
Citation: Pijls, H.; Quan, L.P. A

Computational Method with Maple

for Finding the Maximum Curvature

of a Bézier-Spline Curve. Math.

Comput. Appl. 2023, 28, 56. https://

doi.org/10.3390/mca28020056

Academic Editor: Maria Amélia

Ramos Loja

Received: 3 March 2023

Revised: 30 March 2023

Accepted: 3 April 2023

Published: 8 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

A Computational Method with Maple for Finding the
Maximum Curvature of a Bézier-Spline Curve
Henk Pijls 1 and Le Phuong Quan 2,∗

1 Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 105-107, 3rd Floor
(Entrance via Nikhef), 1098 XG Amsterdam, The Netherlands

2 Department of Mathematics, College of Natural Sciences, Cantho University, 3/2 Street,
Cantho City 900000, Vietnam

* Correspondence: lpquan@ctu.edu.vn; Tel.: +84-76-290-2215; Fax: +84-07103-832062

Abstract: In this paper, we propose two Maple procedures and some related utilities to determine the
maximum curvature of a cubic Bézier-spline curve that interpolates an ordered set of points in R2 or
R3. The procedures are designed from closed-form formulas for such open and closed curves.

Keywords: approximation; Bézier-spline curve; computer algebra system; Frenet frame; interpolation;
parametrization

MSC: 41A15; 53A04; 65D05; 65D17; 68W30

1. Introduction

We recall here the definition of curvature of a smooth curve. This is a fundamental
concept in differential geometry that has been studied deeply in applied mathematics,
engineering, and computer graphics. The problem of finding the curvature extremum has
been investigated by many authors. We can point out some of their results on establishing
necessary and sufficient conditions for the regularity of offset curves or tubular surfaces,
designing various types of aesthetic curves from constrained conditions, representing and
modifying curves to adapt principles of interpolation and animation, etc. In the following,
we give a short description of the method for solving this problem and its limitations.

If r : [a, b] −→ R3 is the position vector of a smooth curve L , then the point r(t) of L at t ∈
[a, b] is written as a 3-tuple (x(t), y(t), z(t)), or a column vector 〈x(t), y(t), z(t)〉 = (x(t), y(t), z(t))T

when used in a matrix expression; hence r(t)T is the row matrix
[
x(t) y(t) z(t)

]
.

The image of r or the map r itself is called a parametrization of L . Along L , we con-
sider the coordinates of the Frenet frame {T̂, N̂, B̂} whose origin is located at points of L .
From differential geometry and calculus (see [1,2]), we know that

T̂ =
v
‖v‖ , B̂ =

v× a
‖v× a‖ , N̂ = B̂× T̂,

where v(t) = r′(t) = (x′(t), y′(t), z′(t))T and a(t) = r′′(t) = (x′′(t), y′′(t), z′′(t))T are
usually called the velocity vector and the acceleration vector of L at t (or at r(t)).

Let r = r(t) = (x(t), y(t), z(t))T be a parametrization of a smooth space curve L with
a = r′′ ∈ C([a, b]). Then, the curvature of L at t is given by

κ =
‖v× a‖

v3 , (1)

where v = v(t) = r′(t), a = a(t) = r′′(t), and v = ‖v(t)‖. Under this assumption, we
usually find the maximum value of κ(t) on [a, b] by choosing the largest value of κ at
the points where κ′(t) = 0. However, how to solve the equation κ′(t) = 0 exactly or

Math. Comput. Appl. 2023, 28, 56. https://doi.org/10.3390/mca28020056 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca28020056
https://doi.org/10.3390/mca28020056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-8511-2372
https://doi.org/10.3390/mca28020056
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca28020056?type=check_update&version=2


Math. Comput. Appl. 2023, 28, 56 2 of 13

approximately? In general, we cannot do it. Moreover, apart from this, the expression
for κ′(t) is complicated! Let us take K = κ2 and write it out in the components of v× a.
This gives

K =
(y′z′′ − z′y′′)2 + (z′x′′ − x′z′′)2 + (x′y′′ − y′x′′)2

[(x′)2 + (y′)2 + (z′)2]3
.

On the other hand, if r = r(s) is the parametrization of L by the arc length s, then
from the relation T̂′(s) = κ(s)N̂(s) we obtain

T̂′′(s) = κ′(s)N̂(s) + κ(s)N̂′(s).

This gives a simple expression for κ′(s):

T̂′′(s) · N̂(s) = κ′(s).

However, we again encounter another hard problem: how to convert a parametrization
of a smooth space curve L by a general parameter t into the parametrization by the arc
length s. In general, this is impossible.

