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Abstract: Multiscale FE2 computations enable the consideration of the micro-mechanical material
structure in macroscopical simulations. However, these computations are very time-consuming
because of numerous evaluations of a representative volume element, which represents the mi-
crostructure. In contrast, neural networks as machine learning methods are very fast to evaluate once
they are trained. Even the DNN-FE2 approach is currently a known procedure, where deep neural
networks (DNNs) are applied as a surrogate model of the representative volume element. In this
contribution, however, a clear description of the algorithmic FE2 structure and the particular inte-
gration of deep neural networks are explained in detail. This comprises a suitable training strategy,
where particular knowledge of the material behavior is considered to reduce the required amount
of training data, a study of the amount of training data required for reliable FE2 simulations with
special focus on the errors compared to conventional FE2 simulations, and the implementation aspect
to gain considerable speed-up. As it is known, the Sobolev training and automatic differentiation
increase data efficiency, prediction accuracy and speed-up in comparison to using two different
neural networks for stress and tangent matrix prediction. To gain a significant speed-up of the FE2

computations, an efficient implementation of the trained neural network in a finite element code is
provided. This is achieved by drawing on state-of-the-art high-performance computing libraries and
just-in-time compilation yielding a maximum speed-up of a factor of more than 5000 compared to a
reference FE2 computation. Moreover, the deep neural network surrogate model is able to overcome
load-step size limitations of the RVE computations in step-size controlled computations.

Keywords: multiscale finite element computations; deep neural networks; surrogate modeling;
Sobolev training; representative volume element; step-size control

1. Introduction

Nearly all commonly applied engineering materials possess, depending on the detail
of investigation, some heterogeneous microstructure, e.g., fiber-reinforced polymers or
rolled steel alloys, where the grains can have preferential directions because of the manu-
facturing process. Since this heterogeneous microstructure can significantly influence the
response of these materials to mechanical loading, it is of particular interest to consider
the microstructure already in numerical simulations. The development of constitutive
models for materials with heterogeneous microstructures is challenging in both aspects,
phenomenological constitutive modeling and subsequent experimental calibration. Thus,
the so-called FE2 method has been developed by [1–6]—to mention only a few—for cou-
pled numerical simulation of structures at macro- and microscale with finite elements.
There, in contrast to common finite element computations, a constitutive model is not
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assigned to an integration point at macroscale. Instead, the stress and consistent tangent
quantities are obtained by solving an initial boundary value problem with finite elements
on a particular microstructure followed by a numerical homogenization technique. In this
context, the microstructure is usually denoted as a representative volume element (RVE).
In addition to the aforementioned works, in [7], a comprehensive description of the FE2-
method for the numerical solution of these coupled boundary value problems on different
scales is provided. In general, there exist further methods to obtain the response of hetero-
geneous microstructures, such as Discrete Fourier Transforms or Fast Fourier Transforms;
see, for example, [8]. Even the finite cell method is applicable for the homogenization of
heterogeneous microstructures; see, for example, [9]. However, in this work, deep neural
networks are applied to replace the computationally costly solution of initial boundary
value problems at microscale.

Currently, various applications of methods of artificial intelligence exist in the field
of solid mechanics. A comprehensive overview of applications in continuum material
mechanics is given in [10]. Further reviews are provided in [11,12] for applications in
experimental solid mechanics and [13] for material development in additive manufacturing
employing machine learning methods. Ref. [14] provides a general introduction to the
application of machine learning techniques in material modeling and design of materials.
Additionally, in [15], a review and investigation of the ability to apply machine learning in
constitutive modeling is provided; however, it is in the context of soils. Most applications
of machine learning methods aim to obtain feasible information from huge amounts of data
or to increase the speed of particular computations. The source of the data could either
be simulations, as in the present work, or directly experimental data, as in the data-driven
mechanics approach, which was introduced by the aithors of [16], where it is not required to
learn the response of constitutive models from simulations.

The application of artificial neural networks for data-based constitutive modeling
was originally introduced in [17] and is frequently used in representing the material
behavior for finite element simulations since then; see, for example, [18,19]. Recently,
different approaches have been published to advance numerical simulations with machine
learning methods. An investigation into deep learning surrogate models for accelerating
numerical simulations is presented in [20]. Ref. [21] contains a proposal of a combination
of physics-based finite element analysis and convolutional neural networks for predicting
the mechanical response of materials. In contrast, ref. [22] contains an application of deep
learning techniques for extracting rules that are inherent in computational mechanics to
propose a new numerical quadrature rule that shows results superior to the well-known
Gauss–Legendre quadrature.

Learning material behavior from simulations is generally covered with versatile ap-
proaches. In this context, the authors of [23] describe a material modeling framework
for hyperelasticity and plasticity, where different architectures of neural networks are
employed. Model-free procedures that fit into the data-driven mechanics approach for rep-
resenting material behavior are described in [24–27], among others. Model-free approaches
are suitable, especially for the consideration of elastoplastic material behavior; see [28,29]
as well. Artificial neural networks could also be applied for calibrating known constitutive
models from experimental data (parameter identification). First attempts are presented
in [30,31], whereas in [32], modern deep reinforcement learning techniques are applied
for the calibration of history-dependent models. Since the measurement techniques to
obtain experimental data have evolved in recent years, modern calibration techniques can
consider full-field data, e.g., from digital image correlation; see [33]. Instead of calibrat-
ing constitutive models from experimental data with neural networks, where an error is
introduced from choosing the constitutive model, the experimental data can be directly em-
ployed for discovering the material models from data. This approach is introduced in [34]
for hyperelasticity and later on extended to cover elastoplasticity [35] and generalized
materials [36]. Similar work with automated discovery of suitable hyperelastic materials is
provided in [37], where constitutive artificial neural networks are applied, introduced in [38].



Math. Comput. Appl. 2023, 28, 91 3 of 37

Many different machine learning methods are successfully used for multiscale ap-
plications in solid mechanics. There, the main objective is to obtain the homogenized
response from heterogeneous microstructures. One of the first works in this context is
provided in [39], wherein the authors applied neural networks for the homogenization
of non-linear elastic materials. Ref. [40] contains a proposal of a data-driven two-scale
approach to predict homogenized quantities even for inelastic deformations by drawing on
clustering techniques. The ability to replace microscale evaluations with artificial neural
networks requires a suitable accuracy of the network after the training process. Regarding
this issue, the authors of ref. [41] make use of artificial neural networks as constitutive
relation surrogates for nonlinear material behavior. However, based on the evaluation
of quality indicators, a reduced-order model can be employed instead of the neural net-
work within an adaptive switching method. The authors of ref. [42] describe the so-called
Structural-Genome-Driven approach for FE2 computations of composite structures, wherein
even model reduction techniques are applied.

Advanced neural network architectures such as convolutional or recurrent neural
networks are regularly applied to predict the homogenized response of microstructures.
Here, atomistic data can also be used showing significant acceleration compared to molecu-
lar statics [43]. Elastic material behavior is investigated in [44–47]. In ref. [48], significant
speed up in homogenization is reached when applying three-dimensional convolutional
neural networks in broad ranges of different microstructures, phase fractions, and ma-
terial parameters. The authors of ref. [49] provide the generalization of data to obtain
three-dimensional nonlinear elastic material laws under arbitrary loading conditions. Con-
sidering anisotropy, teh authors of ref. [50] predict effective material properties of RVEs
with randomly placed and shaped inclusions. The suitability of different machine learning
methods for homogenizing polycrystalline materials is studied in [51]. Besides the purely
mechanical homogenization approaches, the authors of ref. [52] show that neural networks
can be even applied to computational homogenization of electrostatic problems. Moreover,
researchers in ref. [53] employ µCT data within a data-driven multiscale framework to
study open-cell foam structures.

