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Abstract: We present and analyze a parallel solver for the solution of fluid structure interaction
problems described by a fictitious domain approach. In particular, the fluid is modeled by the
non-stationary incompressible Navier–Stokes equations, while the solid evolution is represented by
the elasticity equations. The parallel implementation is based on the PETSc library and the solver has
been tested in terms of robustness with respect to mesh refinement and weak scalability by running
simulations on a Linux cluster.
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1. Introduction

The analysis of fluid–structure interaction (FSI) problems is important for several
applications in science and engineering; typical examples that we have in mind are, for in-
stance, the study of fluid-dynamics of heart valves, particulate flows, and propagation of
free surfaces. FSI problems are challenging both from the mathematical and computational
point of view: the difficulties originate from the necessity of handling interactions between
several objects and the presence of nonlinear terms in the governing equations. As a conse-
quence, in past years, several approaches have been presented for the numerical modeling
of FSI problems: among those, we mention the Arbitrary Lagrangian Eulerian formulation
(ALE) [1–4], the unfitted Nitsche method [5], the level set formulation [6], and the fictitious
domain approach [7,8]. It is important to notice that each method is effective for a selected
class of problems, since there is no method that can be applied to all possible situations.

Our fictitious domain approach with distributed Lagrange multiplier was considered
first in [9] as evolution of the immersed boundary method [10,11], originally introduced
by C. Peskin during the Seventies for cardiac simulations of heart valves . This approach is
based on the idea that the fluid domain is fictitiously extended also to the region occupied
by the immersed body. In particular, the fluid is governed by the incompressible time
dependent Navier–Stokes equations, while the structure can be characterized by either
linear or nonlinear constitutive laws for viscous elastic materials. The fluid dynamics is
studied on a fixed Eulerian mesh, while we resort to a Lagrangian description to represent
the motion and the deformation of the immersed structure; the Lagrangian frame is built by
introducing a reference domain which is mapped, at each time step, into the actual position
of the body.

In order to get accurate results, simulations of FSI problems require, in general, huge
computational resources, both in terms of time and memory. In this framework, the design
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of robust parallel solvers is an important tool to perform, in a reasonable amount of time,
computations involving a large number of time steps and fine space discretizations. Several
works are focused on this task, mainly in the setting of ALE formulations [12–18] or by
applying a variational transfer in order to couple fluid and solids [19,20]. To the best of
our knowledge, preconditioners for the fictitious domain formulation with distributed
Lagrange multiplier have been introduced only recently in [21].

Here, we continue the analysis of the parallel solver introduced in [21]: we focus our
attention on the robustness with respect to mesh refinement, with different choices of time
step, and to the weak scalability. We also describe some implementation issues. The finite
element discretization is performed by choosing the (Q2,P1) element for velocities and
pressures of the fluid and the Q1 element for the structure variables; the time marching
scheme is a first order semi-implicit finite difference algorithm. Moreover, the fluid–
structure coupling matrix is assembled by exact computations over non-matching meshes
as described in [22]; the computational costs of this procedure will be described. At each
time step, the linear system arising from the discretization is solved by the GMRES method,
combined with either a block-diagonal or a block-triangular preconditioner. Our parallel
implementation is based on the PETSc library from Argonne National Laboratory [23,24]
and on the parallel direct solver Mumps [25,26], which is used to invert the diagonal blocks
in the block preconditioners.

After recalling some functional analysis notation, in Section 3, we present the mathe-
matical model describing fluid structure interaction problems in the spirit of the fictitious
domain approach. In Section 4, we describe the numerical method we implemented for our
simulations and in Section 5 we introduce two possible choices of preconditioner for our
parallel solver. Finally, in Section 6 we present some numerical tests aiming at assessing the
robustness with respect to mesh refinement and the weak scalability.