To overcome those obstacles, many researchers restricted their attention to the class of
Bézier curves and their variants. Recently, the papers related to maximizing or minimizing
the curvature of these curves provided a lot of theoretical results and useful algorithms, as
well as practical tools. We highlight some representative papers with a brief note. Ref. [3]
presents a unique design on a piecewise quadratic Bézier curve that interpolates its local
maximum curvature points that are also its control points. Ref. [4], adopted from [3],
proposes new methods to modify local curvature at the interpolation points by taking basis
functions of higher degree. Ref. [5] provides conditions for the curvature of a quadratic
rational Bézier curve to be monotone or to have a local minimum and maximum. Ref. [6]
establishes conditions for Bézier plane curves generated by a matrix to have monotone
curvature. Ref. [7] also establishes conditions for Bézier curves to have monotone curvature,
based on control points of the position vector of the curve and its derivatives. Ref. [8] treats
typical Bézier plane curves with one curvature extremum that can be easily calculated,
which can help to divide the curve into two typical curves with monotone curvature.

Traditionally, the papers noted above and many others paid much attention to control
points and polygons. Actually, these objects have direct effects on the shape of the curves,
so they have been modified in order to obtain a curve with properties needed in design
applications. However, we have some changes in mind when relating this widespread trend
to our result in [9]. The formula in [9] (Theorem 3.1) can be seen as a way of approximation
by interpolation with Bézier-spline curves. Therefore, we prefer to place emphasis on
interpolated points. These points can be chosen in a way to design curves in R2 or R3 with
desired shapes or can be taken from special partitions of the parameter interval of a smooth
curve with given parametrization to approximate its curvature extremum.

Now, we go back to our main purpose: making a Maple procedure to compute the
maximum value κmax of the curvature. We restrict our attention to Bézier-spline curves.
This objective is based on the power of Maple on symbolic computation and on solving
polynomial equations of high degree and on the explicit piecewise cubic parametrization
of these special curves.

The present paper is organized as follows. In Section 2, we construct the Maple
procedures to represent Bézier-spline space curves for both open and closed curves.
In Section 3, we propose a pseudo-algorithm for computing κmax, then we provide the
full code of the procedures corresponding to the algorithm. In Section 4, we discuss some
modifications to obtain procedures to represent Bézier-spline plane curves and to compute
their maximum curvature. In Section 5, we give some concluding remarks.



Math. Comput. Appl. 2023, 28, 56 3 of 13

2. Bézier-Spline Space Curves with Maple Parametrization

In this section, we consider a Bézier-spline curve, which is obtained from a closed-form
solution to the inverse problem, which interpolates an ordered set of points s0, s1, . . . , sn,
given in [9]. Such a plane curve can be obviously extended to a space curve C given by a
piecewise cubic function f of C2([0, n]). According to the construction of such curves in [9],
we present here a more convenient way to derive their parametrization.

First, f(t) is composed of the cubic functions fk given by

fk(t) = (1− t)3sk−1 + 3t(1− t)2pk−1 + 3t2(1− t)qk + t3sk, (2)

where k = 1, . . . , n and t ∈ [0, 1], and fk is the parametrization of the cubic Bézier curve Ck
with the control points sk−1, pk−1, qk, and sk. These points satisfy the known relations

pk−1 =
2
3

bk−1 +
1
3

bk, qk =
1
3

bk−1 +
2
3

bk, (3)

and
sk =

qk + pk
2

. (4)

On the other hand, from [9] (Theorem 3.1), the points bk, sk, k = 0, . . . , n, are now in
R3 with b0 = s0 and bn = sn, and for k = 1, . . . , n− 1, we have

bk =
βn−1−k
βn−1

[
(−1)ks0 + 6

k−1

∑
j=1

(−1)k−jβ j−1sj

]
+

βk−1
βn−1

[
6

n−1

∑
j=k

(−1)j−kβn−1−jsj + (−1)n−ksn

]
, (5)

where βk (k = 0, . . . , n− 1) is evaluated by the formula

βk = 2k
bk/2c

∑
m=0

(
k + 1

k− 2m

)
(3/4)m. (6)

Finally, we can give a simple process to obtain a so-called relaxed, uniform B-spline space
curve C that interpolates an ordered set of points s0, s1, . . . , sn (see [10]).
The parametrization f of C is a piecewise cubic function on [0, n] whose components
fk, k = 1, . . . , n, derived from (2) and (3), can be now given by

fk(t) = (k− t)3sk−1 + (t− k + 1)(k− t)2(2bk−1 + bk)

+ (t− k + 1)2(k− t)(bk−1 + 2bk) + (t− k + 1)3sk, (7)

where t ∈ [k− 1, k], and the bk are obtained from (5) for k = 1, . . . , n− 1, and b0 = s0 and
bn = sn. Since f′′1 (0) = f′′n(n) = 0, the curvatures of C at t = 0 and t = n are both zero and
we call C a relaxed Bézier-spline space curve.

