xn)
and λn =

−N′′4 (wn)

2N′4(wn)
, (22)

where N3(k) = N3(k; xn, xn−1, yn−1, wn−1) and N4(k) = N4(k; wn, xn, wn−1, yn−1, xn−1) are
Newton’s interpolating polynomials of the third- and fourth-degrees, respectively,
which are set through the best available nodal points, (xn, xn−1, yn−1, wn−1) for N3 and
(wn, xn, wn−1, yn−1, xn−1) for N4.

Thus, by replacing γ by γn and λ by λn in the method given by Equation (16), we
obtain a new family with memory as follows:

γ0, λ0, x0 are given, w0 = x0 + γ0 f (x0)

γn =
−1

N′3(xn)
, wn = xn + γn f (xn), λn =

−N′′4 (wn)

2N′4(wn)
, n = 1, 2, . . . ,

yn = xn −
f (xn)

f [xn, wn] + λn f (wn)
,

xn+1 = yn −
f (yn)( f [xn, wn] + λn f (wn))

( f [xn, yn] + λn f (wn)) f [yn, wn]
.

(23)

Next, we establish the convergence results for our proposed family with memory
given by Equation (23).

Theorem 3. Suppose that f : D ⊂ R→ R is a real function suitably differentiable in a domain
D. If ξ ∈ D is a simple root of f (x) = 0 and an initial guess x0 is sufficiently close to ξ, then the
iterative method given by Equation (23) converges to ξ with a convergence order of at least 7.

Proof. Let {xn} be a sequence of approximations generated by an iterative method (IM).
If this sequence converges to zero ξ of f with the R-order (≥ r) of IM, then we can write

en+1 ∼ Dn,rer
n, en = xn − ξ, (24)

where Dn,r tends to the asymptotic error constant Dr of IM, when n→ ∞. Thus,

en+1 ∼ Dn,r(Dn−1,rer
n−1)

r = Dn,rDr
n−1,rer2

n−1 (25)

Let the iterative sequences {wn} and {yn} have R-orders r1 and r2, respectively. Therefore,
we obtain

en,w = wn − ξ ∼ Dn,r1 er1
n ∼ Dn,r1(Dn−1,rer

n−1)
r1 = Dn,r1 Dr1

n−1,rerr1
n−1 (26)

and
en,y = yn − ξ ∼ Dn,r2 er2

n ∼ Dn,r2(Dn−1,rer
n−1)

r2 = Dn,r2 Dr2
n−1,rerr2

n−1. (27)

Using (26), (27) and a lemma stated in [13], we obtain

1 + γn f ′(ξ) ∼ ψ1en−1,wen−1,yen−1 = ψ1Dn−1,r1 Dn−1,r2 er1+r2+1
n−1 ,

λn + c2 ∼ ψ2en−1,wen−1,yen−1 = ψ2Dn−1,r1 Dn−1,r2 er1+r2+1
n−1 .

(28)

In view of our proposed family of methods without memory given by Equation (16), we
have the following error relations,

en,w = (1 + γ f ′(ξ))en + O(en)
2, (29)

en,y = (1 + γ f ′(ξ))(λ + c2)e2
n + O(en)

3, (30)

en+1 = φ1(1 + γ f ′(ξ))2(λ + c2)e4
n + O(en)

5, (31)
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where φ1 = (2 + f ′(ξ)γ)λc2 + 2c2
2 − c3.