2. Notation

We recall some useful functional analysis notation [27]. Let us consider an open
and bounded domain D. The space of square integrable functions is denoted by L2(D),
with scalar product (·, ·)D. In particular, L2

0(D) is the subspace of functions with null mean
over D. We denote Sobolev spaces by Ws,q(D): with s ∈ R referring to the differentiability
and q ∈ [1, ∞] to the summability exponent. When q = 2, we adopt the classical notation
Hs(D) = Ws,2(D). In addition, H1

0(D) ⊂ H1(D) is the space of functions with zero trace
on the boundary ∂D. For vector valued spaces the dimension is explicitly indicated.

3. Continuous Formulation

We simulate fluid–structure interaction problems characterized by a visco-elastic
incompressible solid body immersed in a viscous incompressible fluid. We denote by
Ω f

t and Ωs
t the two regions in Rd (with d = 2, 3) occupied by the fluid and the structure,

respectively, at the time instant t; the interface between these two regions is denoted by
Γt. The evolution of such a system takes place inside Ω, that is the union of Ω f

t and Ωs
t :

this new domain is independent of time and we assume that it is connected and bounded
with Lipschitz continuous boundary ∂Ω. It is worth mentioning that, even if we are going
to consider only thick solids, also the evolution of thin structures can be treated by our
mathematical model.

The dynamics of the fluid is studied by considering an Eulerian description, associated
with the variable x. On the other hand, the evolution of the immersed body is modeled
by a Lagrangian description: we introduce the solid reference domain B, associated with
the variable s, so that the deformation can be represented by the map X : B −→ Ωs

t . This
means that x ∈ Ωs

t is the image at the time t of a certain point s ∈ B and the motion of the
structure is represented by the kinematic equation

us(x, t) =
∂X
∂t

(s, t) for x = X(s, t), (1)
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where the material velocity is denoted by us. The deformation gradient ∇s X is denoted
by F and J(s, t) = detF(s, t). Since we are assuming that the solid body is incompressible,
the determinant J is constant in time.

In our model, we consider a Newtonian fluid with density ρ f and viscosity ν f > 0, so
that the Cauchy stress tensor can be written as

σ f = −p f I+ ν f ε(u f ), (2)

where u f denotes the velocity of the fluid and p f its pressure, and where I denotes the identity
tensor. In particular, the symbol ε(·) refers to the symmetric gradient ε(v) = (∇v +∇v>)/2.
Therefore, the dynamics in Ω f

t is governed by the incompressible Navier–Stokes equations

ρ f

(
∂u f

∂t
+ u f ·∇ u f

)
= div σ f

div u f = 0.
(3)

For the solid, we consider a viscous-hyperelastic material with density ρs and viscosity
νs > 0; for this type of materials, the Cauchy stress tensor σs can be seen as the sum of two
contributions: a viscous part, similar to the one of the fluid

σv
s = −psI+ νs ε(us), (4)

and an elastic part, which can be written, moving from Eulerian to Lagrangian setting,
in terms of the Piola–Kirchhoff stress tensor P

P(F(s, t)) = J(s, t)σe
s(x, t)F(s, t)−> for x = X(s, t). (5)

In particular, hyperelastic materials are characterized by a positive energy density W(F),
which is related with P since P(F) = ∂W/∂F. Consequently, the elastic potential energy of
the solid body can be expressed as

E(X(t)) =
∫
B

W
(
F(s, t)

)
ds. (6)

Finally, the system is described by the following equations in strong form

ρ f

(
∂u f

∂t
+ u f ·∇ u f

)
= div σ f in Ω f

t

div u f = 0 in Ω f
t

ρs
∂2X
∂t2 = divs

(
Jσv

sF−> + P(F)
)

in B

div us = 0 in Ωs
t

(7)

and completed by two transmission conditions to enforce continuity of velocity and stress
along the interface Γt

u f = us on Γt

σ f n f = −(σv
s + J−1PF>)ns on Γt,

(8)

where n f and ns denote the outer normals to Ω f
t and Ωs

t , respectively. Moreover, we
consider the following initial and boundary conditions
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u f (0) = u f ,0 in Ω f
0

us(0) = us,0 in Ωs
0

X(0) = X0 in B
u f = 0 on ∂Ω.

