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Abstract: Binocular rivalry is the perceptual dominance of one visual stimulus over another. Conven-
tionally, binocular rivalry is induced using a mirror-stereoscope—a setup involving mirrors oriented
at an angle to a display. The respective mirror planes fuse competing visual stimuli in the observer’s
visual field by projecting the stimuli through the stereoscope to the observed visual field. Since
virtual-reality head-mounted displays fuse dichoptic vision in a similar way, and since virtual-reality
head-mounted displays are more versatile and more readily available than mirror stereoscopes, this
study investigated the efficacy of using a virtual-reality headset (Oculus Rift-S) as an alternative to
using a mirror stereoscope to study binocular rivalry. To evaluate the validity of using virtual-reality
headsets to induce visual dominance/suppression, two identical experimental sequences—one using
a conventional mirror stereoscope and one using a virtual-reality headset—were compared and
evaluated. The study used Gabor patches at different orientations to induce binocular rivalry and to
evaluate the efficacy of the two experiments. Participants were asked to record all instances of percep-
tual dominance (complete suppression) and non-dominance (incomplete suppression). Independent
sample t-tests confirmed that binocular rivalry with stable vergence was successfully induced for the
mirror-stereoscope experiment (t = −4.86; p ≤ 0.0001) and the virtual-reality experiment (t = −9.41;
p ≤ 0.0001). Using ANOVA to compare Gabor patch pairs of gratings at +45◦/−45◦ orientations
presented in both visual fields, gratings at 0◦/90◦ orientations presented in both visual fields, and
mixed gratings (i.e., unconventional grating pairs) presented in both visual fields, the performance of
the two experiments was evaluated by comparing observation duration in seconds (F = 0.12; p = 0.91)
and the alternation rate per trial (F = 8.1; p = 0.0005). The differences between the stimulus groups
were not statistically significant for the observation duration but were significantly different based
on the alternation rates per trial. Moreover, ANOVA also showed that the dominance durations
(F = 114.1; p < 0.0001) and the alternation rates (F = 91.6; p < 0.0001) per trial were significantly
different between the mirror-stereoscope and the virtual-reality experiments, with the virtual-reality
experiment showing an increase in alternation rate and a decrease in observation duration. The study
was able to show that a virtual-reality head-mounted display can be used as an effective and novel
alternative to induce binocular rivalry, but there were some differences in visual bi-stability between
the two methods. This paper discusses the experimental measures taken to minimise piecemeal
rivalry and to evaluate perceptual dominance between the two experimental designs.

Keywords: mirror stereoscope; virtual reality; binocular rivalry; dichoptic vision; perceptual dominance

1. Introduction

Binocular rivalry (BR) occurs when competing stimuli are presented simultaneously
to the respective visual fields, and one stimulus is unconsciously suppressed, whereas the
other stimulus is consciously perceived [1–8]. Following the initial research on binocular
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rivalry [9,10], in 1996, Logothetis et al. proposed two separate forms of suppression that
occur during binocular rivalry: eye suppression and stimulus suppression [11,12]. Further
research was able to show that a visual field is suppressed during binocular rivalry, not a
stimulus [11,13].Because the suppression occurs in the visual cortex, visual consciousness
is often studied through BR [14–16]. BR can be demonstrated by a continuous pattern of
alternating perceptual dominance (Figure 1), i.e., one of the two stimuli dominates for a
certain period, while the other stimulus remains suppressed, followed by a continuous
shift in dominance/suppression [16,17].
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quency. Gabor patches consist of suprathreshold sinusoidal gratings that are vignetted by 
a Gaussian envelope [21,22]. Gabor patches presented in rivalrous image pairs, with sim-
ple line gratings that share the same low-level characteristics, can have gratings of varying 
orientations to facilitate visual rivalry (Figure 3). Conventionally, studies consider Gabor 
patches in pairs of gratings with +45°/−45° orientations or 0°/90° orientations presented 
together [3,9]. The current study considered pairings of all four stimuli presented in Fig-
ure 3 to investigate the effects of different stimulus pairs on alternation rate and observa-
tion duration. 

Figure 1. Perceptual dominance during a BR experiment showing alternation between suppres-
sion/dominance states.

BR is subsequently measured by monitoring the alternation rate, overall predominance,
and dominance duration for the respective dominance periods [18]. However, sometimes
incomplete suppression can occur. This is referred to as piecemeal rivalry, (Figure 2), a
phenomenon in which small parts of the suppressed stimulus still dominate and overlay
the dominant percept [15]. Certain experimental measures can be taken to avoid piecemeal
rivalry and ensure complete suppression. To study BR, it is important to avoid piecemeal
rivalry by establishing and maintaining stable vergence [16]. Stable vergence can be
achieved using fusion cues. Practically, fusion cues are often implemented by surrounding
the rivalrous image pairs with identical frames—such as a simple patterned border—or
by adding fixation crosses to the centre of the images [15]. Other factors that influence
dominance during a BR task include contrast, spatial frequency, and brightness [18], which
relate to the size and colour scale of the presented stimuli, as well as the refresh rate of the
display. Images presented during BR tasks need to be emotionally neutral, have a simple
semantic meaning, be identical in size (larger images evoke stronger occipital-lobe visually
evoked potentials (VEPs) [19]), and have identical pixel contrasts and luminance [20].
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Figure 2. Visual example of piecemeal rivalry during BR showing an overlay of stimuli presented to
both visual fields.