According to [54], replacing microscale computations in the FE2 method by surrogate
models can be denoted as a data-driven multiscale finite element method. The authors of
ref. [55] perform multiscale computations with feedforward neural networks and recur-
rent neural networks for RVEs with inelastic material behavior and further investigate
the ability to generalize for unknown loading paths. Researchers in ref. [56] present a
hybrid methodology denoted as a model-data-driven one. Therein, the authors apply a
combination of conventional constitutive models and a data-driven correction component
as a multiscale methodology. Moreover, it is beneficial to incorporate physical knowledge
into the development of neural network surrogates. This is achieved, for example, in [57].
The authors propose thermodynamics-based artificial neural networks (TANNs) and apply
them for multiscale simulations of inelastic lattice structures, while later extending the
framework to evolution TANNs [58]. The application of particular physical constraints by
using problem-specific invariants as input quantities and the Helmholtz free energy density
as output is provided in [59]. The authors provide FEANN as a data-driven multiscale
framework and minimize the number of microscale simulations, which serve as training
data, by following an autonomous data mining approach.

Further, probabilistic approaches can be employed while developing the surrogate
models; in [60], more accurate results are achieved with Sobolev training [61] compared to
regular training for hyperelasticity. In this context, for an extension to multiscale plasticity
with geometric machine learning methods, we refer to [62,63]. Elastoplastic solid materials
are investigated in [64] using recurrent neural networks and in [65] where the authors
employ two separated neural networks for the homogenized stress and tangent information.
The authord of ref. [66] apply DeepONet as a surrogate model for the microscale level with
two-dimensional elastoplasticity and hyperelasticity. Currently, the authors of ref. [67]
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demonstrate the applicability of the encoder/decoder approach for multiscale computations
with path-dependent material behavior on the microscale.

Another research track are the so-called deep material networks (DMNs), which provide
an efficient data-driven multiscale framework to reproduce the homogenized response
of RVEs. The introduction of DMNs for two-phase heterogeneous materials is provided
in [68] together with an extension to three-dimensional microstructures [69]. The authors of
ref. [70] further extend the technique to take into account diverse fiber orientations, applying
DMNs for multiscale analysis of composites with full thermo-mechanical coupling [71].
Researchers in ref. [72] employ DMNs with the computation of the tangent operator in a
closed form as an output of the network.

The main objective of the present work is to provide a consistent approach for employ-
ing deep neural networks (DNN) as surrogate models in step-size controlled multiscale
FE2 computations. As mentioned afore, various publications already deal with embedding
artificial neural networks into numerical simulations especially for accelerating computa-
tional costly multiscale simulations. A novelty of the present work is that we provide a clear
description of the algorithmic structure, which is in general a Multilevel–Newton algorithm
(MLNA) that simplifies to a Newton–Raphson algorithm when employing DNN surrogate
models. Further, current publications leave out required information; for example, the
ways in which the consistent tangent at macroscale integration points is obtained from the
microscale information, meaning whether the computations are performed by automatic
differentiation, neural network models, or by numerical differentiation. Concerning this
objective, we start in Section 2 with an explanation of the underlying equations and the
algorithmic structure in FE2 computations, where we restrict ourselves to small strains and
quasi-static problems. Afterwards, two different architectures of neural networks and spe-
cific considerations of physical knowledge during the training process are described. Since
the amount of training data required to obtain sufficient accuracies in the neural network
outputs is of particular interest, this is investigated as well while using regular training
and Sobolev training. As another novel contribution, we develop a method for efficiently
coupling the different programming codes of the trained neural network and the multiscale
finite element code. There, the application of high-performance computing libraries and
just-in-time compilation yields significantly higher speed up of the DNN-FE2 approach
in load-step size controlled computations compared to the results presented in the cur-
rent literature. Furthermore, the DNN surrogate is even able to overcome load-step size
limitations that are apparent in FE2 computations.

The notation in use is defined in the following manner: geometrical vectors are
symbolized by~a and second-order tensors A by bold-faced Roman letters. In addition, we
introduce column vectors and matrices at the global finite element level symbolized by
bold-type italic letters A and column vectors and matrices on the local (element) level using
bold-type Roman letters A. Further, to distinguish quantities on macroscale and microscale
levels, we indicate microscale quantities by ˇ〈·〉. Calligraphic letters A denote deep neural
network surrogate models.

2. Classical FE2 Computations

In this work, finite elements are employed to perform multiscale computations; see,
for example, [4,7]. Hence, only the main equations are recapped, which are necessary
to explain the algorithmic structure. In multiscale FE2 computations, the macro- and
microscale levels have to be distinguished regarding the spatial discretization. Here, we
restrict ourselves to periodic displacement boundary conditions on the microscale and
refer to [4] for other boundary conditions on the microscale. The computation of the
system of non-linear equations resulting from the spatial discretization is explained for
the Multilevel–Newton algorithm (MLNA), which is here a two-level Newton algorithm.
Further, the connection is drawn to embedding deep neural network surrogate models as
predictors for homogenized quantities from the microscale in the MLNA.
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2.1. Spatial Discretization

In the present work, FE2 analyses are performed in a quasi-static setting with the restric-
tion to small strains. Thus, no configurations have to be distinguished and we have the sym-
metric stress tensor T(~x, t) and strain tensor E(~x, t) = 1/2

(
grad~u(~x, t) + gradT ~u(~x, t)

)
at positions ~x and time t. ~u(~x, t) represents the displacement vector. The local balance
of linear momentum has to be fulfilled. Here, the weak form is employed, which is also
known as the principle of virtual displacements:

π(t, T, δ~u) :=
∫

V
δE(~x) · T(~x, t) dV −

∫
V

δ~u(~x) · ρ(~x)~k dV −
∫

A
δ~u(~x) ·~t(~x, t) dA = 0, (1)

where δ~u(~x) are virtual displacements that are arbitrary but vanish at positions where the
displacements ~u(~x, t) are prescribed. Similarly, δE(~x) = 1/2

(
grad δ~u(~x) + gradT δ~u(~x)

)
represent virtual strains. Moreover, ~k symbolizes the acceleration of gravity. V and A
denote the volume and surface of the material body and~t are surface tractions. To develop
the arising equations of the spatial discretization for three-dimensional continua on both
macro- and microscale levels, a consistent matrix notation is followed.

2.1.1. Macroscale

Due to the spatial discretization, volume V and surface A transist into approximations
Ω and Γ. Further, x ∈ Ω denote coordinates. Following a Galerkin-based finite element
formulation, the ansatz for the displacements and virtual displacements read

u h(x, t) =
nnodes

∑
j=1

Nj(x)uj(t) = N(x)u(t) + N(x)u(t)
in e©
= Ne(ϕe(x))ue(t), (2)

δu h(x, t) =
nnodes

∑
j=1

Nj(x)δuj = N(x)δu
in e©
= Ne(ϕe(x))δue. (3)

uj ∈ R3 and δuj ∈ R3 denote the macroscopic nodal displacement and virtual nodal dis-
placement vector at node j. The shape functions are denoted by Nj(x), while nnodes corre-
sponds to the number of nodes on a macroscale level. In Equations (2) and (3), it is tacitly
assumed that the displacements and virtual displacements are partitioned into unknown
and prescribed quantities, i.e., u∈ Rnu are unknown macroscale nodal displacements and
u∈ Rnp are known (or prescribed) nodal displacements. Analogously, the arbitrary virtual
displacements are denoted by δu∈ Rnu . For the prescribed virtual displacements on the
macroscale δu = 0, δu∈ Rnp holds by definition. Thus, the number of degrees of freedom
is na = nu + np. Further, the transition to a formulation of the displacements on element
level in Equations (2) and (3) yields the matrix of shape functions Ne ∈ R3×ne

u within an ele-
ment, the element nodal displacements ue ∈ Rne

u , and corresponding virtual element nodal
displacements δue ∈ Rne

u . Here, ne
u is the number of element nodal degrees of freedom.