(9)

The idea of the fictitious domain approach is to extend the first two equations in (7) to
the whole domain Ω so that all the involved variables are defined on a domain which is
independent of time. Consequently, following [9], we introduce two new unknowns

u =

{
u f in Ω f

t
us in Ωs

t
p =

{
p f in Ω f

t
ps in Ωs

t .
(10)

In this new setting, (1) becomes a constraint on u, since we have to impose that

u(X(s, t), t) =
∂X
∂t

(s, t) for s ∈ B. (11)

This condition can be weakly enforced by employing a distributed Lagrange multiplier.
To this end, we set Λ = (H1(B)d)′, the dual space of H1(B)d, and denote by 〈·, ·〉 the duality
pairing between Λ and H1(B)d. Notice that, for Y ∈ H1(B)d, we have the following
property

〈µ, Y〉 = 0 ∀µ ∈ Λ =⇒ Y = 0. (12)

At this point, following [9,28], the equations in (7), endowed with conditions (8) and
(9), can be written in variational form.

Problem 1. For given u0 ∈ H1
0(Ω)d and X0 ∈ W1,∞(B), find u(t) ∈ H1

0(Ω)d, p(t) ∈ L2
0(Ω),

X(t) ∈ H1(B)d, and λ(t) ∈ Λ such that for almost all t ∈ (0, T):

ρ f

(
∂

∂t
u(t), v

)
Ω
+ b(u(t), u(t), v) + a(u(t), v)

− (div v, p(t))Ω + 〈λ(t), v(X(·, t))〉 = 0 ∀v ∈ H1
0(Ω)d

(div u(t), q)Ω = 0 ∀q ∈ L2
0(Ω)

(ρs − ρ f )

(
∂2X
∂t2 (t), Y

)
B
+ (P(F(t)),∇sY)B − 〈λ(t), Y〉 = 0 ∀Y ∈ H1(B)d

〈µ, u(X(·, t), t)− ∂X
∂t

(t)〉 = 0 ∀µ ∈ Λ

u(x, 0) = u0(x) in Ω

X(s, 0) = X0(s) in B.

In particular,

a(u, v) = ν
(

ε(u), ε(v)
)

Ω

b(u, v, w) =
ρ f

2
(
(u ·∇ v, w)Ω − (u ·∇w, v)Ω

)
.

(13)

Moreover, ν is the extended viscosity with value ν f in Ω f
t and νs in Ωs

t . For our numerical
tests, we are going to consider ν f = νs since it is a reasonable assumption for biological
models [29].

For our simulations, we consider a simplified version of the problem: we drop the
convective term of the Navier–Stokes equations and we assume that fluid and solid ma-
terials have the same density, i.e., ρs = ρ f . We focus on this case since it is interesting to
see how the solver behaves when this assumption is combined with a semi-implicit time
advancing scheme in the setting of the fictitious domain approach. This is actually the
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critical situation when the added mass effect can cause instabilities. For instance, in [30], a
simplified one-dimensional setting is considered for which non implicit schemes are proved
to be unconditionally unstable when applied to FSI problems modeled by ALE if fluid
and solid have the same densities ρs = ρ f . This phenomenon appears regardless of the
discrete parameters. In order to alleviate such critical behavior, an appropriate treatment
of the transmission conditions has been investigated, for instance, in [31,32]). Therefore,
the problem we are going to simulate reads as follows.

Problem 2. Given u0 ∈ H1
0(Ω)d and X0 ∈ W1,∞(B), find u(t) ∈ H1

0(Ω)d, p(t) ∈ L2
0(Ω),

X(t) ∈ H1(B)d, and λ(t) ∈ Λ such that for almost all t ∈ (0, T):

ρ f

(
∂

∂t
u(t), v

)
Ω
+ a(u(t), v)

− (div v, p(t))Ω + 〈λ(t), v(X(·, t))〉 = 0 ∀v ∈ H1
0(Ω)d

(div u(t), q)Ω = 0 ∀q ∈ L2
0(Ω)

(P(F(t)),∇sY)B − 〈λ(t), Y〉 = 0 ∀Y ∈ H1(B)d

〈µ, u(X(·, t), t)− ∂X
∂t

(t)〉 = 0 ∀µ ∈ Λ

u(x, 0) = u0(x) in Ω

X(s, 0) = X0(s) in B.