We are interested in the implementation of the above parametrization by a Maple
procedure. We list here some Maple commands that will appear in our procedures. They
are all very important and frequently used in graphic and computation programming:
args, nargs, op, nops, ERROR, RETURN, convert, evalf, diff, expand, floor, for, fsolve,
map, max, min, piecewise, plot, plot3d, proc, seq, solve, unapply, and while; in ad-
dition, LinearAlgebra and plots are the great packages containing many procedures
for specific purposes. A declaration to create a function, e.g., f, such as f:=x->F(x) or
f:=unapply(F(x),x) (sub-procedures in F(x) are evaluated first), where F(x) is an ex-
pression or a list of expressions in x, is a very useful and convenient tool. In addition, the
conditional structures if-then-else and if-then-elif-else are indispensable in branch
programming, whereas the type “list” is a flexible ordered arrangement of operands (or
components, elements) inside the square brackets [, ]. See [11,12] and Maple help pages in
each session to know more details about meaning, syntax, and usage of these commands,
structures, and types. The implementation of some specific task by calling a procedure



Math. Comput. Appl. 2023, 28, 56 4 of 13

name together with appropriate arguments is usually said to be a calling sequence. As a
convention, we choose type list for elements of R2 or R3.

Now, let us make a procedure to compute f(t) on [0, n] from (5)–(7), with b0 = s0 and
bn = sn. It takes S = {s0, s1, . . . , sn} as its input and gives f(t) as its output in the form of
[F(t), G(t), H(t)] such that F, G, H are the piecewise functions in t on [0, n]. This procedure
is called BScurve3d and its full code is given in the following.

BScurve3d
BScurve3d:=proc(Lst::list(list(realcons)))
local n,S,b,B,f,F,G,H,j,k;
n:=nops(Lst)-1:
for k from 0 to n do
S[k]:=Lst[k+1]:
end do:
for j from 0 to n-1 do
B[j]:=2^j*add(binomial(j+1,j-2*m)*(3/4)^m,m=0..floor(j/2)):
end do:
for k from 1 to n-1 do
b[k]:=(B[n-1-k]/B[n-1])*((-1)^k*S[0]+6*add((-1)^(k-j)*B[j-1]*S[j],j=1..k-1))

+(B[k-1]/B[n-1])*((-1)^(n-k)*S[n]+6*add((-1)^(j-k)*B[n-1-j]*S[j],j=k..n-1)):
end do:
b[0]:=S[0]:
b[n]:=S[n]:
for k from 1 to n do
f[k]:=unapply(expand((k-t)^3*S[k-1]+(t-k+1)*(k-t)^2*(2*b[k-1]+b[k])

+(t-k+1)^2*(k-t)*(b[k-1]+2*b[k])+(t-k+1)^3*S[k]),t):
end do:
F:=t->piecewise(-1<=t and t<1,f[1](t)[1],

seq([(k-1)<=t and t<k,f[k](t)[1]][],k=2..n-1),(n-1)<=t and t<n+1,f[n](t)[1]):
G:=t->piecewise(-1<=t and t<1,f[1](t)[2],

seq([(k-1)<=t and t<k,f[k](t)[2]][],k=2..n-1),(n-1)<=t and t<n+1,f[n](t)[2]):
H:=t->piecewise(-1<=t and t<1,f[1](t)[3],

seq([(k-1)<=t and t<k,f[k](t)[3]][],k=2..n-1),(n-1)<=t and t<n+1,f[n](t)[3]):
RETURN(unapply([F(t),G(t),H(t)],t));
end proc:

To declare a finite sequence of indexed expressions, we can use the operator [ ] to
extract the contents of a list. For example, the command [1, 2, 3][ ] results in 1, 2, 3, and
the declaration of the sequence

1 ≤ t and t < 2, f2(t), 2 ≤ t and t < 3, f3(t), . . . , n− 2 ≤ t and t < n− 1, fn−1(t)

can be written as: seq([k-1<=t and t<k,f[k](t)][],k=2..n-1). We have used this
declaration in BScurve3d.

If we have an ordered set of (n + 1) distinct points in R3 that are declared in Maple as
a list of lists

S := [[a0, b0, c0],[a1, b1, c1],...,[an, bn, cn]],

then we can obtain the position vector of the Bézier-spline curve C that interpolates
these points by calling f:=BScurve3d(S). The plot of C can be made by the procedure
spacecurve in the plots package with the command

plots[spacecurve](f(t),t=0..n,opts);

The ‘opts’ means plotting options. To implement these steps, for instance, we set

L := [[−2, 5, 1], [0,−1, 0], [−3, 1, 2], [1, 2, 3], [−5,−2, 1], [2,−4,−5], [0, 1, 7], [−6, 3, 2]]



Math. Comput. Appl. 2023, 28, 56 5 of 13

and f := BScurve3d(L). Then, the plot of the Bézier-spline curve C that interpolates L is
given by the calling sequence

plots[spacecurve](f(t),t = 0..7,opts);

Figure 1 shows the curve C and the points of L. We take one more example of interpo-
lating an ordered set of points on a given space curve to see how well a Bézier-spline curve
fits this curve. Let L1 be a curve whose parametrization is r(t) = (t cos t, 0.8t sin t, t cos t−
sin t)T , t ∈ [−2.4, 5], with the declaration

r := t->[t*cos(t),(0.8)*t*sin(t),t*cos(t)-sin(t)]:

Consider a partition of [−2.4, 5] by the points t0 := −2.4, t1 := −1.2, t2 := 0.0, t3 := 1.4,
t4 := 2.7, t5 := 3.8, t6 := 5.0, and set

L1 := [r(t0),r(t1),...,r(t6)]:

The curve L1 and its approximation by a Bézier-spline curve C1 are also given in
Figure 1.