ξ = ϕe(x) = χe−1(x) are the local coordinates in the element domain with the coordinate
transformation x = χe(ξ). The assignment between global and element quantities can be
formulated as

ue(t) = Z eu(t) + Z e u(t), δue = Z eδu. (4)

Here, Z e ∈ Rne
u×nu and Z e ∈ Rne

u×np are formally introduced incidence matrices (Boolean
matrices) which are not programmed but used here for the explanation of the assembling
procedure of all element contributions. They assign the global unknown and prescribed
nodal displacements to element e. Regarding an explanation of an implementation of these
matrices, we refer to [73].
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Moreover, the resulting strains and virtual strains read

E h(x, t) = B(x)u(t) + B(x)u(t)
in e©
= Be(ϕe(x))ue(t) = Be(ϕe(x))(Z eu(t) + Z eu(t)), (5)

δE h(x, t) = B(x)δu
in e©
= Be(ϕe(x))δue = Be(ϕe(x))Z eδu. (6)

Again, a decomposition into known and unknown nodal displacements is employed.
Since the strain tensor is symmetric, E = ET , the strains can be written in the Voigt
notation, i.e., E h ∈ R6 and δE h ∈ R6. B∈ R6×nu and B∈ R6×np denote the global strain–
displacement matrices on the macroscale level for unknown and prescribed degrees of
freedom, respectively, whose mathematical representation is extremely difficult to specify.
Thus, the element strain–displacement matrix Be ∈ R6×ne

u is chosen. Inserting Equations (3)
and (6) into the principle of virtual displacements (1) and performing a decomposition of
the discretized domain into elements yields the non-linear equations on macroscale

g(t, T(t)) :=
ne

∑
e=1

Z eT

 ne
G

∑
j=1

wj Be(j)T Te(j)(t)det Je(j)

− p(t) = 0, (7)

g∈ Rnu . ne
G is the number of integration points in an element on the macroscale. Further,

wj denotes the weighting factors of the spatial integration technique, where here the Gauss-
integration is drawn on. Accordingly, ξ j symbolizes the local coordinates of the integration

points. Notation 〈·〉e(j) is used to abbreviate quantities of element e at the macroscale
integration point j, e.g., Be(j) := Be(ξ j) for the strain–displacement matrix at integration

point ξ j. Since the coordinates are transformed into a reference domain, Je(j) = ∂χe/∂ξ
∣∣
ξ=ξ j

is the Jacobian of the coordinate transformation. Moreover, p(t), p∈ Rnu represents the
equivalent nodal force vector comprising the volume and surface distributed loads:

p(t) :=
∫

Ω
N T(x)ρ(x)k dΩ +

∫
Γ

N T(x) t(x, t)dΓ. (8)

In Equation (7), T e(j) ∈ R6 are the stresses at a specific integration point j on the
macroscale written in the Voigt notation. Usually, these quantities are obtained from the
evaluation of particular constitutive models. In contrast, in FE2 computations, the stresses
are computed by a particular homogenization scheme of the microstructure, which is
explained in the following section. The macroscopical strains at each integration point read
with Equation (4)1

Ee(j)(t, u(t)) = Be(j)ue = Be(j)(Z eu(t) + Z e u(t)
)
. (9)

Unfortunately, the principle of virtual displacements does not allow the computa-
tion of reaction forces. However, since the macroscale reaction forces are of interest in
FE2 computations, we choose here the Lagrange multiplier method; see [74] and the litera-
ture cited therein. Thus, the geometric constraint equation

Cc(t, û(t)) = û(t)− u(t) = 0 (10)

is introduced, Cc ∈ Rnp . The prescribed displacements u(t) should be identical to the
degrees of freedom û(t), û∈ Rnp , representing the degrees of freedom that are initially as-
sumed to be unknown as well. To satisfy constraint Equation (10), the Lagrange multipliers
λ∈ Rnp are required, which can be interpreted as the negative nodal forces.
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The combining of Equations (7) and (10) provides the full system of equations for the
discretized weak form of the balance of linear momentum on the macroscale, ga ∈ Rna ,

ga(t, λ(t), T(t)) :=



ne

∑
e=1

Z eT

 ne
G

∑
j=1

wj Be(j)T Te(j)(t)det Je(j)

− p(t)

ne

∑
e=1

Z eT

 ne
G

∑
j=1

wj Be(j)T Te(j)(t)det Je(j)

− λ(t)


= 0. (11)

Remark 1. It is worth mentioning that the consideration of reaction forces with the Lagrange
multiplier method is performed to obtain a consistent variational formulation. The principle of
virtual displacements does not allow the computation of reaction forces since they provide no virtual
work (remember that δu = 0 holds). Thus, another variational principle is required, which is here
the Lagrange multiplier method. It is important to state that the Lagrange multipliers do not extend
the number of unknowns in the application here, since they can be computed in a post-processing step
after the computation of the nodal displacements; see Equation (11)2. Then, the Lagrange multipliers
can be interpreted as nodal reaction forces, while considering that, of course, the accuracy of the
results depends on the chosen termination criteria for the displacements. As a result, the application
of the Lagrange multiplier method bypasses the evaluation of nodal equilibrium to compute the
reaction forces at prescribed displacement degrees of freedom. The interested reader is referred to [74]
for a detailed description of the method, and further references.

2.1.2. Microscale

The arising equations from the spatial discretization need to be studied also for the
microstructure, which represents the discretized microscale geometry in FE2 computations
and is usually denoted as representative volume element (RVE). In contrast to common
finite element simulations, where a constitutive model is evaluated at each integration
point, here, the microstructure has to be evaluated.

The discretized weak form of the local equilibrium equation on the microscale can be
derived analogously to the macroscale and reads

ǧ e(j)
a (t, ua(t), ǔ e(j)

a (t)) =
ňe(j)

e

∑̌
e=1

Ž ěT
a

 ňě
G

∑̌
j=1

w̌ ǰ B̌
ě( ǰ)T Ťě( ǰ)

(t)det J̌ě( ǰ)

 = 0. (12)

Some remarks should be made regarding the above equation. First, ǔ e(j)
a ∈ Rňe(j)

a are
all displacements in the RVE at integration point j of macroscale element e. ňe(j)

a denotes
the number of displacement degrees of freedom on the microscale. It is assumed that all
displacements are initially unknown in the RVE. ňe(j)

e defines the number of elements on the
microscale, ňě

G symbolizes the number of microscale integration points per element, and w̌ ǰ

are the weights of the spatial integration. Matrix Ž ěT
a ∈ Rňě

u×ňe(j)
a denotes formally the

assembling procedure of all element contributions and comprises matrices Ž ě ∈ Rňě
u×ňe(j)

u

and Ž ě ∈ Rňě
u×ňe(j)

p for the unknown and prescribed displacement degrees of freedom in
the RVE, ňe(j)

u and ňe(j)
p , respectively, Ž ěT

a =
[
Ž ě Ž ě]. The strain–displacement matrix on

the microscale is defined by B̌ě( ǰ) ∈ R6×ňě
u . Similarly to the macroscale, ňe(j)

a = ňe(j)
u + ňe(j)

p
holds. Moreover, at the microscale level, there are no volume or surface distributed loads,
i.e., p̌ = 0.