4. Discrete Formulation

Before discussing the discrete formulation, we remark that, from now on, we will
focus on two-dimensional problems (d = 2).

The time semi-discretization of Problem 2 is based on the Backward Euler scheme.
The time interval [0, T] is uniformly partitioned into N parts with size ∆t = T/N. We
denote the subdivision nodes by tn = n∆t. For a generic function g depending on time,
setting gn = g(tn), the time derivative is approximated as

∂g
∂t

(tn+1) ≈
gn+1 − gn

∆t
. (14)

Moreover, the nonlinear coupling terms 〈λ(t), v(X(·, t))〉 and 〈µ, u(X(·, t), t)〉 are semi-
implicitly treated by considering the position of the structure at the previous time step as
〈λn+1, v(Xn)〉 and 〈µ, un+1(Xn)〉.

For the discretization in space, we work with quadrilateral meshes for both fluid and
solid. For the fluid, we consider a partition T Ω

h of Ω with meshsize hΩ and two finite
element spaces Vh ⊂ H1

0(Ω)d and Qh ⊂ L2
0(Ω) for velocity and pressure, respectively,

satisfying the inf-sup condition for the Stokes problem. In particular, we work with the
(Q2,P1) pair, which is one of the most popular Stokes elements, making use of continuous
piecewise quadratic velocities and discontinuous piecewise linear pressures.

For the solid domain, we choose a partition T Bh of B with meshsize hB , independent of
T Ω

h . We then consider two finite dimensional spaces Sh ⊂ H1(B)d and Λh ⊂ Λ. We assume
that Sh = Λh and we approximate both the mapping X and the Lagrange multiplier λ with
piecewise bilinear elements on quadrilaterals. Other stable combinations of finite element
spaces for our class of problems have been studied in [33], both from the theoretical and
the numerical point of view.

We notice that, since Λh is included in L2(B)d, at a discrete level, the duality pairing
can be replaced by the scalar product in L2(B)d

〈µh, Yh〉 = (µh, Yh)B ∀µh ∈ Λh, ∀Yh ∈ Sh. (15)

Therefore, we get the following fully discrete problem.
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Problem 3. Given u0,h ∈ Vh and X0,h ∈ Sh, for all n = 1, . . . , N find un
h ∈ Vh, pn

h ∈ Qh,
Xn

h ∈ Sh, and λn
h ∈ Λh fulfilling:

ρ f

(
un+1

h − un
h

∆t
, vh

)
Ω

+ a
(

un+1
h , vh

)
−
(

div vh, pn+1
h

)
Ω
+
(

λn+1
h , vh(X

n
h)
)
B
= 0 ∀vh ∈ Vh(

div un+1
h , qh

)
Ω
= 0 ∀qh ∈ Qh(

P(Fn+1
h ),∇sYh

)
B
−
(

λn+1
h , Yh

)
B
= 0 ∀Yh ∈ Sh(

µh, un
h(X

n
h)−

Xn+1
h − Xn

h
∆t

)
B
= 0 ∀µh ∈ Λh

u0
h = u0,h, X0

h = X0,h.

Assuming for simplicity P(F) = κF, Problem 3 can be represented in matrix form as
A f −B> 0 C f (Xn

h)
>

−B 0 0 0

0 0 As −C>s
C f (Xn

h) 0 − 1
∆tCs 0




un+1
h

pn+1
h

Xn+1
h

λn+1
h

 =


g1

0

0

g2

, (16)

with
A f =

ρ f

∆t
M f +K f

(M f )ij =
(

φj, φi

)
Ω

, (K f )ij = a
(

φj, φi

)
Bki = (div φi, ψk)Ω

(As)ij = κ
(
∇sχj,∇sχi

)
B

(C f (X
n
h))`j =

(
χ`, φj(X

n
h)
)
B

, (Cs)`j =
(

χ`, χj

)
B

g1 =
ρ f

∆t
M f un

h , g2 = − 1
∆t

CsXn
h .