Figure 1. On the (left): The Bézier-spline curve C interpolates the list L. On the (right): The Bézier-
spline curve C1 (in red) interpolates the data points r(t0), r(t1), . . . , r(t6) on the curve L1 (in cyan).
opts: axes=boxed, numpoints=2000, thickness=2, scaling=constrained.

We will make some changes to obtain a so-called closed, uniform B-spline space curve
C that interpolates an ordered set of points s0, s1, . . . , sn, with sn = s0 (see [10]). We call
such a curve a closed Bézier-spline space curve. In this case, we choose appropriate settings
to have again the relations (3) and (4) at the common point. The first setting should be
bn = b0. Then, C is still composed of the cubic Bézier curves Ck, k = 1, . . . , n, as above.
Specifically, at the interpolated point sn = s0, (4) becomes

s0 =
p0 + qn

2
, (8)

where we have from (3) that

p0 =
2
3

b0 +
1
3

b1, qn =
1
3

bn−1 +
2
3

bn =
1
3

bn−1 +
2
3

b0. (9)

Now, from (8) and (9), we get the last setting

b0 =
1
4
(6s0 − bn−1 − b1). (10)



Math. Comput. Appl. 2023, 28, 56 6 of 13

It is easy to have another Maple procedure, say BScurve3dC, for representing a closed
Bézier-spline space curve C from the dataset {s0, s1, . . . , sn} with sn = s0, and the set-
tings (10) and bn = b0. From the above discussion, the parametrization f of C has the
components fk given by (7), and we can check that

f′1(0) = f′n(n) = −3s0 + 2b0 + b1, f′′1 (0) = f′′n(n) = 6(s0 − b0).

Therefore, f is in C2([0, n]) again and C1, Cn have the same curvature at their com-
mon point.

Let us take some examples on using BScurve3dC. As the steps to display closed Bézier-
spline space curves are the same as for BScurve3d, we just give the graphical results of
these examples. Note that the initial and terminal points of the input list for BScurve3dC
have to be the same. Let L be the list

L := [[0, 3,−1], [1,−2, 2], [−2, 0,−5], [2, 4, 3], [−1, 2, 4], [6,−1, 0], [0, 3,−1]].

The display of the closed Bézier-spline curve CL that interpolates L is given in
Figure 2. Let r be the parametrization of a closed space curve L called a trefoil knot
(see [1] (p. 897)) with

r(t) := [(1 + 0.3 cos(3t)) cos(2t), (1 + 0.3 cos(3t)) sin(2t), 0.35 sin(3t)] (t ∈ [0, 2π]).

The endpoints of L coincide with the point [1.3, 0, 0]. Let T be a set of points on L
such that

T := [[1.3, 0, 0], r(0.5), r(1.2), r(1.8), r(2.5), r(3.2), r(3.9), r(4.5), r(5.1), r(5.8), [1.3, 0, 0]].

In Figure 2, we also give the display of L together with its approximation CT that
interpolates T.

Figure 2. On the (left): The closed Bézier-spline curve CL interpolates the list L. On the (right):
The closed Bézier-spline curve CT (in red) interpolates the set T of points on the curve L (in cyan).

3. Computation of the Maximum Curvature of a Bézier-Spline Curve

Let C be a Bézier-spline curve that interpolates an ordered set T of points s0, s1, . . . , sn
in R3. Then r(t), the position vector of C , is a piecewise cubic function of C2([0, n]), given
by its components fk(t) in (7).

Avoiding the square root function, we have from (1):

K := κ2 =
‖v× a‖2

v6 =
(v× a) · (v× a)

(v · v)3 .

Then, we have that



Math. Comput. Appl. 2023, 28, 56 7 of 13

K′ =
[(v× a) · (v× a)]′(v · v)3 − [(v× a) · (v× a)]3(v · v)22(v · v′)

(v · v)6

=
2[(v× a) · (v× a′)](v · v)− 6[(v× a) · (v× a)](v · a)

(v · v)4 .

As κ attains its maximum value on [0, n] only at solutions of the equation K′ = 0 or

(v · v)[(v× a) · (v× a′)]− 3[(v× a) · (v× a)](v · a) = 0 (11)

in the intervals (i− 1, i) and at their endpoints i− 1, i, with i = 1, . . . , n, we can find κmax
on [0, n] by the procedure MaxCurvature3d. However, at first, we present the procedure
in the form of a pseudo-code algorithm. It would be easy to translate statements in such
algorithms into Maple codes or other programming languages. Moreover, our discussion
on how to use appropriate commands for a specific purpose will give a clear description
of our procedures. In addition, we sometimes use built-in Maple procedures in those
algorithms with their most simple form for convenience and simplicity.