In this work, we restrict ourselves to periodic displacement boundary conditions
on so-called conform spatial discretizations. We refer to [4] for a detailed description
of boundary conditions on the microscale and to [75] regarding periodic displacement
boundary conditions on non-conform discretizations. The underlying idea of periodic
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displacement boundary conditions is that the displacements of nodes, which are positioned
on different parts of the surface of the RVE, are coupled. This coupling can be treated as a
linear multiple point constraint problem. Thus, we introduce the primary and secondary

displacements, ǔ e(j)
M ∈ Rňe(j)

M and ǔ e(j)
S ∈ Rňe(j)

S . Here, ňe(j)
K = ňe(j)

M = ňe(j)
S holds for the

number of pair-wise coupled displacement degrees of freedom ňe(j)
K and ňe(j)

p = ňe(j)
S for

the prescribed degrees of freedom. Since the periodic displacements are applied on the
surface of the RVE, the internal (within the volume of the RVE) displacement degrees

of freedom are defined as ǔ e(j)
V ∈ Rňe(j)

V , where ňe(j)
u = ňe(j)

V + ňe(j)
M holds. Accordingly,

the decomposition of the nodal displacement degrees of freedom and the discretized local
equilibrium Equation (12) on the microscale

ǔ e(j)
a =


ǔ e(j)

V

ǔ e(j)
M

ǔ e(j)
S

, ǧ e(j)
a (t, ua, ǔ e(j)

a (t)) =


ǧ e(j)

V (t, ua, ǔ e(j)
V , ǔ e(j)

M )

ǧ e(j)
M (t, ua, ǔ e(j)

V , ǔ e(j)
M )

ǧ e(j)
S (t, ua, ǔ e(j)

V , ǔ e(j)
M )

, (13)

is obtained.
The connection between the macro- and the microscale is achieved with macroscale

displacements ua(t) and microscale displacements ǔ e(j)
a (t) by specifying constraint

Č e(j)
c (ǔ e(j)

a (t), ua(t)) = Ǎ e(j)
1 ǔ e(j)

a (t)− Ǎe(j)
2 E e(j)(ua(t)) = 0, (14)

with Č e(j)
c ∈ Rňe(j)

p , Ǎe(j)
1 ∈ Rňe(j)

K ×ňe(j)
a , and Ǎe(j)

2 ∈ Rňe(j)
K ×6. For the case of periodic displace-

ment boundary conditions, matrices Ǎe(j)
1 and Ǎe(j)

2 read

Ǎe(j)
1 =

[
0

(ňe(j)
K ×ňe(j)

u )

Ȟ e(j)
M

(ňe(j)
M ×ňe(j)

M )

Ȟ e(j)
S

(ňe(j)
S ×ňe(j)

S )

]
and Ǎe(j)

2 = P̌ e(j)T , (15)

where matrices Ȟ e(j)
M and Ȟ e(j)

S are link-topology matrices that only contain the numbers

0, +1, −1. P̌ e(j) ∈ R6×ňe(j)
K is a matrix that comprises the differences in the correspond-

ing nodal positions. Constraint (14) can be reformulated with M̌ e(j) = Ȟ e(j)−1
S Ȟ e(j)

M ,

M̌ e(j) ∈ Rňe(j)
S ×ňe(j)

M leading to

Č e(j)
c (ǔ e(j)

a (t), ua(t)) = M̌ e(j)ǔ e(j)
M + ǔ e(j)

S − Ȟ e(j)−1
S P̌ e(j)TE e(j)(t, u(t)). (16)

Constraint (16) is, again, enforced with the microscale Lagrange multipliers λ̌
e(j) ∈ Rňe(j)

K .

With decomposition (13), the microscale strain vector Ěě( ǰ) ∈ R6 of microscale element ě
and integration point ǰ in dependence of the macroscale strains (9) reads

Ěě( ǰ)
(t, u, ǔ e(j)) = B̌ě( ǰ)

{
Ž ěǔ e(j) + Ž ě

SȞ e(j)−1
S P̌ e(j)TE e(j)(t, u(t))

}
, (17)

where we abbreviate

ǔ e(j) =

{
ǔ e(j)

V

ǔ e(j)
M

}
Ž ě =

[
Ž ě

V Ž ě
M−Ž ě

SM̌ e(j)
]
. (18)

ǔ e(j) ∈ Rňe(j)
u denotes the assembled displacement vector, while Ž ě ∈ Rňě

u×ňe(j)
u , Ž ě

V ∈ Rňě
u×ňe(j)

V ,

Ž ě
M ∈ Rňě

u×ňe(j)
M , and Ž ě

S ∈ Rňě
u×ňe(j)

S represent assignment matrices.
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In contrast to the macroscale, on the microscale, constitutive models are applied to
describe the mechanical behavior of the materials. Since in this contribution, only elastic
materials are studied, the constitutive model has the general form of

Ťě( ǰ)
= ȟě( ǰ)

(Ěě( ǰ)
), (19)

i.e., the evaluation of algebraic equations yields the stresses Ťě( ǰ) ∈ R6 at the microscale
integration points, which are already contained in Equation (12). What remains is the
question of how to determine the required macroscale stress Te(j) from the microscale
evaluation. Here, a homogenization procedure is applied that fits into the general form of

Te(j) = h̃e(j)(λ̌ e(j)(t)) =
1

V̌ e(j)
Ǎ2

e(j)Tλ̌ e(j)(t). (20)

In the case of periodic displacement boundary conditions, the secondary displacements
ǔ e(j)

S can be expressed by constraint (16)

ǔ e(j)
S = Ȟ e(j)−1

S P̌ e(j)TE e(j)(t, u(t))− M̌ e(j)ǔ e(j)
M . (21)

Further, enforcing constraint (16) yields, on the RVE level,

ǧ e(j)
S (t, ua, ǔ e(j)

V , ǔ e(j)
M )− Ȟ e(j)T

S λ̌
e(j)

= 0. (22)

This allows computation of microscale Lagrange multipliers λ̌
e(j)

:

λ̌
e(j)

= Ȟ e(j)−T
S ǧ e(j)

S (t, ua, ǔ e(j)
V , ǔ e(j)

M ). (23)

As a result, the homogenized stresses (20) on macroscale element e and integration
point j read for periodic displacement boundary conditions:

h̃e(j)(t, ua, ǔ e(j)
V , ǔ e(j)

M ) =
1

V̌ e(j)
P̌ e(j)Ȟ e(j)−T

S ǧ e(j)
S (t, ua, ǔ e(j)

V , ǔ e(j)
M ). (24)

2.1.3. General System of Non-Linear Equations

The entire system of equations of FE2 computations with non-linear elastic material
at the microscale level is obtained by formally assembling all independent variables of
the RVEs:

ǔa =
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔa

ǔ e(j)
a , λ̌ =

ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
λ̌

λ̌
e(j)

, (25)

ǔa ∈ Rnene
Gňe(j)

a , λ̌∈ Rnene
Gňe(j)