Here, φi and ψk denote the basis functions of Vh and Qh respectively, while χj are the
basis functions of the space defined on B. We observe that, since Sh = Λh, Cs is the mass
matrix in Sh or Λh .

We can see that the matrix in (16) splits into four blocks, defined as follows:

A11 =

[
A f −B>
−B 0

]
A12 =

[
0 C f (Xn

h)
>

0 0

]
A21 =

[
0 0

C f (Xn
h) 0

]
A22 =

[
As −C>s
− 1

∆tCs 0

]
where A11 is related to the fluid dynamic, A22 to the solid evolution, while A12 and A21
contain the coupling term.

Particular attention has to be paid to the assembly of the coupling matrix C f (Xn
h), since

it involves the integration over B of solid and mapped fluid basis functions. In order to
compute these integrals, we need to know how each element E of T Bh is mapped into the
fluid domain. We implement an exact quadrature rule by computing, at each time step,
the intersection between the fluid mesh T Ω

h and a mapped solid element Xn
h(E). In order

to detect all the intersections, each solid element is tested against all the fluid elements
making use of a bounding box technique, which, in this particular case, is trivial since the
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fluid is discretized with a Cartesian mesh of squares; then the intersections are explicitly
computed by means of the Sutherland–Hodgman algorithm. For more details about the
procedure in a similar situation, we refer to [22]. The implementation of this composite rule
is quite involved and it is not straightforwardly parallelizable.

In general, when P(F) is nonlinear, we use a solver for nonlinear systems of equations
such as the Newton iterator method.

5. Parallel Preconditioners

The design of an efficient parallel solver influences two aspects of the numerical
method: first, the finite element matrices need to be assembled in parallel on each processor;
second, the solution of the saddle point system arising from the discretization has to be
solved saving computational resources, in terms of both memory and execution time.
For this purpose, we implemented a Fortran90 code based on the library PETSc from
Argonne National Laboratory [23,24]. Such library is built on the MPI standard and it
offers advanced data structures and routines for the parallel solution of partial differential
equations, from basic vector and matrix operations to more complex linear and nonlinear
equation solvers. In our code, vectors and matrices are built and subassembled in parallel
on each processor.

Our parallel solver adopts two possible choices of preconditioner:

• block-diagonal preconditioner [
A11 0
0 A22

]
• block-triangular preconditioner [

A11 0
A21 A22

]
.

We solve the linear system making use of the parallel GMRES method combined with
the action of our preconditioners, which consists of the exact inversion of the diagonal
blocks performed by the parallel direct solver Mumps [25,26].

6. Numerical Tests

The proposed preconditioners have been widely studied in [21] in terms of robustness
with respect to mesh refinement, strong scalability and refinement of the time step. In this
work, after reporting new results in terms of optimality, we analyze the weak scalability of
our solver. We focus on both linear and nonlinear models describing the solid material.

In the GMRES solver, we adopt as stopping criterion a 10−8 reduction of the Euclidean
norm of the relative residual and a restart parameter of 200. In the case of the nonlinear
model, the stopping criterion adopted for the Newton method is a 10−6 reduction of the
Euclidean norm of the relative residual.

Our simulations were run on the Shaheen cluster at King Abdullah University of
Science and Technology (KAUST, Saudi Arabia). It is a Cray XC40 cluster constituted by
6174 dual sockets computing nodes, based on 16 core Intel Haswell processors running at
2.3 GHz. Each node has 128 GB of DDR4 memory running at 2300 MHz.

6.1. Linear Solid Model

We consider a quarter of the elastic annulus {x ∈ R2 : 0.3 ≤ |x| ≤ 0.5} included in
Ω = [0, 1]2: in particular, the solid reference domain corresponds to the resting configura-
tion of the body; that is

B = {s = (s1, s2) ∈ R2 : s1, s2 ≥ 0, 0.3 ≤ |s| ≤ 0.5}.