Note that the left-hand side of (11) is a polynomial of degree at most 7. Letting Q be
such a polynomial (in one variable, say, t), we will use a powerful tool of Maple to find
numerically all the zeros of Q in a given interval. That is the procedure fsolve and it has
been called in Algorithm 1 by the command: fsolve(Q,t,α..β). The output of this calling
is a sequence of all real zeros of Q in [α, β]. Moreover, the expressions of dot and cross
products are given by the great package of Maple: LinearAlgebra. We also select points in
[0, n] at which κ attains its maximum value. Thus, the output of Algorithm 1 consists of
κmax and the set κ−1(κmax) in [0, n]. Now, for relaxed Bézier-spline curves, we give the full
code of MaxCurvature3d at the end of this section.

Algorithm 1 Finding the maximum curvature of a Bézier-spline curve

Input: a set T of (n + 1) points in R3;
Output: The maximum curvature κmax of the Bézier-spline curve interpolating T;

1: Sp := { };
2: for i = 1 to n do
3: v := f′i(t), a := f′′i (t) // fi from BScurve3d;
4: Q := the left-hand side of (11);
5: P := {fsolve(Q,t,i− 1 .. i)} // Solving (11) for t ∈ [i− 1, i];
6: Sp := Sp ∪ P;
7: S := {Fi(t) : t ∈ P} ∪ {Fi(i− 1), Fi(i)} // Fi := t 7→ κ(t) = ‖v× a‖/v3, v := ‖v‖;
8: mi := max S;
9: end for

10: κmax := max{m1, . . . , mn};
11: M := Sp ∪ {0, 1, . . . , n}; Tp := F−1(κmax) ⊂ M // F := t 7→ κ(t) on [0, n], F = Fi on

[i− 1, i];
12: return κmax and Tp;

MaxCurvature3d
MaxCurvature3d:=proc(L::list(list(realcons)))
local a,ad,A,AD,m,n,S,b,B,f,H,E,F,G,R,k,i,j,v,V,M,Kmax,N,P,Q,Sp,Tp,Tpoint;
n:=nops(L)-1:
for k from 0 to n do
S[k]:=L[k+1]:
end do:
for j from 0 to n-1 do
B[j]:=2^j*add(binomial(j+1,j-2*m)*(3/4)^m,m=0..floor(j/2)):
end do:



Math. Comput. Appl. 2023, 28, 56 8 of 13

for k from 1 to n-1 do
b[k]:=(B[n-1-k]/B[n-1])*((-1)^k*S[0]+6*add((-1)^(k-j)*B[j-1]*S[j],j=1..k-1))

+(B[k-1]/B[n-1])*((-1)^(n-k)*S[n]+6*add((-1)^(j-k)*B[n-1-j]*S[j],j=k..n-1)):
end do:
b[0]:=S[0]:
b[n]:=S[n]:
for k from 1 to n do
f[k]:=unapply(expand((k-t)^3*S[k-1]+(t-k+1)*(k-t)^2*(2*b[k-1]+b[k])

+(t-k+1)^2*(k-t)*(b[k-1]+2*b[k])+(t-k+1)^3*S[k]),t):
end do:
Sp:={}:
for i from 1 to n do
v:=unapply(diff(f[i](t),t),t):
a:=unapply(diff(f[i](t),t$2),t):
ad:=unapply(diff(f[i](t),t$3),t):
V:=convert(v(t),Vector):
A:=convert(a(t),Vector):
AD:=convert(ad(t),Vector):
M:=expand(LinearAlgebra[DotProduct](V,V,conjugate=false)):
N:=expand(LinearAlgebra[DotProduct](V,A,conjugate=false)):
G:=map(expand,LinearAlgebra[CrossProduct](V,A)):
H:=LinearAlgebra[CrossProduct](V,AD):
E:=expand(LinearAlgebra[DotProduct](G,H,conjugate=false)):
R:=expand(LinearAlgebra[DotProduct](G,G,conjugate=false)):
Q:=expand(M*E-3*R*N):
F[i]:=unapply(sqrt(abs(R))/abs(M)^(3/2),t):
P:={fsolve(Q,t,i-1..i)}:
m[i]:=max(seq(F[i](P[j]),j=1..nops(P)),F[i](i-1),F[i](i)):
Sp:=Sp union P:
end do:
Kmax:=max(seq(m[j],j=1..n)):
Tpoint:={}:
for i from 1 to n do
if (abs(F[i](i-1)-Kmax)=0) or (abs(F[i](i-1)-Kmax)=0.) then
Tpoint:= Tpoint union {i-1}:
elif (abs(F[i](i)-Kmax)=0) or (abs(F[i](i)-Kmax)=0.) then
Tpoint:= Tpoint union {i}:
end if:
end do:
if nops(Sp)=0 then
RETURN(Kmax,Tpoint);
end if:
for j from 1 to nops(Sp) do
if (floor(Sp[j])=n) then
if (abs(F[n](Sp[j])-Kmax)=0 or abs(F[n](Sp[j])-Kmax)=0.) then
Tpoint:= Tpoint union {n}:
end if:
elif (abs(F[floor(Sp[j])+1](Sp[j])-Kmax)=0 or

abs(F[floor(Sp[j])+1](Sp[j])-Kmax)=0.) then
Tpoint:= Tpoint union {Sp[j]}:
end if:
end do:
RETURN(Kmax,Tpoint);
end proc:

Here we give an explanation of how to determine the set κ−1(κmax) = {t ∈ [0, n] : κ(t) =
κmax}. We first check whether i (∈ {0, 1, . . . , n}) belongs to this set, then we check the same
for all solutions of the equation Q = 0. In addition, when we need the value f(t) for a point
t ∈ [0, n], we should take an appropriate component fk of f; if t = n, then we take k = n, else
we take k = btc+ 1, since btc ≤ t < btc+ 1.