According to the error relations given by Equations (29)–(31) with self-accelerating
parameters, γ = γn and λ = λn, we can write the corresponding error relations for the
methods given by Equation (23) with memory as follows:

en,w ∼ (1 + γn f ′(ξ))en, (32)

en,y ∼ (1 + γn f ′(ξ))(λn + c2)e2
n, (33)

en+1 ∼ φ2(1 + γn f ′(ξ))2(λn + c2)e4
n, (34)

where φ2 = (2 + f ′(ξ)γn)λnc2 + 2c2
2 − c3 depending on iteration index since γn and λn are

re-calculated in each step. Now using Equations (28) and (32)–(34), we obtain the following
relations:

en,w ∼ (1 + γn f ′(ξ))en ∼ ψ1Dn−1,r1 Dn−1,r2 Dn−1,rer+r1+r2+1
n−1 , (35)

en,y ∼ (1 + γn f ′(ξ))(λn + c2)e2
n ∼ ψ1ψ2D2

n−1,r1
D2

n−1,r2
D2

n−1,re2r+2r1+2r2+2
n−1 , (36)

en+1 ∼ φ2(1 + γn f ′(ξ))2(λn + c2)e4
n ∼ φ2ψ2

1ψ2D3
n−1,r1

D3
n−1,r2

D4
n−1,re4r+3r1+3r2+3

n−1 . (37)

Now, comparing the error exponents of en−1 on the right-hand side of the pairs given
by Equations (26) with (35), (27) with (36) and (25) with (37), respectively, we obtain the
following system of equations:

rr1 − r− r1 − r2 = 1,

rr2 − 2r− 2r1 − 2r2 = 2,

r2 − 4r− 3r1 − 3r2 = 3.

(38)

Solving this system of equations, we obtain a non-trivial solution as r1 = 2, r2 = 4 and r = 7.
Hence, we can conclude that the lower bound of the R-order of our proposed family with
memory given by Equation (23) is seven. This completes our proof.

4. Numerical Results

In this section, the numerical results of our proposed scheme are examined. Further-
more, we will demonstrate the corresponding results after comparison with some existing
schemes, both with and without memory. All calculations have been accomplished using
Mathematica 11.1 in multiple precision arithmetic environments with specification of a
processor Intel(R) Core(TM) i5-1035G1 CPU @ 1.00 GHz 1.20 GHz (64-bit operating system),
Windows 11. We suppose that the initial values of γ (or γ0) and λ (or λ0) must be selected
prior to performing the iterations and a suitable x0 be given.

The functions used for our computations are given in Table 1.

Table 1. Test functions along with their roots and initial guesses taken.

Test Function Real Root Initial Guess Taken

f1(x) = (x− 2)(x10 + x + 1)e−x−1 = 0 2 1.925
f2(x) = ex2+7x−30 − 1 = 0 3 2.90
f3(x) = sin(πx)ex2+x cos x−1 + x log(x sin x+ 1) = 0 0 0.05
f4(x) = ex3−x − cos(x2 − 1) + x3 + 1 = 0 −1 −1.10
f5(x) = ex2−3x sin x + log(x2 + 1) = 0 0 0.05

To check the theoretical order of convergence, the computational order of conver-
gence [22], ρc (COC) is calculated using the following formula,

ρc =
log(| f (xk)/ f (xk−1)|)

log(| f (xk−1)/ f (xk−2)|)
, k = 2, 3, . . . ,
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considering the last three approximations in the iterative procedure. The errors of approxi-
mations to the respective zeros of the test functions, | xn − ξ | and COC are displayed in
Tables 2 and 3.

Table 2. Comparison of the different methods without memory.

Without Memory Methods | x1− ξ | | x2− ξ | | x3− ξ | ρc CPU Time

f1(x)
PM(γ = −0.1, λ = 0.1) 1.1026× 10−2 3.4683× 10−5 2.3844× 10−15 4.0308 0.390
SM(α = 10, γ = −0.01) 4.5722× 10−2 1.4814× 10−3 1.8466× 10−10 4.8888 0.343
AM1 F F F ## −
CM 6.6406× 10−2 1.8454× 10−3 3.2406× 10−9 3.4574 0.329

f2(x)
PM(γ = −0.1, λ = 0.1) 5.3295× 10−3 3.6701× 10−8 6.3025× 10−29 4.0108 0.265
SM(α = 10, γ = −0.01) F F F ## −
AM1 F F F ## −
CM NC NC NC # −