The dynamics of the system is generated by stretching the annulus and observing how
internal forces bring it back to the resting condition. In this case, Ωs

0 coincides with the
stretched annulus. Four snapshots of the evolution are shown in Figure 1.
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The solid behavior is governed by a linear model; therefore, P(F) = κ F, with κ = 10. We
choose fluid and solid materials with the same density ρ f = ρs = 1 and the same viscosity
ν f = νs = 0.1. We impose no slip conditions for the velocity on the upper and right edge of
Ω, while on the other two edges, we allow the motion of both fluid and structure along the
tangential direction. Finally, the following initial conditions are considered

u(x, 0) = 0, X(s, 0) =
(

s1

1.4
, 1.4 s2

)
.

Figure 1. Four snapshots of the evolution of the structure with linear constitutive law.

In Table 1, we report the results for the optimality test, where the robustness of
the solver is studied by refining the mesh and keeping fixed the number of processors.
In particular, we set the time step to ∆t = 0.01 and the final time of our simulation to
T = 2. The number of processors used for the simulation is 32. The time Tass needed to
assemble the matrix of the problem increases moderately, while the time Tcoup, needed for
the assembly of the coupling matrix by computing the intersection between the involved
meshes, exhibits a superlinear growth. In terms of preconditioners, we can see that block-
diag is not robust with respect to mesh refinement since the number of GMRES iterations
grows from 13 to 430; clearly, this phenomenon affects also the time Tsol we need to solve
the system. On the other hand, block-tri is robust since the number of GMRES iterations
remains bounded by 14 when the mesh is refined. Therefore, Tsol presents only a moderate
growth and, for 1,074,054 dofs, it is 30 times smaller than the value we obtain for block-
diag preconditioner.

Table 1. Refinements of the mesh in the linear solid model. The simulations are run on the Shaheen
cluster. procs = number of processors; dofs = degrees of freedom; Tass = CPU time to assemble the
stiffness and mass matrices; Tcoup = CPU time to assemble the coupling term; its = GMRES iterations;
Tsol = CPU time to solve the linear system; Ttot = total simulation CPU time. The quantities Tcoup, its
and Tsol are averaged over the time steps. All CPU times are reported in seconds.

Linear Solid Model—Mesh Refinement Test

procs = 32, T = 2, ∆t = 0.01

dofs Tass (s) Tcoup (s) Block-diag Block-tri
its Tsol (s) Ttot (s) its Tsol (s) Ttot (s)

30,534 1.02× 10−2 9.98× 10−2 13 1.14× 10−1 42.01 7 6.93× 10−2 33.83
120,454 2.12× 10−2 1.09 31 8.30× 10−1 390.90 9 2.40× 10−1 266.17
269,766 9.20× 10−2 7.60 97 5.41 2.55× 103 11 6.47× 10−1 1.65× 103

478,470 1.31× 10−1 25.04 192 18.75 9.07× 103 12 1.14 5.24× 103

746,566 1.23× 10−1 85.32 422 67.92 3.07× 104 13 2.17 1.75× 104

1,074,054 1.81× 10−1 196.88 430 97.19 5.90× 104 14 3.21 4.00× 104

The weak scalability of the proposed parallel solver is analyzed in Table 2. Again, we
choose T = 2 and ∆t = 0.01. We perform six tests by doubling both the global number of
dofs and the number of processors. Thanks to the resources provided by PETSc, the time
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Tass to assemble stiffness and mass matrices is perfectly scalable. On the other hand,
the assembly procedure for the coupling matrix is much more complicated: in order to
detect all the intersections between solid and fluid elements, the algorithm consists of
two nested loops. For each solid element (outer loop), we check its position with respect
to all the fluid elements (inner loop). In particular, only the outer loop is distributed
over all the processors. Consequently, Tcoup is not scalable since the number of fluid dofs,
analyzed in serial, increases at each test. We now discuss the behavior of the two proposed
preconditioners. It is evident that block-diag is not scalable since the number of GMRES
iteration drastically increases as we increase dofs and procs, clearly affecting Tsol and Ttot.
On the other hand, block-tri behaves well: even if it is not perfectly scalable, the number of
iterations slightly increases from 8 to 18 and Tsol ranges from 2.24 × 10−1 s to 11.43 s.