Math. Comput. Appl. 2023, 28, 56 9 of 13

We use MaxCurvature3d to determine κmax in the examples whose graphical results
are given in Figure 1. From the lists L and L1 in these examples, the calling sequences
MaxCurvature3d(L) and MaxCurvature3d(L1) result in

11.87724489, {2.913967861} and 3.135008280, {2},

respectively. If the parametrization of C1 is h, then

f(2.913967861) = [1.06704678, 2.13642213, 2.94912425],

h(2) = [−0.8322936730, 1.454875883, −1.741591100]

are the maximum curvature points on the curves C and C1, respectively.
The new version of MaxCurvature3d for closed Bézier-spline curves, say, MaxCurva-

ture3dC, can be derived easily from Algorithm 1 with the modification “fi from BScurve3dC”.
Then, we use MaxCurvature3dC to find κmax of CL displayed in Figure 2 and we obtain
the result

1.652746390, {1.979287163}.

Let g be the parametrization of CL. The point

g(1.979287163) = [−2.02583824, −0.094336298, −4.99371046]

is given in Figure 3 and this maximum point of curvature of CL is very close to the
interpolated point [−2, 0,−5].

Figure 3. The value of κmax = 1.652746390 is attained at the blue point on CL.

To avoid a comparison error between fractions and decimal numbers, we may use
the decimal point ‘.’ for at least one component of the points in the list argument of
MaxCurvature3d. Note that the result of fsolve only contains decimal numbers, so it will
give us ‘2.’, for instance, if it contains the integer ‘2’. To cover this case, we add a condition
such as ‘A − B = 0.’ in the definition of MaxCurvature3d, and it should be sometimes
‘|A− B| < 10−m’ with some positive integer m when we need to obtain an expected result.

4. Remarks on the Two-Dimensional Case

For a relaxed Bézier-spline plane curve L that interpolates a dataset M of points s0,
s1, . . . , sn in R2, we have already a procedure to obtain its position vector f(t). That is
just removing the lines H:=t->· · · and modifying the lines RETURN(t->[F(t),G(t),H(t)])
to RETURN(t->[F(t),G(t)]) in BScurve3d, and the remaining part is for BScurve2d, the
Maple parametrization of L . Maple provides the plot procedure to display plane curves
with their parametrization [x(t), y(t)], t ∈ [a, b], by the declaration

plot([x(t),y(t),t = a..b],opts);



Math. Comput. Appl. 2023, 28, 56 10 of 13

Accordingly, we first set f := BScurve2d(M), then we call

plot([op(f(t)),t = 0..n],opts); or plot([f(t)[],t = 0..n],opts);

to display L . Similarly, we get BScurve2dC, the new version of BScurve2d for closed
Bézier-spline plane curves, from BScurve3dC.

MaxCurvature3d can be modified to use only sets of points in R2 and we call its new
version MaxCurvature2d. Let L be a smooth plane curve with parametrization r. From the
formula κ(s) = T̂′(s) · N̂(s) with arc length parameter s, we can write

κ =
T̂′

v
· N̂ =

1
v

[(1
v

)′
v +

1
v

a
]
· N̂ =

1
v2 a · (JT̂) =

a · u
v3

for a general parameter t, where

v = r′, v = ‖v‖, u = Jv, a = v′, J =
[

0 −1
1 0

]
.

We also consider K := κ2 = (a · u)2/(v · v)3 and derive the following equation from
K′ = 0:

(v · v)(a · u)(a′ · u)− 3(a · u)2(v · a) = 0. (12)

This equation has the same role as (11), so we can make a new version of MaxCurvature3d,
say, MaxCurvature2d, following the steps in Algorithm 1 with some modification: there
is no cross product in this version. The expression of the local variable Q in the definition
of MaxCurvature2d is given by the left-hand side of (12). Note that the function Fi in the
pseudo-code algorithm of MaxCurvature2d is now

Fi :=
|a · u|

v3 .

In the definition of MaxCurvature2d, the matrix J is declared at right above Sp:={} by

J:=Matrix(2,2,[0,-1,1,0]):

and, then, we set U:=J.V inside the for loop at right below.
We give two more examples on getting the maximum curvature of a relaxed Bézier-

spline plane curve and its maximum curvature points. Let M be the list

M := [[0.5, 1], [0, 2], [0.8, 3], [1.7, 2.25], [2.5, 1.8], [3.5, 2.2], [3.2, 2.8]]

and C be the Bézier-spline curve that interpolates M. Then, we obtain the parametrization
of C by setting

f := BScurve2d(M).