f3(x)
PM(γ = −0.1, λ = 0.1) 7.6728× 10−6 4.3783× 10−21 4.6420× 10−82 4.0000 0.671
SM(α = 10, γ = −0.01) 2.2439× 10−5 1.4028× 10−18 2.1427× 10−71 4.0000 0.875
AM1 3.8672× 10−5 1.3302× 10−17 1.8622× 10−67 4.0000 0.812
CM 2.2767× 10−5 1.1497× 10−18 7.4781× 10−72 4.0000 0.624

f4(x)
PM(γ = −0.1, λ = 0.1) 3.6861× 10−6 1.6522× 10−23 6.6701× 10−93 4.0000 0.312
SM(α = 10, γ = −0.01) 1.4106× 10−5 2.4856× 10−21 2.3942× 10−84 4.0000 0.453
AM1 9.0450× 10−5 1.2109× 10−15 3.8809× 10−59 4.0001 0.422
CM 2.2615× 10−5 1.8131× 10−19 7.4932× 10−76 4.0000 0.281

f5(x)
PM(γ = −0.1, λ = 0.1) 1.0074× 10−5 3.6243× 10−20 6.0724× 10−78 4.0000 0.390
SM(α = 10, γ = −0.01) 3.8032× 10−4 1.0334× 10−12 5.6176× 10−47 4.0003 0.594
CM 1.6301× 10−4 2.0715× 10−14 5.4018× 10−54 3.9999 0.359

F—Method fails; ##—COC not required in case of failure; NC—Not converging to root after three iterations;
#—COC not mentioned in case of non-convergence after three iterations.

Table 3. Comparison of the different methods with memory.

Without Memory Methods | x1− ξ | | x2− ξ | | x3− ξ | ρc CPU Time

f1(x)
PMM(γ0 = −0.1, λ0 = 0.1) 1.1025× 10−2 2.0090× 10−11 1.7059× 10−72 6.9728 0.984
AM2(γ0 = λ0 = 0.1) 3.7765× 10−1 1.8449× 10−2 6.9515× 10−12 4.8678 1.031
DM1(γ0 = λ0 = 0.1) NC NC NC # −
DM2(γ0 = λ0 = 0.1) 9.4868× 10−1 7.6918× 10−2 3.7808× 10−6 1.9871 0.969

f2(x)
PMM(γ0 = −0.1, λ0 = 0.1) 5.3295× 10−3 2.2157× 10−12 6.5108× 10−78 6.9741 0.844
AM2(γ0 = λ0 = 0.1) 5.1899× 10−2 3.2288× 10−6 4.5631× 10−35 6.6121 0.812
DM1(γ0 = λ0 = 0.1) F F F ## −
DM2(γ0 = λ0 = 0.1) NC NC NC # −
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Table 3. Cont.

Without Memory Methods | x1− ξ | | x2− ξ | | x3− ξ | ρc CPU Time

f3(x)
PMM(γ0 = −0.1, λ0 = 0.1) 7.6728× 10−6 4.8557× 10−38 7.5120× 10−261 6.9199 3.047
AM2(γ0 = λ0 = 0.1) 4.2993× 10−6 1.1962× 10−37 2.2842× 10−258 6.9946 3.047
DM1(γ0 = λ0 = 0.1) 2.1772× 10−5 7.2683× 10−34 6.9858× 10−232 6.9537 3.141
DM2(γ0 = λ0 = 0.1) 1.2537× 10−5 3.6538× 10−36 5.6673× 10−248 6.9365 3.266