Conventionally, Gabor patches are often used in BR [3] to ensure that all stimuli
share certain low-level physical characteristics such as luminance, contrast, and spatial
frequency. Gabor patches consist of suprathreshold sinusoidal gratings that are vignetted
by a Gaussian envelope [21,22]. Gabor patches presented in rivalrous image pairs, with
simple line gratings that share the same low-level characteristics, can have gratings of
varying orientations to facilitate visual rivalry (Figure 3). Conventionally, studies consider
Gabor patches in pairs of gratings with +45◦/−45◦ orientations or 0◦/90◦ orientations
presented together [3,9]. The current study considered pairings of all four stimuli presented
in Figure 3 to investigate the effects of different stimulus pairs on alternation rate and
observation duration.
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Figure 3. Four different Gabor patches at different orientations used during the BR tasks [23]:
(a) right-diagonal orientation; (b) left-diagonal orientation; (c) horizontal orientation; (d) vertical
orientation.

In cognitive neuroscience, BR is used to investigate when conscious experience man-
ifests during visual processing, how and why visual selection happens during percep-
tual dominance, and to what extent the suppressed stimulus is being processed uncon-
sciously [16]. Gabor patches have been accorded to early linear spatial filtering in the visual
system [21] and have therefore been used to study BR. Research suggests that natural-image
statistics evoke local interactions in early, feature-specific levels in the visual cortex [22].

A mirror stereoscope is an inexpensive way to induce and study BR [16]. Figure 4
shows a conventional BR setup using a stereoscope with a visual divider and several
mirror planes. The respective mirror planes fuse competing visual stimuli in the observer’s
visual field by projecting the stimuli through the stereoscope. Since virtual-reality (VR)
head-mounted displays fuse dichoptic vision in a similar way to the planes in a mirror
stereoscope, this study investigated the efficacy of using a virtual-reality headset (Oculus
Rift-S) as an alternative method to study binocular rivalry. VR head-mounted displays are
more versatile and more readily available than conventional mirror stereoscopes. There has
also been a recent shift in cognitive research, where VR headsets have been used in several
psychological experiments [24]. Using the alternative setup proposed in this research
would benefit the field of BR research. The study therefore aimed to show that VR can be
used as a reliable alternative to induce BR and to study its neurological effects.
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2. Materials and Methods

All participants were required to complete a standard BR task twice: once while using
a mirror stereoscope set up in front of a computer monitor, and once while wearing a VR
headset (Section 2.2). The order in which participants completed the experiments was
randomised, i.e., 16 participants completed the VR experiment first and 16 participants com-
pleted the mirror-stereoscope experiment first. Having the order of the tasks randomised
also eliminated observational biases during one experiment compared to the other as a
result of fatigue. The standard BR task was repeated to compare the performance of the
conventional mirror stereoscope to the performance of the VR headset when inducing BR.

Thirty-two participants between the ages of 23 and 61 (the mean age was 32.4 years;
SD = 9.34) volunteered to take part in the study (20 male; 12 female). Figure 5 shows
the demographic distribution of the sample). The research did not distinguish between
participants based on age or sex for analysis. All participants were required to have normal
or corrected-to-normal vision. Individuals with corrected vision were permitted to take
part only if they wore contact lenses. Participants wearing spectacles were excluded from
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consideration since the lenses can interfere with the effects of BR [19]. All participants
provided written informed consent prior to taking part in the study, and the research exper-
iment was approved by Stellenbosch University’s Health Research and Ethics Committee
(HREC; reference number: S20/11/332). The study was conducted in accordance with the
ethical guidelines and principles of the international Declaration of Helsinki, the South
African Guidelines for Good Clinical Practice, and the Medical Research Council (MRC)
Ethical Guidelines for Research.
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2.1. Materials
2.1.1. Mirror Stereoscope and VR Headset

The BR tasks were scripted using Unreal Engine [25], a standard software package
used for creating virtual environments for VR headsets. Unreal Engine [25] was used for
both the conventional (mirror stereoscope) and novel (VR headset) experimental paradigms.
Figure 6 demonstrates how participants interacted with the mirror stereoscope (Figure 6a)
and the VR headset (Figure 6b). When completing the mirror-stereoscope task, participants
rested their heads on a wooden structure while looking through the viewports on the
stereoscope. As shown in Figure 4, the stereoscope projected the stimuli, separated on
a split computer screen (one stimulus presented on the left; one stimulus presented on
the right), to the respective visual fields [26]. The computer screen, shown in Figure 6,
was a 21” Dell monitor with a refresh rate of 60 Hz and a resolution of 1024 × 768 pixels.
The VR headset, also shown in Figure 6, was an Oculus Rift-S headset with a refresh
rate ranging from 40 to 60 Hz and a resolution of 1280 × 800 (640 × 800 per eye). The
interpupillary distance (IPD) was fixed at the headset’s default of 63.5 mm, whereas the
fixed focal distance for the headset was at 1.3 m. The headset’s apparent distance to the
stimulus was manipulated by setting the y-axis coordinate to 200 mm—this change was
made to establish stable vergence in the VR headset (see Appendix A). The visual tasks
were completed in a dimly lit, quiet room.

When interacting with the mirror stereoscope, participants recorded their responses
by pressing and releasing a specific key using a standard keyboard. When interacting with
the VR headset, participants recorded their responses using the VR headset’s right-hand
controller by pressing and releasing the thumb stick in the desired direction. Figure 6
shows how these responses were mapped to the orientation of the gratings of the Gabor
patches. For the mirror stereoscope, the keys were mapped to the direction of the gratings
of the Gabor patches by using standard gaming keys for movement in a virtual space
(up/down = W/S; left/right = A/D; left diagonal = Q; right diagonal = E). For the VR
headset, the Cartesian coordinates of the right controller’s thumb stick were mapped
to the direction of the gratings of the Gabor patches. Participants could choose to use
either the up or the down direction on the thumb stick that matched the orientation of the
respective gratings. In cases of piecemeal rivalry, participants responded with the space
bar on the keyboard and the trigger on the right controller for the respective experiments.
The sensitivity of the controller was tested and adjusted.
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oscope, computer screen, and standard keyboard; (b) novel setup using a VR headset and right
controller. Written permission was obtained from the individuals shown in these photos.