K , as well as equations

ǧa(ǔa, λ̌) =
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔa

{
ǧ e(j)

a (ǔ e(j)
a )− Ǎ e(j)T

1 λ̌
e(j)
}

, (26)

Čc(ua, ǔa) =
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
λ̌

Č e(j)
c (ua, ǔ e(j)

a ). (27)

The entire system of non-linear equations is obtained by compiling macroscale
Equations (10) and (11) and microscale Equations (26) and (27). The number of equations
can be essentially reduced by assuming that constraint (10) is fulfilled after solving the
entire system of non-linear equations and by employing Equation (23) on the microscale



Math. Comput. Appl. 2023, 28, 91 10 of 37

for periodic displacement boundary conditions. Further, Ǎ e(j)
1 , as given in Equation (15)1,

can be applied. Then, the reduced system of non-linear equations,

F(t, y) =


g(t, u)

ǧV(t, u, ǔV, ǔM)

ǧM(t, u, ǔV, ǔM)− M̌ T ǧS(t, u, ǔV, ǔM)

 = 0, (28)

which is the result of the spatial discretization, has to be solved at each load-step (time-step)
with the vector of unknowns

y T = {u, ǔV, ǔM}T . (29)

In the equations mentioned above, ǔV and ǔM are the vectors of assembled internal
microscale nodal displacements ǔ e(j)

V and primary nodal displacements ǔ e(j)
M , respectively.

Remark 2. Further, an important aspect is the time discretization. Since only non-linear elastic
material is studied here, Equation (28) represents a purely algebraic system of equations. Neverthe-
less, time integration methods, such as the Backward–Euler method, can be applied when formally
extending Equation (28) with ṫ = 1 to obtain a system of differential-algebraic equations (DAE),
as it is common in finite element computations, where the inelastic material behavior is described by
evolution equations for some internal variables [76]. As a result, the application of time integration
methods to elastic problems leads to an incremental application of the prescribed loads, which is
therefore achieved in the numerical examples of this work. In the case of non-linear elastic material
behavior, the load is often applied step-wise, where the previous solution of the nodal displacements
is inserted into some Newton-like scheme as starting vector to be close to the solution. Otherwise,
problems in the convergence of the iterative scheme are observed. In this sense, the step-wise increase
in the load (displacement- or force-controlled) can be interpreted as time integration.

2.2. Multilevel–Newton Algorithm

What remains is the question of how the system of non-linear Equation (28) is solved
in multiscale simulations. Further, to sufficiently embed DNN surrogates, it is important to
make clear which parts of the overall computation scheme can be substituted with minimal
changes in a finite element program, as it is discussed later on.

There are different approaches to solve the system of non-linear Equation (28). First,
the entire system of equations could be solved with the Newton–Raphson method, but this
would only be possible for smaller problems due to the extremely large number of equa-
tions. An alternative—see [76]—would be to use the Newton–Schur complement, which,
on the one hand, requires some intervention in the coding and provision of the deriva-
tives [77]. In traditional approaches, on the other hand, one uses the MLNA considering
periodic boundary conditions for the microstructures. Therefore, in order to see what ad-
vantage neural networks have here, the Multilevel–Newton algorithm (MLNA) approach
is briefly explained.

Since the MLNA, which was originally introduced by [78,79], is frequently applied,
we refer especially to [76] regarding the differences between the MLNA and the well-
known Newton–Raphson scheme. Thus, only the required equations are recapped here to
show the general algorithmic structure of FE2 computations and the incorporation of DNN
surrogate models.

If we interpret the incremental load-control as time integration, the non-linear sys-
tem (28) has to be evaluated at time tn+1, tn+1 = tn + ∆tn. Thus, in each time-step, the
unknown microscale displacements ǔ = {ǔV, ǔM}T , see Equation (18)1, and the unknown
macroscale displacements u are sought. For further treatment of the equations, we also
introduce decomposition

Ǧ =̂

{
ǧV

ǧM − M̌ T ǧS

}
. (30)



Math. Comput. Appl. 2023, 28, 91 11 of 37

Thus, the system of non-linear equations

G(u, ǔ) = 0,

Ǧ(u, ǔ) = 0
(31)

has to be solved.

2.2.1. Multilevel–Newton Algorithm for FE2 Computations

In the traditional manner, the MLNA is applied to solve Equation (31). The scheme
draws on the implicit function theorem, i.e., it is assumed that function ǔ = ˆ̌u(u) exists. In
other words,

G(u, ˆ̌u(u)) = 0 (32)

has to be solved. The Newton–Raphson method applied to the non-linear system (32)
requires in each iteration step the computation of linear system[

∂G
∂u

+
∂G
∂ǔ

d ˆ̌u
du

]
∆u = −G(u, ˆ̌u(u)). (33)

Here, the iteration index is omitted for brevity. Quantities d ˆ̌u/du and ǔ = ˆ̌u(u) have to
be provided by two additional computational steps, since ˆ̌u(u) is assumed to exist, but its
representation is unknown. First,

Ǧ(u, ǔ) = 0  ǔ (34)

is evaluated for a given u, and second, the chain-rule is applied to

Ǧ(u, ˆ̌u(u)) = 0 → ∂Ǧ
∂u

+
∂Ǧ
∂ǔ

d ˆ̌u
du

= 0  
d ˆ̌u
du

. (35)

The entire procedure is shown in Algorithm 1.
In greater detail and with the problem at hand, we proceed as follows. On a microscale,

the system of non-linear equations

Ǧ(tn+1, u, ǔV, ǔM) =
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔ Ǧ e(j)(tn+1, u, ǔ e(j)

V , ǔ e(j)
M ) = 0 (36)

has to be be solved for the case of periodic displacement boundary conditions, with

Ǧ e(j)(tn+1, u, ǔ e(j)
V , ǔ e(j)

M ) =
ňe(j)

e

∑̌
e=1

Ž ěT

 ňě
G

∑̌
j=1

w̌ ǰ B̌
ě( ǰ)T ȟě( ǰ)

(Ěě( ǰ)
)det J̌ě( ǰ)

. (37)

Here, Ž ě still has representation (18)2, which then leads to the second and third
equations of Equation (28). For purely elastic problems, the solution of Equation (36) leads
to a linear system on global microscale level within the Newton-iteration step to solve
Equation (34), [

∂Ǧ
∂ǔ

]
∆ǔ = −Ǧ(u, ǔ), (38)

which reads, in detail, as ∂ǦV
∂ǔV

∂ǦV
∂ǔM

∂ǦM
∂ǔV

− M̌ T
[

∂ǦS
∂ǔV

]
∂ǦM
∂ǔM

− M̌ T
[

∂ǦS
∂ǔM

]

∣∣∣∣∣∣∣
y

{
∆ǔV
∆ǔM

}
= −

{
ǦV(y)

ǦM(y)− M̌ TǦS(y)

}
(39)
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with the vector of unknowns y according to Equation (29)1. We apply another relationship
between microscale displacements ǔ e(j) and the assembled microscale displacements ǔ,
ǔ e(j) = Z e(j)

ǔ ǔ. The system of linear Equation (38) can be re-written employing the chain
rule and applying the decomposition into the macroscale integration point contributions,
i.e., contributions of each RVE,

ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔ

{[
∂Ǧ e(j)

∂ǔ e(j)

]
∆ǔ e(j) + Ǧ e(j)(u, ǔ e(j))

}
= 0. (40)

Algorithm 1: Multilevel-Newton algorithm for FE2 computations with periodic
displacement boundary conditions on a microscale.