On the other hand, the calling sequence MaxCurvature2d(M) gives us the result

5.011177204, {5.168088495}.

Thus, the maximum curvature of C is κmax = 5.011177204 and this value is attained at
the point f(5.168088495) = [3.53273441, 2.298980995].

Let L be a curve with the parametrization r : t 7→ [3 sin t, t cos(3t)], t ∈ [−1, 2], and let

t0 := −1, t1 := −0.6, t2 := −0.2, t3 := 0.2, t4 := 0.6, t5 := 0.9, t6 := 1.3, t7 := 1.7, t8 := 2

be a partition of [−1, 2]. We set N := [r(t0), r(t1), r(t2), . . . , r(t8)]. Letting C1 be the Bézier-
spline curve that interpolates N, we get its parametrization

h := BScurve2d(N).



Math. Comput. Appl. 2023, 28, 56 11 of 13

Then, we derive
7.637332459, {5.720743580}

from the calling sequence MaxCurvature2d(N). It follows that C1 attains the maximum
curvature κmax = 7.637332459 at the point h(5.720743580) = [2.76963535,−1.07851249].

The results from the two examples above are given in Figure 4.

Figure 4. On the (left): The Bézier-spline curve C interpolates the dataset M. On the (right):
The Bézier-spline curve C1 (in red) interpolates the set N of points on L (in cyan). The red points A
and B are the points of maximum curvature of C and C1, respectively.

The next examples are dealing with closed Bézier-spline curves. The datasets A and B
in the first two examples are chosen to be symmetric to an axis, namely

A := [[3, 1], [5, 3], [4, 4], [3, 3], [2, 4], [1, 3], [3, 1]];

B := [[1, 4], [0.6, 2], [2, 0.4], [3.4, 1], [2.6, 2.8], [2.2, 2.4], [4, 1.6], [4.6, 3], [3, 4.4], [1, 4]].

The curves CA and CB that interpolate A and B, respectively, are given in Figure 5.
The shapes of CA and CB can already be seen if we first display the interpolated points on
the plane.

Figure 5. The Bézier-spline curves CA (left) and CB (right).

In the last two examples, we compute the maximum curvature of two closed Bézier-
spline curves and show the maximum curvature points on these curves. The results are
given in Figure 6. The interpolated points (on the right) in Figure 6 are chosen on the ellipse
x2/9 + y2/4 = 1 (depicted in cyan).



Math. Comput. Appl. 2023, 28, 56 12 of 13

Figure 6. On the (left): κmax = 5.045872521. On the (right): κmax = 0.9591183657. These maximum
curvatures are attained at the red points.

We sometimes want to compute the curvature of a Bézier-spline curve at a p ∈ [0, n],
so we should have a tool to do that. Algorithm 2 can be used to make such a tool.

Algorithm 2 Finding the curvature of a Bézier-spline curve at its given point

Input: a set T of (n + 1) points in R2, a point p ∈ [0, n];
Output: The curvature κ at p of the Bézier-spline curve interpolating T;

1: if p = n then
2: i := n;
3: else
4: i := bpc+ 1;
5: end if
6: v := f′i(t), a := f′′i (t) // fi from BScurve2d or BScurve2dC;

7: u := Jv // J =
[ 0 −1

1 0

]
;

8: F := |a · u|/v3 // v := ‖v‖, F : t 7→ κ(t);
9: return F(p);

It is easy to derive the Maple procedure from Algorithm 2 that we call Curvature2d or
Curvature2dC, depending on whether fi is from BScurve2d or from BScurve2dC. Similarly,
the extension of this procedure for the three-dimensional case can be obtained with the
curvature function from Algorithm 1.

5. Conclusions

Our procedures may also be convenient tools for non-Maple users to estimate the
maximum curvature of parametric smooth curves and to approximate a curve from its
interpolated points by a Bézier-spline curve, as similarly done in [13–16]. They could be
used for doing calculations to establish conditions for non-singularity of tubular surfaces
and offset curves associated to a Bézier-spline curve, according to the issues profoundly
presented in [17,18]. Moreover, our parametrization derived from the closed-form solution
to a linear system for the interpolation problem would be better than those derived from
the existing direct or iterative methods to solve the system, as noted in [19,20].

Author Contributions: H.P. constructed the parametrization of Bézier-spline curves and the algo-
rithms. L.P.Q. wrote the Maple procedures. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors want to thank the referees for their careful reading and their valuable
corrections and suggestions. They also want to thank the Maplesoft experts for their great work in
developing Maple, a powerful and user-friendly product.