For the mirror-stereoscope task, the height of the chair and the mirror structure was
adjusted until participants reported that image fusion and BR occurred easily. For the VR
headset, the tightness and placement of the headset was adjusted until participants reported
seeing only one stimulus and clear instances of BR. Interpupillary distances were not
adjusted between participants. Instead, the measure of the ease and clarity at which fusion
and BR occurred relied on subjective reports by participants. Once the setup was reportedly
working properly, the BR tasks started. For each experiment, participants performed a few
tests to make sure they understood the task before the task started being recorded.

2.1.2. Visual Stimuli

For the visual stimuli, Gabor patches with four different grating orientations—with
matching luminance, contrast, and spatial frequencies—were used (Figure 3) [26]. The rival
Gabor patches shared the following characteristics: a Gaussian envelope with a standard
deviation of σ = 20 pixels displayed at 100% contrast, a zero-phase spatial frequency of
1.15, a background colour of 124.75 cd/m2, and two contrasting colours of 254.57 cd/m2

and 0 cd/m2. The only distinction between the four stimuli was the orientation of their
gratings (horizontal (degrees = 0◦), vertical (degrees = 90◦), left diagonal (degrees = −45◦),
right diagonal (degrees = 45◦)) [23]. The stimuli used during the experiments can be seen
in Figure 3.

In experimental trials preceding the BR experiments, different iterations of stimuli and
fusion cues were tested to establish and evaluate stable vergence (Appendix A). Appendix A
summarises the improvements made to the stimuli. The rate of success was measured
by comparing observations of stable vergence (perceptual dominance) to observations of
piecemeal rivalry (non-dominance). Stable vergence ensures that the rivalrous images fall
on corresponding locations of the respective retinae [15]. The mirror stereoscope worked
well to induce BR in all cases, but stable vergence needed to be improved for the VR headset
(Appendix A). To improve stable vergence in the VR headset, adjustments were made to
the distance to the field (i.e., the y-axis distance in the VR headset), the refresh rate of the
display, and the presence and style of the fusion cues.

To establish and maintain stable vergence, stimuli can be surrounded by the same
frame, as well as by placing an identical fixation point at the centre of each image [15]. The
distance to the visual field (the distance between the mirror stereoscope and the screen;
and the y-axis distance in the VR headset), the refresh rate of the display, the presence or
absence of fusion cues, and the colours of the stimuli all affect how successfully stable
vergence can be achieved, and therefore how successfully BR can be induced. The refresh
rate of the display—specifically, the discrepancy between the refresh rate of an external
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display and a VR headset—notably influences the efficacy of establishing and maintaining
stable vergence.

No changes were made to the colours of the stimuli because the Gabor patches had
alternating black and white gratings with matching contrasts. Colour was therefore not
used as a variable to improve BR.

2.2. Method

For both experimental tasks, participants followed the sequence shown in Figure 7.
Twelve different competing stimulus pairs were presented during each experimental se-
quence. A sequence of rivalrous pairs consisted of six novel combinations of the four
distinct stimuli presented to the observer’s respective visual fields (calculated using the
combinatoric formula). The different novel pairings were repeated, swapping around the
left-/right-visual-field positions of the stimuli to ensure that the order of presentation was
counterbalanced to eliminate visual-field dominance as cause for perceptual bias during
BR [27]. This resulted in a sequence of 12 pairings. Two unique sequences, BR1.1 and
BR1.2, of 12 rivalrous pairs per sequence, were scripted (see Appendix B). Each sequence
contained the same stimulus pairings in varying chronologies. Both sequences were equally
balanced to avoid perceptual bias and excessive observational repetition (see Appendix B).

Math. Comput. Appl. 2023, 28, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 7. Typical experimental sequence showing rivalrous stimuli interspersed by a 5 s countdown 
screen; each stimulus pair was presented for 10 s. 

3. Results 
To evaluate the efficacy of using a VR headset instead of the conventional mirror 

stereoscope to induce BR, analysis of the alternative experiments was divided into three 
distinct phases, subsequently discussed in Sections 3.1–3.3. These sections evaluate the 
performances and interactions between the two experiments, as well as the different stim-
uli, based on the number of observations of dominance and non-dominance, the alterna-
tion rate per trial, and the observation duration (in seconds).  

The first aim was to determine whether BR with stable vergence, i.e., with more ob-
servations of dominance than observations of piecemeal rivalry for each experiment, was 
successfully induced in both cases. Sections 3.1 and 3.2 show that BR with stable vergence, 
as defined above, was successfully induced for both the mirror stereoscope and the VR 
headset by comparing observations of dominance to observations of non-dominance for 
each experiment. 

Section 3.3 evaluates the performance of the two experiments and the different stim-
ulus pairs, as well as the interactions between the respective treatment factors. 