Given: starting vector estimation u(0), ǔ(0) = {ǔ(0)
V , ǔ(0)

M }
Repeat α = 0, . . .

local (macroscale) level; given: u (α)

local (macroscale) computations

Given: local starting vector estimation u(α), ǔ(α,0) = {ǔ(α,0)
V , ǔ(α,0)

M }
Repeat β = 0, . . .

global (microscale) level; given: y = {u(α), ǔ(α,β)}
solve linear system of equations ∂Ǧ

∂ǔ

∣∣∣∣∣
y

∆ǔ = −Ǧ(y)  ∆ǔ

update of global (microscale) variables
ǔ(α,β+1) ← ǔ(α,β) + ∆ǔ  ǔ(α,β+1)

Until local (microscale) convergence criterion is fulfilled
ǔ(α+1) ← ǔ(α,β+1)

 ǔ(α+1) = {ǔ(α+1)
V , ǔ(α+1)

M }
macroscale consistent linearization y = {u(α), ǔ(α+1)} ∂Ǧ

∂ǔ

∣∣∣∣∣
y

 d ˆ̌u
du

∣∣∣∣
y
= − ∂Ǧ

∂u

∣∣∣∣∣
y

 
d ˆ̌u
du

∣∣∣∣
y

global (macroscale) level
solve linear system of equations[

∂G
∂u

∣∣∣∣
y
+

∂G
∂ǔ

∣∣∣∣
y

d ˆ̌u
du

∣∣∣∣
y

]
∆u = −G(y)  ∆u

update of global variables
u (α+1) ← u (α) + ∆u  u (α+1)

Until global (macroscale) convergence criterion is fulfilled

For abbreviation purposes, we introduce the global microscale tangential stiffness ma-
trix

Ǩ e(j) :=
∂Ǧ e(j)

∂ǔ e(j)
=

∂Ǧ e(j)

∂Ěě( ǰ)

d ˆ̌Eě( ǰ)

dǔ e(j)
, (41)

Ǩ e(j) ∈ Rňe(j)
u ×ňe(j)

u . Using Equations (17) and (37),

Ǩ e(j) =
ňe(j)

e

∑̌
e=1

Ž ěT

[ ňě
G

∑̌
j=1

w̌ ǰ B̌
ě( ǰ)T

 ∂ȟě( ǰ)

∂Ěě( ǰ)


︸ ︷︷ ︸

Čě( ǰ)

B̌ě( ǰ) det J̌ě( ǰ)
]

︸ ︷︷ ︸
ǩě

Ž ě (42)
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is obtained, where Čě( ǰ) ∈ R6×6 denotes the consistent tangent matrix at microscale integra-
tion point ǰ of element ě, and ǩě ∈ Rňě

ǔ×ňě
ǔ defines the element stiffness matrix of an element

in an RVE. As a result, on a microscale, i.e., each RVE, the system of linear equations

Ǩ e(j) ∆ǔ e(j) = −Ǧ e(j)(u, ǔ e(j)) (43)

has to be sequentially solved on a global microscale level to reach microscale equilibrium.
In other words, the solution of system (43) is repeated until a local convergence criterion is
fulfilled. Then, the microscale displacements ǔ are obtained.

As the next step, the macroscale consistent linearization (35) implies

∂Ǧ
∂ǔ

d ˆ̌u
du

= −∂Ǧ
∂u

. (44)

These matrices read under consideration of Equations (9), (17) and (42):

∂Ǧ
∂ǔ

d ˆ̌u
du

=
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔ

ňe(j)
e

∑̌
e=1

Ž ěT ǩě Ž ě

 dǔ e(j)

dEe(j)
dÊe(j)

du︸ ︷︷ ︸
Be(j)Z e

, (45)

∂Ǧ
∂u

=
ne

∑
e=1

ne
G

∑
j=1

Z e(j)T
ǔ

ňe(j)
e

∑̌
e=1

Ž ěT ǩě Ž ě
S

 Ȟ e(j)−1
S P̌ e(j)T dÊe(j)

du
, (46)

where ∂Ěě( ǰ)/∂Ee(j) = B̌ě( ǰ)Ž ě
SȞ e(j)−1

S P̌ e(j)T is used in Equation (46). Then, with the two ma-
trices

Ǩ e(j) =
ňe(j)

e

∑̌
e=1

Ž ěT ǩě Ž ě and Ǩ e(j) =
ňe(j)

e

∑̌
e=1

Ž ěT ǩě Ž ě
S , (47)

Ǩ e(j) ∈ Rňe(j)
u ×ňe(j)

S , on a global RVE level, the consistent linearization step (44) for each
RVE reads

Ǩ e(j) dǔ e(j)

dEe(j)
= −Ǩ e(j) Ȟ e(j)−1

S P̌ e(j)T (48)

in order to compute dǔ e(j)/dEe(j) and, finally, d ˆ̌u/du. Therewith, the local macroscale
computations consisting of the two steps, the global microscale level and the macroscale
consistent linearization, are finalized.

As a last step in the MLNA, the system of linear equations[
∂G
∂u

+
∂G
∂ǔ

d ˆ̌u
du

]∣∣∣∣
y
∆u = −G(y), with y =

{
u

ǔ

}
, (49)

see Equation (33), has to be solved at a global macroscale level to compute the increment
∆u of the macroscale displacements. Here, G is the discretized weak formulation of the
equilibrium equation at the macroscale; see Equation (7),

G(tn+1, u, ǔ) =
ne

∑
e=1

Z eT

 ne
G

∑
j=1

wj Be(j)T h̃e(j)(tn+1, u, ǔ e(j))︸ ︷︷ ︸
Te(j)

det Je(j)

− p(tn+1) = 0, (50)
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in dependence of the homogenized stress state Te(j) from Equation (20). Analogously to
Equation (41), we define the global tangential stiffness matrix

K :=
∂G
∂u

+
∂G
∂ǔ

d ˆ̌u
du

, (51)

=
ne

∑
e=1

Z eT

 ne
G

∑
j=1

wj Be(j)T 1

V̌ e(j)
P̌ e(j)Ȟ e(j)−T

S

[
∂Ǧ e(j)

S
∂u

+
∂Ǧ e(j)

S
∂ǔ

d ˆ̌u
du

]
det Je(j)

. (52)

K∈ Rnu×nu , where Equation (20) is already employed in Equation (52). Again, the
derivatives can be re-formulated applying the chain rule and the microscale element
stiffness matrix ǩě from Equation (42):

∂Ǧ e(j)
S

∂u
=

∂Ǧ e(j)
S

∂Ěě( ǰ)

∂ ˆ̌Eě( ǰ)

∂Ee(j)
dÊe(j)

du
=

ňe(j)
e

∑̌
e=1

Ž ěT
S ǩě Ž ě

S


︸ ︷︷ ︸

Ǩ e(j)

Ȟ e(j)−1
S P̌ e(j)T Be(j)Z e, (53)

∂Ǧ e(j)
S

∂ǔ
d ˆ̌u
du

=
∂Ǧ e(j)

S

∂Ěě( ǰ)

∂ ˆ̌Eě( ǰ)

∂ǔ e(j)
d ˆ̌u e(j)

dEe(j)
dÊe(j)

du
=

ňe(j)
e

∑̌
e=1

Ž ěT
S ǩě Ž ě

 d ˆ̌u e(j)

dEe(j)
Be(j)Z e, (54)

with Ǩ e(j) ∈ Rňe(j)
S ×ňe(j)

S . Inserting Equations (53) and (54) into Equation (52), the global
tangential stiffness matrix reads

K =
ne

∑
e=1

Z eT

 ne
G

∑
j=1

wj Be(j)T Ce(j) Be(j) det Je(j)

Z e. (55)

Here, Ce(j) ∈ R6×6 denotes the consistent tangent matrix at integration point j of the
macroscale having the representation

Ce(j) =
1

V̌ e(j)
P̌ e(j)Ȟ e(j)−T

S

[
Ǩ e(j) − Ǩ e(j)T Ǩ e(j)−1 Ǩ e(j)

]
Ȟ e(j)−1

S P̌ e(j)T (56)

with the matrices in Equations (47) and (53) and the application of Equation (48).