f4(x)
PMM(γ0 = −0.1, λ0 = 0.1) 3.6861× 10−6 2.9711× 10−39 2.0613× 10−271 7.0152 1.360
AM2(γ0 = λ0 = 0.1) 1.2532× 10−5 2.6367× 10−35 6.0850× 10−244 7.0303 1.328
DM1(γ0 = λ0 = 0.1) 1.2723× 10−5 2.8862× 10−35 1.1458× 10−243 7.0301 1.359
DM2(γ0 = λ0 = 0.1) 1.2656× 10−5 2.7964× 10−35 9.1836× 10−244 7.0301 1.358

f5(x)
PMM(γ0 = −0.1, λ0 = 0.1) 1.0074× 10−5 6.5505× 10−34 9.9064× 10−231 6.9827 1.625
AM2(γ0 = λ0 = 0.1) 2.5921× 10−5 6.2077× 10−31 4.4988× 10−211 7.0310 1.672
DM1(γ0 = λ0 = 0.1) 6.0285× 10−5 6.9376× 10−28 9.7865× 10−190 7.0557 1.891
DM2(γ0 = λ0 = 0.1) 1.2734× 10−5 3.1600× 10−32 3.9836× 10−220 7.0625 1.812

F—Method fails; ##—COC not required in case of failure; NC—Not converging to root after three iterations;
#—COC not mentioned in case of non-convergence after three iterations.

We consider the following existing methods for the comparisons:
Soleymani et al. method (SM) without memory [23]:

yn = xn −
f (xn)

f [xn, wn]
, wn = xn + γ f (xn), γ ∈ R\{0},

xn+1 = xn −
(

f (xn) + f (yn)

f [xn, wn]

)
−
(

2 f (xn) + α f (yn)

f [xn, wn]

)(
f (yn)

f (xn)

)2(
1− γ f [xn, wn]

2 + 2γ f [xn, wn]

)
, α ∈ R,

n = 0, 1, 2, . . .

(39)

Cordero et al. method (AM1) without memory [20]:

yn = xn −
f (xn)

f [xn, wn]
, wn = xn + f (xn),

xn+1 = yn −
f (yn) f [xn, wn]

f [xn, yn] f [yn, wn]
, n = 0, 1, 2, . . .

(40)

Chun method (CM) without memory [24]:

yn = xn −
f (xn)

f ′(xn)
,

xn+1 = xn −
f (xn)

f ′(xn)
(1 + u + 2u2), u =

f (yn)

f (xn)
n = 0, 1, 2, . . .

(41)

Cordero et al. method (AM2) with memory [25]:

γ0, λ0, x0 are given, w0 = x0 + γ0 f (x0)

γn =
−1

N′3(xn)
, wn = xn + γn f (xn), λn =

−N′′4 (wn)

2N′4(wn)
, n = 1, 2, . . . ,

yn = xn −
f (xn)

f [xn, wn] + λn f (wn)
,

xn+1 = yn −
f (yn)

( f [xn, yn] + (yn − xn) f [xn, wn, yn]
,

(42)

where N3 and N4 are as defined in Section 3.
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Dz̆unić method (DM1 and DM2) with memory [26]:

γ0, λ0, x0 are given, w0 = x0 + γ0 f (x0)

γn =
−1

N′3(xn)
, wn = xn + γn f (xn), λn =

−N′′4 (wn)

2N′4(wn)
, n = 1, 2, . . . ,

yn = xn −
f (xn)

f [xn, wn] + λn f (wn)
,

xn+1 = yn −
f (yn)g(tn)

( f [yn, wn] + λn f (wn)
, tn =

f (yn)

f (xn)
,

(43)

where N3 and N4 are as defined in Section 3.
Furthermore, we consider some real-life problems, which are as follows:

Example 1. Fractional conversion in a chemical reactor [27],

f6(x) =
x

1− x
− 5 log

0.4(1− x)
0.4− 0.5x

+ 4.45977 = 0. (44)

Here, x denotes the fractional conversion of quantities in a chemical reactor. If x is less than
zero or greater than one, then the above fractional conversion will be of no physical meaning.
Hence, x is taken to be bounded in the region 0 ≤ x ≤ 1. Moreover, the desired root is
ξ ≈ 0.7573962462537538.