3.1. Exploratory Data Analysis 
First, each experiment was evaluated separately to determine whether stable BR, with 

more observations of dominance than observations of non-dominance (i.e., piecemeal ri-
valry), was induced for the respective experiments. It was assumed that, for BR to be suc-
cessful, there would be more observations of perceptual dominance than observations of 
piecemeal rivalry—indicative of stable vergence (see Appendix A). Responses were there-
fore divided into these two distinct categories, i.e., observations of perceptual dominance 
(dominance) and observations of piecemeal rivalry (non-dominance). All reports of hori-
zontal, vertical, left-diagonal, or right-diagonal observations (in both experiments) were 
classified as observations of perceptual dominance, whereas all responses indicating 
piecemeal rivalry were classified as non-dominance. The number of reported observations 
was quantified by considering participants’ button-press responses, recorded using the 
keyboard (mirror-stereoscope experiment) and the controller (VR experiment). Figure 8 
shows the total number of observations of dominance and non-dominance per participant 
for the respective experiments. The data depicted in Figure 8 are raw data, prior to re-
moval of erroneous logs or outliers (see Sections 3.1.1 and 3.1.2). Following a comprehen-
sive review of the participant data shown in Figure 8, the following participants were ex-
cluded from consideration: P00, P01, P06, P08, P14, P23, and P26 (Section 3.1.1). 

Figure 7. Typical experimental sequence showing rivalrous stimuli interspersed by a 5 s countdown
screen; each stimulus pair was presented for 10 s.

For all participants, each sequence was either paired with the mirror-stereoscope task
or the VR task, i.e., if a participant completed sequence BR1.1 with the mirror stereoscope,
then sequence BR1.2 was paired with the VR experiment for that participant. Which
sequence was paired with which experiment was randomised for each participant. As
discussed at the start of Section 2, the order in which participants completed the mirror-
stereoscope and the VR experiment was randomised also (15 participants completed the
mirror-stereoscope task first and 15 participants completed the VR task first) (Appendix B).
Because the same participants were used for all experimental groups, it was important to
randomise which sequence was paired with which experiment, as well as the order of the
two experiments. This ensured that the samples could be considered independent for the
respective experiments.

Participants were informed that they would be presented with a series of competing
image pairs (Figure 7). During both experiments, participants were required to record every
switch in perceptual dominance (including prolonged observations of piecemeal rivalry).
A switch in perceptual dominance was therefore classified as a distinct observation of
either dominance or non-dominance. Practically, participants had to record all observations
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where either a new Gabor patch was consciously perceived or when a prolonged overlay of
piecemeal patches was perceived. Participants were also informed that multiple switches
in perceptual dominance could occur between trials, i.e., during the presentation of a
particular stimulus pair (see Figure 7). Each sequence consisted of 12 trials, i.e., 12 rivalrous
stimulus pairs (see Appendix B). Each experiment consisted of a particular sequence
(either sequence BR1.1 or BR1.2; see Appendix B). Participants were tasked with reporting
multiple switches in perceptual dominance per trial. It was emphasised that every switch
in perceptual dominance needed to be recorded. Figure 7 shows the sequence of a typical
experiment. All stimulus pairs were displayed for ten seconds [17,19], followed by a five-
second countdown to the next trial, i.e., to the next stimulus pair. This was the optimal
time to display each stimulus pair to ensure maximum suppression/dominance alternation
during BR [17]. Each experiment (i.e., the mirror-stereoscope and the VR experiment) took
180 s to complete, with a short break in between.

3. Results

To evaluate the efficacy of using a VR headset instead of the conventional mirror
stereoscope to induce BR, analysis of the alternative experiments was divided into three
distinct phases, subsequently discussed in Sections 3.1–3.3. These sections evaluate the
performances and interactions between the two experiments, as well as the different stimuli,
based on the number of observations of dominance and non-dominance, the alternation
rate per trial, and the observation duration (in seconds).

The first aim was to determine whether BR with stable vergence, i.e., with more
observations of dominance than observations of piecemeal rivalry for each experiment, was
successfully induced in both cases. Sections 3.1 and 3.2 show that BR with stable vergence,
as defined above, was successfully induced for both the mirror stereoscope and the VR
headset by comparing observations of dominance to observations of non-dominance for
each experiment.

Section 3.3 evaluates the performance of the two experiments and the different stimu-
lus pairs, as well as the interactions between the respective treatment factors.

3.1. Exploratory Data Analysis

First, each experiment was evaluated separately to determine whether stable BR, with
more observations of dominance than observations of non-dominance (i.e., piecemeal
rivalry), was induced for the respective experiments. It was assumed that, for BR to be
successful, there would be more observations of perceptual dominance than observations
of piecemeal rivalry—indicative of stable vergence (see Appendix A). Responses were
therefore divided into these two distinct categories, i.e., observations of perceptual domi-
nance (dominance) and observations of piecemeal rivalry (non-dominance). All reports
of horizontal, vertical, left-diagonal, or right-diagonal observations (in both experiments)
were classified as observations of perceptual dominance, whereas all responses indicating
piecemeal rivalry were classified as non-dominance. The number of reported observations
was quantified by considering participants’ button-press responses, recorded using the
keyboard (mirror-stereoscope experiment) and the controller (VR experiment). Figure 8
shows the total number of observations of dominance and non-dominance per participant
for the respective experiments. The data depicted in Figure 8 are raw data, prior to removal
of erroneous logs or outliers (see Sections 3.1.1 and 3.1.2). Following a comprehensive
review of the participant data shown in Figure 8, the following participants were excluded
from consideration: P00, P01, P06, P08, P14, P23, and P26 (Section 3.1.1).
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3.1.1. Participant Responses