2.2.2. Newton Algorithm for FE2 Computations with DNN Surrogate Models

Obviously, the computations of the non-linear system (34) and the linear system
with several right-hand sides (35) within an iterative scheme are very time consuming.
Thus, an alternative approach is of particular interest. The basic idea is that the recurrent
stress and tangent calculation is learned by a deep neural network and, thus, an efficient
evaluation can be achieved. Since we embed DNN surrogate models to accelerate the
FE2 computation, it is important to make clear which quantities are applied as input and as
output and what parts of the aforementioned MLNA are replaced by the surrogate.

As mentioned in the introduction, many different architectures of neural networks
exist and are regularly applied in the field of computational mechanics. In this work,
we draw on common feedforward neural networks to replace the entire local macroscale
computations in Algorithm 1. The particular details for the neural networks are given later
on; hence, we focus here on the algorithmic structure. During the solution of the boundary
value problem, macroscale strains Ee(j)(tn+1, u(tn+1)) at integration point j of macroscale
element e are provided in dependence of the macroscale displacements u by Equation (9).
As explained beforehand, in FE2 computations, strains Ee(j) serve as an input to compute
the displacement boundary conditions (16) under the assumption of periodic displacement
degrees of freedom. Thus, strains Ee(j) are input quantities for the DNN surrogate models
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to predict the homogenized stresses Te(j) and the consistent tangent matrix Ce(j) with the
two surrogate models T and C,

Te(j) ≈ T (Ee(j)(u); θT ) and Ce(j) ≈ C(Ee(j)(u); θC), (57)

where θT and θC are the parameters concerned of the surrogate models. Here, the notation
of the surrogate models T and C indicates that the models are evaluated for the strains
Ee(j) while parameters θT and θC are assumed to be given after sufficient training of the
neural network. At first, we introduce two different surrogate models for the stress and
consistent tangent prediction. Later on, different realizations of the surrogate models are
discussed as well.

The predicted stresses Te(j) are employed to evaluate the local equilibrium Equation (50),
here, of course, without being dependent on ǔ,

G(u) := g(tn+1, u) =
ne

∑
e=1

Z eT

 ne
G

∑
j=1

wj Be(j)T T (Ee(j)(u); θT )det Je(j)

− p(tn+1) = 0. (58)

Again, we omit the iteration indices and the load-step index n + 1 for brevity. The predicted
consistent tangent matrices Ce(j) are assembled into the global stiffness matrix K according
to Equation (55),

K =
ne

∑
e=1

Z eT

 ne
G

∑
j=1

wj Be(j)T C(Ee(j)(u); θC)Be(j) det Je(j)

Z e. (59)

As a result, when following the DNN-FE2 approach for multiscale FE2 computations,
only the solution of the linear system of equations

K ∆u = −G(u) (60)

is necessary on a global macroscale level in each iteration. The entire Newton algorithm
for FE2 computations with DNN surrogate models and non-linear elastic material on a
microscale is provided in Algorithm 2.

Algorithm 2: Newton algorithm for FE2 computations following the DNN-
FE2 approach.

Given: starting vector estimation u(0); surrogate parameters θT and θC
Repeat α = 0, . . .

local (macroscale) level; given: u (α)

evaluate DNN surrogates for macroscale integration point j of element e
Te(j) ≈ T (Ee(j)(u (α)); θT )

Ce(j) ≈ C(Ee(j)(u (α)); θC )

global (macroscale) level
solve linear system of equations

K (α)∆u = −G(u(α))  ∆u
update of global variables

u (α+1) ← u (α) + ∆u  u (α+1)

Until global (macroscale) convergence criterion is fulfilled

It should be emphasized that the explained algorithm for DNN-FE2 simulations in
Algorithm 2 only holds for elastic problems. The mapping between macroscale strains and
homogenized stress and consistent tangent changes essentially when applying viscous or
path-dependent materials, such as plasticity or viscoplasticity, which is not discussed here.
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3. Deep Neural Networks

In this section, a brief introduction is provided to deep neural networks and state-
of-the-art frameworks for the implementation of these learning methodologies. First,
a fully connected deep neural network—also known as a multilayer perceptron (MLP)—is
considered. An MLP consists of a consecutive repetition of so-called layers. Each layer
contains a set of nodes, so-called neurons, which are densely connected to the nodes of the
preceding and succeeding layers. A deep neural network (DNN) is a neural network with
multiple layers between the input and output layers which are the so-called hidden layers.
Data sample x in space χ ⊂ Rn and the corresponding target output y in space ψ ⊂ Rm

are considered. Then, the objective of a deep neural network is to learn the mapping,
F : χ→ ψ, from the data by minimizing a scalar-valued loss function L(F (x; θ), y) for all
the samples in the training data set, where θ∈ Rnθ represents the trainable parameters of
the network. To this end, the data are processed through each layer i as

ζ(i) = ϕ(i)(W(i)ζ(i−1) + b(i)), i = 1, . . . , nlayer, (61)

where ζ(i−1) ∈ Rp(i) and ζ(i) ∈ Rq(i) are the input and output of the ith layer with the
number of neurons p(i) in the previous layer and q(i) neurons in the current layer. Further,

ζ(0) = x holds. W(i) ∈ Rq(i)×p(i) represents a weighting matrix and b(i) ∈ Rq(i) is the bias
vector. ϕ(i) : Rq(i) → Rq(i) symbolizes the element-wise applied activation function in layer
i. Parameters θ of the network are determined by applying a gradient-descent optimization
technique for minimizing the loss function on the training data set. The updates of the
parameters are obtained as ∆θ = η ∂L/∂θ where η denotes the learning rate. The gradient
of the loss function with respect to the trainable parameters can be obtained using automatic
differentiation (AD) [80]. All the neural networks discussed in this study were developed
applying machine learning software frameworks developed by Google Research called
TensorFlow [81] and JAX [82].

Automatic differentiation (AD), also known as algorithmic differentiation or “auto-diff”
(automatic differentiation), is a family of methods for evaluating the derivatives of numeric
functions expressed as computer programs efficiently and accurately through the accumula-
tion of values during code execution. AD has an extensive application in machine learning
and also well-established use cases in computational fluid dynamics [83], atmospheric
sciences [84], and engineering design optimization [85]. In the field of computational solid
mechanics, see [86] and the literature cited therein. The idea behind AD is to break down
the function into its elementary operations and compute the derivative of each operation
using symbolic rules of differentiation. This means that instead of relying on numerical
approximations or finite differences to compute the derivative, AD can provide exact
derivatives with machine precision. To do this, AD keeps track of the derivative values
at each stage of the computation applying a technique called forward or reverse mode
differentiation. This allows AD computing the derivative of the overall composition of
the function by combining the derivatives of the constituent operations through the chain
rule. The benefit of AD is that it can be applied to a wide range of computer programs,
allowing for the efficient and accurate computation of derivatives. This makes it a powerful
tool for scientific computing, optimization, and machine learning, where derivatives are
needed for tasks such as gradient descent, optimization, and training of neural networks.
AD techniques include forward and reverse accumulation modes. Forward-mode AD is
efficient for functions f : R → Rm, while for cases f : Rn → Rm where n � m, AD in its
reverse accumulation mode is preferred [80]. For state-of-the-art deep learning models, n
can be as large as millions or billions. In this research work, we utilized reverse-mode AD
for the training of the neural networks and also for obtaining the Jacobian of the outputs
with respect to the inputs. This should be demonstrated for both applied frameworks,
TensorFlow and JAX. If one considers a batch of input vectors x and the corresponding
outputs y, then the Jacobian matrix J can be easily computed in batch mode using AD via
TensorFlow and JAX according to Algorithm 3.
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Algorithm 3: Computing the Jacobian matrix J of function f via reverse mode
AD in TensorFlow and JAX frameworks for a batch of samples x.