Example 2. The path traversed by an electron in the air gap between two parallel plates considering
the multi-factor effect is given by

u(t) =u0 +

(
ν0 + c0

E
mω

sin ωt0 + β

)
(t− t0) + c0

E0

mω2 (cos(ωt + β) + sin(ωt + β)), (45)

where u0 and ν0 are the position and velocity of the electron at time t0, m and c0 are the mass
and charge of the electron at rest and E0 sin(ωt + β) is the RF electric field between the plates. If
particular parameters are chosen, Equation (45) can be simplified as

f7(x) = x− 1
2

cos x +
π

4
= 0. (46)

The desired root of Equation (46) is ξ ≈ −0.3090932715417949.

We also implemented our proposed schemes given by Equations (16) and (23) on
the above-mentioned problems. Tables 4 and 5 demonstrate the corresponding results.
Further, Table 2 demonstrates COC for our proposed method without memory (PM) given
by Equation (16), the method given by Equation (39) denoted as SM, the method given by
Equation (40) denoted as AM1, and the method given by Equation (41) denoted as CM,
respectively. Table 3 demonstrates COC for our proposed method with memory (PMM)
given by Equation (23), the method given by Equation (42) denoted as AM2, and the
method given by Equation (43) by taking g(t) = 1+ t denoted as DM1 and g(t) = 1/(1− t)
denoted by DM2, respectively.

It can be seen from Tables 2 and 3 that for the function f1, AM1 fails to provide a
solution and DM1 requires more than three iterations to converge to the root. Furthermore,
PMM converges to the desired root with an error of approximations much lower than AM2
and DM2. For the function f2, SM, AM1 and DM1 fail to provide a solution and CM and
DM2 do not converge to the desired solution within three iterations. SM has a somewhat
complex structure, and as a consequence takes more time than our method PM in most of
the cases to converge to the root. Furthermore, AM and DM2 converge to the root taking
more time than PM and PMM, respectively. CM has a drawback of its derivative, so it will
not work on points at which the function is zero or close to zero.
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Furthermore, for functions f3, f4 and f5, the proposed methods PM and PMM con-
verge to the required root with minimum error compared to the existing methods.

Hence, we can conclude that our methods work on several functions to obtain roots,
whereas the existing methods have some limitations.

Remark 1. The proposed schemes given by Equations (16) and (23) have been compared to some
already existing methods and it can be seen from the computational results that our proposed schemes
give results in many cases where the existing methods fail in terms of COC and errors, as depicted
in Tables 2–5. Our methods display a noticeable decrease in approximation errors, as shown in the
above-mentioned tables.

Remark 2. From Tables 4 and 5, one can observe that for the function f6, the existing method AM1
fails to converge. In addition, for the function f7, an obvious decrease in the order of convergence of
the existing methods is noticeable.

Table 4. Comparison of the different methods without memory for real-life problems.

Without Memory Methods | x1− ξ | | x2− ξ | | x3− ξ | ρc CPU Time

f6(x)
PM(γ = −0.1, λ = 0.1) 7.5452× 10−3 1.0390× 10−3 3.8220× 10−7 3.7581 0.454
SM(α = 10, γ = −0.01) 1.4049× 10−3 5.3743× 10−7 8.8482× 10−17 4.0239 0.390
AM1 F F F ## −
CM 1.0275× 10−3 1.7055× 10−8 8.8493× 10−17 3.9915 0.265

f7(x)
PM(γ = −0.1, λ = 0.1) 1.0994× 10−3 8.4592× 10−14 3.0463× 10−31 3.9999 0.281
SM(α = 10, γ = −0.01) 8.6465× 10−4 6.5137× 10−14 3.0463× 10−31 4.0001 0.374
AM1 2.3818× 10−3 3.9429× 10−12 3.0463× 10−31 3.9998 0.405
CM 1.5968× 10−3 6.6431× 10−13 3.0463× 10−31 3.9998 0.219

F—Method fails; ##—COC not required in case of failure.