Figure 8 shows all datasets prior to pruning. Figure 9 shows the reduced sample.
Seven participants’ datasets were removed from consideration (P00, P01, P06, P14, P08,
P23, P26), reducing the sample from n = 32 to n = 25. This resulted in a 21.9% reduction in
sample size. In the case of P00 and P14, the datasets were removed due to technical errors
that occurred during testing. For P14, the battery of the VR controller ran out midway
through testing. For P00, the configuration was not yet properly working (this participant
was considered a trial participant). The datasets for P06 and P23 were removed following
a logic check to verify that the responses corresponded to the stimuli presented during
the trial, i.e., these participants responded with, for example, horizontal observation while
they were presented with a vertical and 45% grating pair. The datasets for participants P01,
P08, and P26 were removed due to the excessive number of observations reported by these
participants—this was likely the result of holding down the controller, despite instructions
to refrain from doing so. For subsequent analyses, the reduced sample (n = 25) was used
(shown in Figure 10).
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non-dominance for the mirror-stereoscope and VR experiments.

3.1.2. Double-Click Observations

The following assumption was made during the analysis of the button-press responses:
Participants would not log consecutive observations of an identical dominance response.
Each observation either needed to be followed by a different directional observation or
by another observation of piecemeal rivalry. This was the only sequence of observations
that can logically constitute alternating stable states. Identical consecutive loggings of
observations of dominance were assumed to be erroneous double-click events. See Figure 11
for an analysis of the double-click events. There was a total of 470 double-click events, with
the distribution shown in Table 1.
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Table 1. Distribution of double-click events across the mirror-stereoscope and VR experiments for
the respective observations (i.e., dominance and non-dominance).

Experiment Response Count

Mirror stereoscope Piecemeal 27
Mirror stereoscope Dominance 58

VR Piecemeal 23
VR Dominance 362

Repeated observations of piecemeal rivalry were considered to be possible since
alternating states of piecemeal rivalry can follow each other. Following this analysis, all
double clicks of observations of dominance were removed. This resulted in a removal of 470
button-press responses across both experiments. This resulted in a reduction of 4.23% for
the mirror-stereoscope experiment and a reduction of 12.6% for the VR experiment. These
reductions correspond to the VR experiment reporting roughly three times the number of
observations of dominance compared to the mirror-stereoscope experiment.

Figure 9 shows the reduced sample, i.e., after specific participants’ data and double-
click events of observations of dominance had been removed.

3.2. Inducing BR in Both Experiments

Figure 12 shows the box-and-whisker plot for the number of observations of piecemeal
rivalry and dominance for the two experiments across all participants after all erroneous
logs had been removed from the data (this includes a removal of double-click events, as
well as certain participants’ datasets (Sections 3.1.1 and 3.1.2)).
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Table 2 shows the sample statistics comparing the observations of dominance and
the observations of non-dominance for the two experiments. For this evaluation, the null
hypothesis postulated that the sample data provided no evidence to support that there
would be a statistically significant difference between observations of dominance and non-
dominance (i.e., between observations of perceptual dominance and piecemeal rivalry) for ei-
ther the mirror-stereoscope or the VR experiment. In both cases (see Sections 3.2.1 and 3.2.2),
participants were considered as independent samples, an independent-sample t-test was
performed to evaluate the relationship between reported observations of dominance and
non-dominance for the two experiments [19,28].

Table 2. Sample statistics of an independent t-test evaluating observations of perceptual dominance
and piecemeal rivalry for the respective experiments (n = 25).

Experiment (x, s)d; (x, s)p * t-Value p-Value

Mirror stereoscope (27.6, 11.0); (13.0, 7.97) −4.86 <0.0001
VR (47.7, 14.3); (13.7, 9.20) −9.41 <0.0001

* (x, s)d = observations of perceptual dominance and (x, s)p = observations of piecemeal rivalry for both experi-
ments; x; = mean; s = standard deviation of the sample.

3.2.1. Mirror-Stereoscope Experiment

Figure 10 shows the box-and-whisker plot for the number of observations of percep-
tual dominance and piecemeal rivalry during the mirror-stereoscope experiment across
participants. Equations (1) and (2) show the null hypothesis and alternative hypothesis
(where Md = observations of perceptual dominance for the mirror-stereoscope experiment,
and Mp = observations of piecemeal rivalry for the mirror-stereoscope experiment). The null
hypothesis states that there is no difference between the mean of the observations of percep-
tual dominance and the mean of the observations of piecemeal rivalry for this experiment.
The consequence of proving the null hypothesis would be a failure to induce BR.

H0: µMd = µ_Mp (1)

Ha: µ_Md 6= µ_Mp (2)

Table 2 shows the sample statistics for the mirror-stereoscope experiment. Performing
an independent t-test, the null hypothesis was rejected, with a p-value less than 0.05
(t = −4.86; p < 0.0001), (Table 2). Consequently, there were statistically significantly more
observations of perceptual dominance than observations of piecemeal rivalry, i.e., BR with
stable vergence was successfully induced.

3.2.2. VR Experiment

The box-and-whisker plot showing the number of observations of perceptual dom-
inance and piecemeal rivalry for the VR experiment across participants can be seen
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in Figure 10. Equations (3) and (4) show the null hypothesis and alternative hypoth-
esis (where VRd = observations of perceptual dominance for the VR experiment, and
VRp = observations of piecemeal rivalry for the VR experiment). Similarly, the null hy-
pothesis for the VR experiment states that there is no difference between the mean of
the observations of perceptual dominance compared to the mean of the observations of
piecemeal rivalry.