Table 2. Weak scalability for the linear solid model. The simulations are run on the Shaheen cluster.
Same format as Table 1.

Linear Solid Model—Weak Scalability Test

T = 2, ∆t = 0.01

procs dofs Tass (s) Tcoup (s) Block-diag Block-tri
its Tsol (s) Ttot (s) its Tsol (s) Ttot (s)

4 68,070 8.55× 10−2 3.95 22 6.25× 10−1 933.43 8 2.24× 10−1 833.44
8 135,870 1.00× 10−1 5.23 38 2.16 1.48× 103 9 4.41× 10−1 1.13× 103

16 269,766 1.01× 10−1 8.77 111 10.23 3.80× 103 11 9.70× 10−1 1.95× 103

32 539,926 9.24× 10−2 59.27 706 108.05 2.50× 104 18 2.91 1.24× 104

64 1,074,054 1.90× 10−1 48.00 429 113.59 3.24× 104 14 3.90 1.04× 104

128 2,152,614 1.90× 10−1 98.63 - - - 18 11.43 2.20× 104

6.2. Nonlinear Solid Model

For this test, we set again the fluid domain Ω to be the unit square; the immersed
solid body is a bar represented, at resting configuration, by the rectangle B = Ωs

0 =
[0, 0.4]× [0.45, 0.55]. During the time interval [0, 1], the structure is pulled down by a force
applied at the middle point of the right edge. Therefore, when released, the solid body
returns to its resting configuration by the action of internal forces. Four snapshots of the
evolution are shown in Figure 2.

The energy density of the solid material is given by the potential strain energy function
of an isotropic hyperelastic material; in particular, we have

W(F) = (γ/2η) exp
(
η[tr(F>F)− 2]

)
,

where tr(F>F) denotes the trace of F>F, while γ = 1.333 and η = 9.242. It can be proved
that W is a strictly locally convex strain energy function, as discussed in [34–36].

Also for this test we assume that fluid and solid materials share the same density,
equal to 1, and the same viscosity, equal to 0.2. The velocity is imposed to be zero at the
boundary of Ω, while the following initial conditions are imposed

u(x, 0) = 0, X(s, 0) = s.

Results for the mesh refinement test are reported in Table 3: we consider the evolution
of the system during the time interval [0, 2], with time step ∆t = 0.002. The number of
processors for the simulations is set to 64, while the number of dofs increases from 21,222
to 741,702. As for the linear case, Tass increases moderately and Tcoup follows a superlinear
growth. Both preconditioners are robust with respect to mesh refinement: the number
of Newton iterations is 2 for each test and the average number of GMRES iterations per
nonlinear iteration is bounded by 15 for block-diag and by 10 for block-tri. This behavior
of block-diag is in contrast with the results we obtained for the linear solid model: this is
due to the finer time step chosen for this simulation.
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Figure 2. Four snapshots of the evolution of the structure with nonlinear constitutive law.

Table 3. Refining of the mesh in the nonlinear solid model. The simulations are run on the Shaheen cluster.
procs = number of processors; dofs = degrees of freedom; Tass = CPU time to assemble the stiffness and
mass matrices; Tcoup = CPU time to assemble the coupling term; nit = Newton iterations; its = GMRES
iterations to solve the Jacobian system; Tsol = CPU time to solve the Jacobian system; Ttot = total simulation
CPU time. The quantities Tcoup and nit are averaged over the time steps, whereas the quantities its and
Tsol are averaged over the Newton iterations and the time steps. All CPU times are reported in seconds.