Table 5. Comparison of the different methods with memory for real-life problems.

Without Memory Methods | x1− ξ | | x2− ξ | | x3− ξ | ρc CPU Time

f6(x)
PMM(γ0 = −0.1, λ0 = 0.1) 7.4286× 10−3 9.0440× 10−8 8.8493× 10−17 7.1919 1.641
AM2(γ0 = λ0 = 0.1) 3.4817× 10−4 1.7393× 10−13 8.8493× 10−17 7.7953 1.171
DM1(γ0 = λ0 = 0.1) 8.2698× 10−2 3.2902× 10−2 1.0096× 10−2 1.8843 1.468
DM2(γ0 = λ0 = 0.1) 4.4070× 10−2 2.4810× 10−2 4.9141× 10−3 1.0704 1.938

f7(x)
PMM(γ0 = −0.1, λ0 = 0.1) 1.0994× 10−3 5.2189× 10−26 3.0463× 10−31 6.9718 1.109
AM2(γ0 = λ0 = 0.1) 8.5295× 10−4 5.7122× 10−29 3.0463× 10−31 6.8573 1.219
DM1(γ0 = λ0 = 0.1) 2.4626× 10−3 1.8209× 10−23 3.0463× 10−31 6.9345 0.984
DM2(γ0 = λ0 = 0.1) 1.5623× 10−3 3.6273× 10−25 3.0463× 10−31 6.9245 1.078

5. Basins of Attraction

The basins of attraction of the root t∗ of u(t) = 0 is the set of all initial points t0 in the
complex plane that converge to t∗ on the application of the given iterative scheme. Our
objective is to make use of the basins of attraction to examine the comparison of several
root-finding iterative methods in the complex plane in terms of convergence and stability.

On this front, we take a 512× 512 grid of the rectangle S = [−2, 2]× [−2, 2] ⊂ C. A
colour is assigned to each point t0 ∈ S on the basis of the convergence of the corresponding
method starting from t0 to the simple root and if the method diverges, a black colour
is assigned to that point. Thus, distinct colours are assigned to the distinct roots of the
corresponding problem. It was decided that an initial point t0 converges to a root t∗ when
| t∗ − t0 |< 10−4. Then, point t0 is said to belong to the basins of attraction of t∗. Likewise,
the method beginning from the initial point t0 is said to diverge if no root is located in
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a maximum of 25 iterations. We have used MATLAB R2022a software [28] to draw the
presented basins of attraction.

Furthermore, Table 6 lists the average number of iterations denoted by Avg_Iter and
the percentage of non-converging points denoted by PNC of the methods to generate the
basins of attraction.

Table 6. Comparison of the different methods without and with memory in terms of Avg_Iter
and PNC.

Without Memory Methods Avg_Iter PNC With Memory Methods Avg_Iter PNC

p1(z)
PM(γ = −0.1, λ = 0.1) 3.0552 0.6718 PMM(γ0 = −0.1, λ0 = 0.1) 2.6643 0
SM(α = 10, γ = −0.01) 4.1128 3.0064 AM2(γ0 = λ0 = 0.1) 2.5278 0.0160
AM1 3.3635 0.0072 DM1(γ0 = λ0 = 0.1) 4.3746 7.5332
CM 3.8199 0.2117 DM2(γ0 = λ0 = 0.1) 2.8281 0.0084

p2(z)
PM(γ = −0.1, λ = 0.1) 5.8428 10.6179 PMM(γ0 = −0.1, λ0 = 0.1) 4.8963 4.5556
SM(α = 10, γ = −0.01) 9.4207 26.5533 AM2(γ0 = λ0 = 0.1) 4.2219 1.9265
AM1 9.8161 11.2513 DM1(γ0 = λ0 = 0.1) 10.5985 33.8319
CM 6.3409 4.5195 DM2(γ0 = λ0 = 0.1) 5.1956 0.7041