H0: µ_VRd = µ_VRp (3)

Ha: µ_VRd 6= µ_VRp (4)

Table 2 shows the sample statistics for the VR experiment. Performing an independent
t-test, the null hypothesis was rejected for the VR experiment, with a p-value less than 0.05
(t = −9.41; p < 0.0001), (Table 2). There were statistically significantly more observations of
perceptual dominance than observations of piecemeal rivalry for the VR experiment, i.e.,
BR with stable vergence was successfully induced.

3.3. Statistical Analysis of the Sample

Having established that BR was successfully induced for both experiments, the way
BR behaved between the different experiments for the different stimulus pairs needed to be
evaluated next. This was evaluated by considering the alternation rate and the observation
duration of the two experiments. For this evaluation, the stimulus pairs were divided into
three distinct groups. The LD-RD group included stimulus pairs of Gabor patches with
gratings at +45◦/−45◦ orientations (i.e., right-diagonal and left-diagonal patches presented
to both eyes). The H-V group included stimulus pairs of Gabor patches with gratings at
0◦/90◦ orientations (i.e., horizontal and vertical patches presented to both eyes). The mixed
group included the remaining stimulus pairs. Figures 12 and 13 show the box-and-whisker
plots of the average alternation rate (per trial) and the average observation duration (in
seconds) for the different stimulus pairs for the two experiments across all participants
(n = 25). From these graphs, all stimuli showed an approximately normal distribution for
the different stimulus groups across the two experiments for both the alternation rates and
the observation durations. The box-and-whisker plots depicting the observation durations
showed a few outliers.
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An ANOVA model, used to evaluate the variance between different normally dis-
tributed target groups [19,28], showed statistically significant differences for the alternation
rate per trial (F = 25.8; p < 0.0001), as well as the observation duration in seconds (F = 23.8;
p < 0.0001), between different stimulus groups for the two experiments. Looking at the
R-square values, the model explained 47.2% and 45.2% of the variation in the data for the
alternation rate and the observation duration, respectively. Tables 3 and 4 show the model
statistics for the alternation rate and the observation duration, respectively, and Tables 5
and 6 show the summary statistics for the different dependent groups for the alternation
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rate and observation duration, respectively. The statistical power for the dependent groups
can be found in Table 7. Table 7 shows that all experimental groups (n = 25) showing
statistically significant differences had a statistical power of > 0.999. In the case where
the different stimulus groups did not show a statistically significant difference for the
alternation rate per trial, the statistical power was smaller than 80% (see Table 7). From the
power analysis, proving a statistically significant difference between the different stimulus
groups for the alternation rate per trial would require a much larger sample. However,
similar BR studies typically reported on response data of ~25–35 participants [19].

Table 3. ANOVA model statistics for the average alternation rate per trial for the different stimulus
groups for the respective experiments across all participants.

Source DF F-Value p-Value

Experiment 1 91.6 <0.0001
Stimulus groups 2 8.1 0.0005

Exp:Stimuli 2 10.6 <0.0001
Exp:Stimuli = interaction between the experiments and the stimulus groups.

Table 4. ANOVA model statistics for the observation duration (in seconds) for the different stimulus
groups for the respective experiments across all participants.

Source DF F-Value p-Value

Experiment 1 114 <0.0001
Stimulus groups 2 0.10 0.91

Exp:Stimuli 2 2.22 0.11
Exp:Stimuli = interaction between the experiments and the stimulus groups.

Table 5. Summary of the statistics for the different variables based on the alternation rate per trial.

Experiment Stimulus Group n Mean
(x)

Standard
Deviation

(s)

Mirror stereoscope LD-RD 25 2.98 1.25
Mirror stereoscope H-V 25 3.22 1.57
Mirror stereoscope Mixed 25 3.04 1.07

VR LD-RD 25 8.12 3.94
VR H-V 25 4.46 1.70
VR Mixed 25 6.68 1.97

LD-RD = stimulus pairs with −45◦/45◦ orientations; H-V= stimulus pairs with 0◦/90◦ orientations; mixed =
remaining stimulus pairs, excluding LD-RD and H-V stimulus pairs; x = mean; s = standard deviation of the
sample (n = 25).

Table 6. Summary of the statistics for the different variables based on the observation duration
(in seconds).

Experiment Stimulus Group n Mean
(x)

Standard
Deviation

(s)

Mirror stereoscope LD-RD 25 3.38 1.54
Mirror stereoscope H-V 25 2.79 1.39
Mirror stereoscope Mixed 25 3.03 1.43

VR LD-RD 25 0.80 1.04
VR H-V 25 1.21 0.88
VR Mixed 25 0.97 0.51

LD-RD = stimulus pairs with −45◦/45◦ orientations; H-V= stimulus pairs with 0◦/90◦ orientations; mixed =
remaining stimulus pairs, excluding LD-RD and H-V stimulus pairs; x = mean; s = standard deviation of the
sample (n = 25)
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Table 7. Statistical power for the different dependent groups (alpha = 0.05; nominal power = 0.8).

Dependent Source n Total Power

Obs. duration Experiment 25 >0.999
Obs. duration Stimulus groups 25 0.06
Obs. duration Exp:Stimuli 25 >0.999

Alt. rate Experiment 25 >0.999
Alt. rate Stimulus groups 25 >0.999
Alt. rate Exp:Stimuli 25 >0.999

Obs. duration = observation duration (in seconds); Alt. rate = alternation rate per trial; Exp:Stimuli = interaction
between the experiments and the stimulus groups.

3.3.1. Evaluating the Stimulus Pairs

It was important to consider how BR behaved for the different stimulus pairs for the
respective experiments, seeing as most previous studies only considered LD-RD and H-V
stimuli when studying BR. The different stimulus pairs were compared by considering the
observation duration and the alternation rate for both experiments separately across all
participants (n = 25). Tables 8 and 9 show the summary statistics for the alternation rate
and the observation duration for the different stimulus pairs for the two experiments.