Nonlinear Solid Model—Mesh Refinement Test

procs = 64, T = 2, ∆t = 0.002

dofs Tass (s) Tcoup (s) Block-diag Block-tri
nit its Tsol (s) Ttot (s) nit its Tsol (s) Ttot (s)

21,222 4.04× 10−3 3.89× 10−2 2 11 4.29× 10−1 9.35× 102 2 8 3.93× 10−1 8.64× 102

83,398 1.68× 10−2 3.60× 10−1 2 12 1.67 4.06× 103 2 8 1.57 3.86× 103

186,534 3.80× 10−2 1.57 2 14 4.23 1.16× 104 2 9 4.00 1.11× 104

330,630 6.68× 10−2 4.77 2 14 7.71 2.49× 104 2 10 7.07 2.37× 104

515,686 1.05× 10−1 11.40 2 15 13.03 4.92× 104 2 10 11.48 4.58× 104

741,702 1.52× 10−1 23.23 2 15 18.58 8.49× 104 2 10 16.63 7.98× 104

In order to study the weak scalability, we choose T = 0.1 and ∆t = 0.002. The results,
reported in Table 4, are similar to the results obtained for the linear case. As before, Tcoup
is not scalable due to the algorithm we implemented for the assembling of the coupling
term. Even if it is not perfectly scalable, block-tri performs pretty well since the average
number of linear iterations per nonlinear iteration increases only from 15 to 19. On the
other hand, the good behavior of block-diag registered in Table 3 is not confirmed: the
average number of linear iterations reaches 101, showing a lack of weak scalability, as
already seen in Table 2.

Table 4. Weak scalability for the nonlinear solid model. The simulations are run on the Shaheen
cluster. Same format as Table 3.

Nonlinear Solid Model—Weak Scalability Test

T = 0.1, ∆t = 0.002

procs dofs Tass (s) Tcoup (s) Block-diag Block-tri
nit its Tsol (s) Ttot (s) nit its Tsol (s) Ttot (s)

4 83,398 1.01× 10−1 2.21 3 23 6.76 448.65 3 15 5.50 386.13
8 156,910 1.59× 10−1 3.77 3 38 15.49 963.03 3 16 8.87 627.84

16 330,630 1.62× 10−1 8.92 3 49 36.58 2.28× 103 3 17 17.84 1.34× 103

32 741,702 2.60× 10−1 25.18 3 67 123.99 7.46× 103 3 18 48.85 3.70× 103

64 1,316,614 2.61× 10−1 69.12 3 101 328.18 1.99× 104 3 19 97.28 8.38× 103
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7. Conclusions

We analyzed two preconditioners, block-diagonal and block-triangular, for saddle
point systems originating from the finite element discretization of fluid–structure interaction
problems with fictitious domain approach. We have focused only on the case where the
fluid and solid domains have the same densities, which, based on previous studies, should
be the most challenging to solve. In particular, the analysis has been conducted by studying
the robustness with respect to mesh refinement and weak scalability, applying the parallel
solver to both linear and nonlinear problems.

Only block-triangular appears to be robust in terms of mesh refinement for linear and
nonlinear problems; on the other hand, block-diagonal works well when the time step is
very small.

Moreover, by studying the weak scalability, we can notice two further limitations
of the proposed method, which will be the subject of future studies. First, the time to
assemble the coupling matrix is not scalable: it is based on two nested loops, related
to solid and fluid elements, respectively; but only the external one is conducted in
parallel over the processors. In order to improve this procedure, one may subdivide the
involved meshes into clusters or, alternatively, one may keep track of the position of the
solid body at the previous time instant. Second, since the action of the preconditioners
consists of the exact inversion of two matrices, the time for solving the linear system
slightly increases when the mesh is refined. Some preliminary results have shown that,
in contrast with the fluid block A11, the solid block A22 does not behave well when an
inexact inversion is applied: our future studies will be primarily focused on overcoming
this problem.

As concerns the modeling approach, several extensions are possible. First of all,
we have neglected the convective term in the Navier–Stokes equation; second, we have
considered an isotropic nonlinear constitutive law for the structure instead of anisotropic
variants and, finally, we have focused only on two dimensional problems.
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