p3(z)
PM(γ = −0.1, λ = 0.1) 8.4306 21.6465 PMM(γ0 = −0.1, λ0 = 0.1) 5.9777 3.6148
SM(α = 10, γ = −0.01) 12.8203 42.1045 AM2(γ0 = λ0 = 0.1) 6.3765 2.2373
AM1 10.2165 6.6311 DM2(γ0 = λ0 = 0.1) 17.1381 63.0899
CM 9.5562 16.9537 DM2(γ0 = λ0 = 0.1) 7.8478 3.5973

To carry out the desired comparisons, we considered the test problems given below:

Problem 1. The first function considered is p1(z) = z2 − 1. The roots of this function are 1 and
−1. The basins corresponding to our proposed method and the existing methods are shown in
Figures 1 and 2. From Table 6, it can be seen that the proposed methods, PM and PMM converge
to the root in fewer iterations. Furthermore, from the figures, it is observed that PMM converges to
the root with no diverging points but the existing methods have some points painted as black. SM,
in particular has very small basins.

Problem 2. The second function taken is p2(z) = z3 − 1 with roots −1, 0.5 + 0.866i and
0.5− 0.866i. Figures 3 and 4 show the basins for p2(z) in which it can be seen that SM, AM1 and
DM1 have wider regions of divergence. Moreover, the average number of iterations taken by the
proposed methods is less in each case compared to the existing methods.

Problem 3. The third function considered is p3(z) = z4 − 1 with roots ±1 and ±i. Figures 5
and 6 show that SM, CM and DM1 have smaller basins. Although PM and PMM have some
diverging points, they converge in a fewer number of iterations faster than the existing methods.

Therefore, we can conclude that from Figures 1–6, it can be observed that PM has
larger basins in comparison to SM and AM1 in all cases. The basins for DM1 are very small
in comparison to PMM in all cases. In addition, from Table 6, we observe that the average
number of iterations taken by the methods SM, AM1, and CM are more than PM and for
DM1 and DM2, the iterations required are more than PMM.

Remark 3. One can see from Figures 1–6 and Table 6 that our proposed methods have larger basins
of attraction in comparison to the existing ones. In addition, there is a marginal increase in the
average number of iterations per point of the existing methods. Consequently, through our proposed
methods, the chances of non-convergence to the root are less when compared to the existing methods.
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Figure 1. Basins of attraction for PM, SM, AM1, and CM, respectively, for p1(z).

Figure 2. Basins of attraction for PMM, AM2, DM1, and DM2, respectively, for p1(z).
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Figure 3. Basins of attraction for PM, SM, AM1, and CM, respectively, for p2(z).

Figure 4. Basins of attraction for PMM, AM2, DM1, and DM2, respectively, for p2(z).
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Figure 5. Basins of attraction for PM, SM, AM1, and CM, respectively, for p3(z).

Figure 6. Basins of attraction for PMM, AM2, DM1, and DM2, respectively, for p3(z).
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6. Conclusions

We have proposed a new fourth-order optimal method without memory. In order
to increase the order of convergence, we have extended the proposed method without
memory to with memory, without the addition of any new functional evaluations taking
into consideration two self-accelerating parameters. Consequently, the order of conver-
gence increased from four to seven. Computational results demonstrate that the proposed
methods converge to the root with a higher rate in comparison to other methods of the
same order at the considered point. In addition, our proposed schemes give results in many
of the cases where the existing methods fail in terms of COC and errors. Moreover, we have
also presented the basins of attraction for the proposed method as well as some existing
methods, which assert that the chances of non-convergence to the root much less in our
proposed methods when compared to the existing methods.
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