Table 8. Sample statistics for the average alternation rate per trial for the different stimulus groups
for the respective experiments across all participants.

Stimulus Group Mean
(x)

Standard Deviation
(s)

LD-RD 5.55 3.89
H-V 3.84 1.74

Mixed 4.86 2.42
LD-RD = stimulus pairs with −45◦/45◦ orientations; H-V= stimulus pairs with 0◦/90◦ orientations;
mixed = remaining stimulus pairs, excluding LD-RD and H-V stimulus pairs; x = mean; s = standard devia-
tion of the sample (n = 25).

Table 9. Sample statistics for the average observation duration (in seconds) for the different stimulus
groups for the respective experiments across all participants (n = 25).

Stimulus Group Mean
(x)

Standard Deviation
(s)

LD-RD 2.09 1.84
H-V 1.99 1.40

Mixed 2.00 1.49
LD-RD = stimulus pairs with −45◦/45◦ orientations; H-V= stimulus pairs with 0◦/90◦ orientations; mixed =
remaining stimulus pairs, excluding LD-RD and H-V stimulus pairs; x = mean; s = standard deviation of the
sample (n = 25).

ANOVA was performed to evaluate the differences between the stimulus groups based
on the alternation rate per trial and the observation duration (in seconds). Considering the
alternation rate, the model showed statistically significant differences between the different
stimulus groups, with a p-value smaller than 0.05 (F = 8.10; p < 0.0001) (Table 3). However,
there was no statistically significant difference between the stimuli in terms of observation
duration (F = 0.01; p = 0.91) (Table 5).

Figure 14 shows the Tukey post hoc test groupings for the mean of the stimulus groups
for the alternation rate (Figure 14a) and the observation duration (Figure 14b). Figure 14a more
clearly shows the difference between the alternation rates for the different stimuli groups—a
difference was observed between the H-V pairings and the rest of the stimulus pairs.
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3.3.2. Evaluating the Different Experiments

Next, the differences between the performance of the mirror-stereoscope and VR experi-
ments were evaluated. Tables 10 and 11 show a summary of the statistics for the alternation
rate and the observation duration for the different stimulus pairs for the two experiments.

Table 10. Sample statistics for the average alternation rate per trial for the different stimulus groups
for the respective experiments across all participants.

Experiment Mean
(x)

Standard Deviation
(s)

Mirror stereoscope 3.08 1.30
VR 6.42 3.09

x = mean; s = standard deviation of the sample (n = 25).

Table 11. Sample statistics for the average observation duration (in seconds) for the different stimulus
groups for the respective experiments across all participants (n = 25).

Experiment Mean
(x)

Standard Deviation
(s)

Mirror stereoscope 3.07 1.46
VR 0.99 0.84

x = mean; s = standard deviation of the sample.

ANOVA was performed to evaluate the differences between the experiments based on
the alternation rate per trial and the observation duration (in seconds). In both cases, the
model showed statistically significant differences between the experiments, with p-values
smaller than 0.05 (alternation rate: F = 91.6, p < 0.0001; observation duration: F = 114,
p < 0.0001) (Tables 3 and 5). Figure 15 shows the Tukey post hoc test groupings for the
mean of the experiments for the alternation rate (Figure 15a) and the observation duration
(Figure 15b). In both cases, significant differences were observed between the mirror
stereoscope and VR experiments.
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3.3.3. Visualising the Interaction between the Different Experiments and Stimulus Groups

Figures 16 and 17 show the interactions between the stimulus groups and the experi-
ments based on the alternation rate and observation duration, respectively.
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4. Discussion

Evaluating the two experiments, the results show that BR with stable vergence was
successfully induced in both the mirror-stereoscope and VR experiments. In both experiments
there were significantly more visual states of dominance than non-dominance. Moreover,
although the VR experiment performed similarly in terms of observations of piecemeal rivalry,
there were significantly more observations of dominance during the VR experiment. An
increase in the number of observations of piecemeal rivalry and perceptual dominance in
the VR experiment could suggest that the VR experiment presented with less stable visual
states than the mirror-stereoscope experiment; however, considering the VR headset more
frequently switched between different observations of dominance, further evaluation of the
neurophysiological data for the two experiments is needed to better understand this difference.

The literature shows that the process responsible for selection (or predominance)
differs from the process responsible for alternations [10], all of which involve multiple brain
regions. Therefore, for subsequent analysis comparing the performance of the different
stimuli and the experiments, the observation duration and alternation rate were evaluated.

The different stimuli groups showed differences in alternation rate but not in observa-
tion duration. The difference in alternation rate occurred between the horizontal/vertical
stimulus pairing but not the other stimulus pairs. Comparing the dominance durations
and the alternation rate per trial between the two experiments, there were statistically
significant differences between the mirror stereoscope and the VR headset for both the
dominance durations and the alternation rates. The results showed a significant decrease
in dominance duration and an increase in alternation rate for the VR headset. Looking at
the interactions between the stimuli and the two experiments, there were differences for
both the alternation rates and the observation durations.