Math. Comput. Appl. 2023, 28, 56 13 of 13

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Adams, R.A.; Essex, C. Calculus: A Complete Course, 9th ed.; Pearson Canada Inc.: Ontario, ON, Canada, 2018.
2. Montiel, S.; Ros, A. Curves and Surfaces, 2th ed. In Graduate Studies in Mathematics; American Mathematical Society: Rhode

Island, RI, USA, 2009; Volume 69.
3. Yan, Z.; Schiller, S.; Wilensky, G.; Carr, N.; Schaefer, S. κ-Curves: Interpolation at local maximum curvature. ACM Trans. Graph.

2017, 36, 129. [CrossRef]
4. Miura, K.T.; Gobithaasan, R.U.; Salvi, P.;Wang, D.; Sekine, T.; Usuki, S.; Inoguchi, J.; Kajiwara, K. εκ-Curves: Controlled local

curvature extrema. Vis. Comput. 2022, 38, 2723—2738. [CrossRef]
5. Ahn, Y.J.; Kim, H.O. Curvatures of the Quadratic Rational Bézier Curves. Comput. Math. Appl. 1998, 36, 9, 71–83. [CrossRef]
6. Cantón, A.; Fernández-Jambrina, L.; Vázquez-Gallo, M.J. Curvature of planar aesthetic curves. J. Comput. Appl. Math. 1998,

381, 113042. [CrossRef]
7. Wang, A; Zhao, G.; Hou, F. Constructing Bézier curves with monotone curvature. J. Comput. Appl. Math. 2019, 355, 1–10.

[CrossRef]
8. He, C.; Zhao, G.; Wang, A.; Li, S.; Cai, Z. Planar Typical Bézier Curves with a Single Curvature Extremum. Mathematics 2021, 9,

2148. [CrossRef]
9. Quan, L.P.; Nhan, T.A. A Closed-Form Solution to the Inverse Problem in Interpolation by a Bézier-Spline Curve. Arab. J. Math.

2020, 9, 155–165. [CrossRef]
10. Michael, S. Cubic B-Splines Using PSTricks (A Guiding Document for the Package Pst-Bspline (Version 1.62 2016-04-21)).

Available online: https://ctan.org/pkg/pst-bspline (accessed on 30 January 2023).
11. Monagan, M.B.; Geddes, K.O.; Heal, K.M.; Labahn, G.; Vorkoetter, S.M.; McCarron, J.; DeMarco, P. MAPLE Introductory

Programming Guide; Waterloo MAPLE Inc.: Ontario, ON, Canada, 2008.
12. Monagan, M.B.; Geddes, K.O.; Heal, K.M.; Labahn, G.; Vorkoetter, S.M.; McCarron, J.; DeMarco, P. MAPLE Advanced Programming

Guide; Waterloo MAPLE Inc.: Ontario, ON, Canada, 2008.
13. Chen, X.D.; Ma, W.; Paul, J.C. Cubic B-spline curve approximation by curve unclamping. Comput.-Aided Des. 2010, 42, 523–534.

[CrossRef]
14. Cheng, F.; Barsky, B.A. Interproximation: Interpolation and approximation using cubic spline curves. Comput.-Aided Des. 1991,

23, 700–706. [CrossRef]
15. Hoschek, J. Spline approximation of offset curves. Comput. Aided Geom. Des. 1988, 5, 33–40. [CrossRef]
16. Kozak, J.; Krajnc, M. Geometric interpolation by planar cubic polynomial curves. Comput. Aided Geom. Des. 2007, 24, 67-–78.

[CrossRef]
17. Maekawa, T.; Patrikalakis, N.M. Computation of singularities and intersections of offsets of planar curves. Comput. Aided Geom.

Des. 1990, 7, 101–127. [CrossRef]
18. Maekawa, T.; Patrikalakis, N.M.; Sakkalis, T.; Yu, G. Analysis and applications of pipe surfaces. Comput. Aided Geom. Des. 1998,

15, 437–458. [CrossRef]
19. Farin, G. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, 5th ed.; Morgan Kaufmann: California, CA,

USA, 2001.
20. Hartmut, P.; Wolfgang B.; Marco, P. Bézier and B-Spline Techniques; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2002.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3072959.3073692
http://dx.doi.org/10.1007/s00371-021-02149-8
http://dx.doi.org/10.1016/S0898-1221(98)00193-X
http://dx.doi.org/10.1016/j.cam.2020.113042
http://dx.doi.org/10.1016/j.cam.2019.01.004
http://dx.doi.org/10.3390/math9172148
http://dx.doi.org/10.1007/s40065-019-0241-0
https://ctan.org/pkg/pst-bspline
http://dx.doi.org/10.1016/j.cad.2010.01.008
http://dx.doi.org/10.1016/0010-4485(91)90023-P
http://dx.doi.org/10.1016/0167-8396(88)90018-0
http://dx.doi.org/10.1016/j.cagd.2006.11.002
http://dx.doi.org/10.1016/0167-8396(93)90020-4
http://dx.doi.org/10.1016/S0167-8396(97)00042-3

	Introduction
	Bézier-Spline Space Curves with Maple Parametrization
	Computation of the Maximum Curvature of a Bézier-Spline Curve
	Remarks on the Two-Dimensional Case
	Conclusions
	References