The differences between the two experiments suggest that the VR headset might
perform better than the conventional mirror stereoscope at inducing and maintaining
continuous alternating states of dominance/suppression during BR. The alternation rate
reflects the inherent dynamic behaviour of neural activity in the visual cortex [29]. Research
has found that higher alternation rates during BR are associated with healthy neurological
behaviour [29]. Other studies suggest that differences in alternation rates during BR are
indicative of differences in bottom-up and top-down visual processing, where a slower
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alternation rate is associated with lower levels of visual detail during ongoing thought [30].
This could explain why BR induced in a head-mounted display led to a decrease in ob-
servation duration and an increase in alternation rate; since the task was completed in
visual isolation, fewer external visual sources of information may have resulted in a greater
level of focus while performing the visual task. However, research also suggests that the
durations of subsequent observations are statistically independent from one another [9].
Further analysis of the neurological effects of BR during these two experiments is required
to provide a more comprehensive understanding of the comparative performance of these
two methods. It may be prudent to compare the electroencephalographic data of the two
experiments for a more conclusive review of the differences and similarities between the
two experiments. Moreover, it may be necessary to evaluate whether the different ways in
which participants recorded their observations (using a controller for the VR experiment
and using a keyboard for the mirror-stereoscope experiment) adversely influenced the
results. It should also be noted as a limitation of this study that the IPD was not adjusted
in the VR headset for participants—this may have adversely influenced the stability of
perceptual dominance during BR in the VR headset.

In conclusion, this study was able to show that BR can be successfully induced using a
virtual-reality head-mounted display, and that VR can potentially be used as an effective
alternative method to induce and study BR.
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Appendix A

The data presented in Table A1 were not part of a formalised trial and exclusively
consider changes observed during experimental VR trials preceding the BR experiments.
These observations were made by the research team. Following an evaluation of the
different iterations presented in Table A1, both experiments (mirror stereoscope and VR)
adopted the same paradigm (i.e., S4; see Table A1).

Table A1. Distribution of stable vergence and piecemeal rivalry across different iterations of visual
stimuli (for VR).

Label Stimulus Trials Characteristics Stable Vergence Piecemeal Rivalry

S1

1 
 

L
abel 

Stimulus Tria
ls 

Characteristics Stable 
Vergence 

Piecemeal 
Rivalry 

S
1 

 

20 

Distance: 100 mm 

15.0% 85.0% 
Refresh rate: 40 Hz 

Fusion cues: none 

S
2 

 

17 

Distance: 100 mm 

5.88% 94.1% 

Refresh rate: 40 Hz 

Fusion cues: clear edges 

S
3 

 

24 

Distance: 150 mm 

37.5% 62.5% 

Refresh rate: 40 Hz 

Fusion cues: crosshair and frame 

S
4 * 

 

31 

Distance: 200 mm 

90.3% 9.7% 
Refresh rate: 60 Hz 

Fusion cues: fixation cross and 
frame 

 

20

Distance: 100 mm

15.0% 85.0%
Refresh rate: 40 Hz

Fusion cues: none
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Table A1. Cont.

Label Stimulus Trials Characteristics Stable Vergence Piecemeal Rivalry

S2

1 
 

L
abel 

Stimulus Tria
ls 

Characteristics Stable 
Vergence 

Piecemeal 
Rivalry 

S
1 

 

20 

Distance: 100 mm 

15.0% 85.0% 
Refresh rate: 40 Hz 

Fusion cues: none 

S
2 

 

17 

Distance: 100 mm 

5.88% 94.1% 

Refresh rate: 40 Hz 

Fusion cues: clear edges 

S
3 

 

24 

Distance: 150 mm 

37.5% 62.5% 

Refresh rate: 40 Hz 

Fusion cues: crosshair and frame 

S
4 * 

 

31 

Distance: 200 mm 

90.3% 9.7% 
Refresh rate: 60 Hz 

Fusion cues: fixation cross and 
frame 

 

17

Distance: 100 mm

5.88% 94.1%Refresh rate: 40 Hz

Fusion cues: clear
edges

S3

1 
 

L
abel 

Stimulus Tria
ls 

Characteristics Stable 
Vergence 

Piecemeal 
Rivalry 

S
1 

 

20 

Distance: 100 mm 

15.0% 85.0% 
Refresh rate: 40 Hz 

Fusion cues: none 

S
2 

 

17 

Distance: 100 mm 

5.88% 94.1% 

Refresh rate: 40 Hz 

Fusion cues: clear edges 

S
3 

 

24 

Distance: 150 mm 

37.5% 62.5% 

Refresh rate: 40 Hz 

Fusion cues: crosshair and frame 

S
4 * 

 

31 

Distance: 200 mm 

90.3% 9.7% 
Refresh rate: 60 Hz 

Fusion cues: fixation cross and 
frame 

 

24

Distance: 150 mm

37.5% 62.5%
Refresh rate: 40 Hz

Fusion cues:
crosshair and

frame

S4 *

1 
 

L
abel 

Stimulus Tria
ls 

Characteristics Stable 
Vergence 

Piecemeal 
Rivalry 

S
1 

 

20 

Distance: 100 mm 

15.0% 85.0% 
Refresh rate: 40 Hz 

Fusion cues: none 

S
2 

 

17 

Distance: 100 mm 

5.88% 94.1% 

Refresh rate: 40 Hz 

Fusion cues: clear edges 

S
3 

 

24 

Distance: 150 mm 

37.5% 62.5% 

Refresh rate: 40 Hz 

Fusion cues: crosshair and frame 

S
4 * 

 

31 

Distance: 200 mm 

90.3% 9.7% 
Refresh rate: 60 Hz 

Fusion cues: fixation cross and 
frame 

 

31

Distance: 200 mm

90.3% 9.7%Refresh rate: 60 Hz
Fusion cues:

fixation cross and
frame

The final experiments (both mirror stereoscope and VR) used this stimulus.
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