TensorFlow:
def Jacobian( f, x):

with tf.GradientTape() as tape:
tape.watch(x)
y = f(x)

return tape.batch_jacobian(y, x)
J = Jacobian( f, x)

JAX:
Jacobian = jax.vmap(jax.jacrev( f))
J = Jacobian(x)

3.1. Deep Neural Networks as Surrogate Models for Local RVE Computations

In the MLNA described in Section 2.2.1, the computations on local macroscale level are
very expensive to perform. Thus, the objective is to develop a data-driven surrogate model
for substituting the local macroscale computations with deep neural networks. To this
end, the macroscale strains Ee(j)(tn+1) at each integration point ξ j and time (load-step)

tn+1 are taken as the input and macroscale stresses Te(j)(tn+1) and the consistent tangent
matrix Ce(j)(tn+1) are provided as the output of the surrogate model. In the following,
the FE2 analysis is performed in a quasi-static setting with the restriction to small strains.
For the sake of simplicity of the notation and for a two-dimensional set-up, we refer to
the input of the surrogate model as E = {E11, E22, E12}T, E∈ R3, and to the outputs as
T = {T11, T22, T12}T, T∈ R3, and C = {C11, C12, C13, C21, C22, C23, C31, C32, C33}T, C ∈ R9.
Here, it should be mentioned that we do not employ the symmetry of the consistent tangent
matrix due to the application of AD, where we compute the Jacobian matrix of the neural
network containing the partial derivatives of each element of T with respect to each element
of the input E. Thus, we apply a soft symmetry constraint to the Jacobian matrix of the
neural network by the data.

The inputs of the surrogate model are computed using an MPI (message passing
interface) parallelized FORTRAN code. We employ FORPy [87], a library for FORTRAN-
Python interoperability, to perform the data communications between FORTRAN and
Python codes in an efficient and parallel manner. In particular, we load the required Python
libraries and the DNN models only once and conduct the RVE computations in parallel,
which leads to a considerable speed-up. The obtained outputs from the RVE surrogate
model are passed to the FORTRAN code for further computations.

3.2. Training and Validation Datasets

Since the FE2 framework in Section 2 is derived for the case of small strains, we
consider a domain of application for our surrogate model with the upper and lower bounds
of Ei,min = −0.04 and Ei,max = 0.04, respectively, where Ei represents the ith component of
the strain input E. A dataset is generated by imposing different strain inputs to an RVE
and computing the corresponding stress components and consistent tangent matrices. We
utilized Latin hypercube sampling (LHS) [88] to efficiently sample from the input space.
To generate the data, we consider two global symmetries in the input space:

T12(E11, E22,−E12) = −T12(E11, E22, E12), (62)

T11(−E11,−E22, E12) = −T11(E11, E22, E12),

T22(−E11,−E22, E12) = −T22(E11, E22, E12).
(63)

It is important to mention that the assumed symmetries can be employed as long as
the materials in the RVE show no tension–compression asymmetry, anisotropy, or rate- or
path-dependent behavior, i.e., the reduction in the input space is not applicable for more
complex behavior such as plasticity or anisotropic behavior. Thus, the data are generated
using the numerical solver for one quarter of the input space according to the region
marked by blue in Figure 1.
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Figure 1. Domain of application for the surrogate model. The two global symmetries in the input
space, Equations (62) and (63), are marked using pink and green colors, respectively. Blue dots show
a subset of the sampled data points using LHS.

The dataset is augmented by transforming the generated data through the aforemen-
tioned global symmetries (62) and (63). This leads to a reduction in the computation time
required for the preparation of the training data. After generating the dataset, it is de-
composed into 80% for training and 20% for validation. Later on, in Section 4.2, the effect
of the size of the training dataset on the accuracy of the final solution obtained from the
DNN-based FE2 simulation is investigated. It should be noted that the DNN models are
tested by conducting DNN-FE2 simulations and comparing the obtained solutions with
those of the reference FE2 simulations.

3.3. Architecture and Training Process

As it was mentioned in Sections 2.2 and 3.1, the surrogate model for the local RVE
takes E∈ R3 as the input and predicts T∈ R3 and C∈ R9 as the outputs. The obtained
stress components and the consistent tangent matrix are assembled at the global finite
element level for computation of the next global iteration in the Newton–Raphson method.
In this work, two model architectures for our DNN-based surrogate models are considered,
both are developed based on MLPs. In the first architecture, two separate neural networks
T and C are implemented that map E to T and C,

T = T (E; θT ), C = C(E; θC), (64)

where θT and θC represent the trainable parameters of deep neural network, T and C,
respectively. The notation in use indicates that the deep neural networks are evaluated for
strain inputs E with the given parameters after training the neural network. Throughout the
article, this architecture is denoted as NN–2. However, this architecture does not consider
that the consistent tangent matrix is the functional matrix of the stress components with
respect to the strains,

C =
[
Cij
]

with Cij =
∂Ti
∂Ej

, i, j = 1, 2, 3, (65)
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where Ti and Ej are the corresponding entries in T and E, respectively. Thus, this is taken
into account in the second architecture by computing C as the output of the Jacobian
function T ′ as

T = T (E; θT ), C =
∂T
∂E

:= T ′(E; θT ), (66)

where T ′ is obtained by applying reverse mode AD on the deep neural network surrogate
T , which is parameterized with trainable parameters θT . This architecture is denoted as
NN–AD. Moreover, this approach is known as the so-called Sobolev training [61] in which
both the target and its derivative with respect to the input are considered for supervised
learning. Particular explanations regarding the application of Sobolev training in multiscale
simulations are provided in [63], while the method is also employed in [60]. By optimizing
the parameters of neural networks to approximate not only the function’s outputs but also
the function’s derivatives, the model can encode additional information about the target
function within its parameters. Therefore, the quality of the predictions, the data efficiency,
and generalization capabilities of the learned neural network can be improved.

In the following, we provide a detailed discussion on the data pre-processing, model
training, model selection, and hyperparameter tuning.

3.3.1. Data Pre-Processing

We perform a standardization step on both input and outputs of the model to obtain
efficient training of the networks using the statistics of the training dataset. A training
dataset Dtrain = [E, T, C ]train is considered with its mean and standard deviation over the
samples as vectors µ and σ, respectively. For training of the NN–2 model, the input and
the outputs are standardized independently with their means and standard deviations,

Ṽi =
Vi − µi

σi
, (67)

where Vi represents the ith component of E or T with the mean and standard deviation
µi and σi, respectively. In contrast, for the NN–AD model, the consistent tangent matrix
C should be scaled consistently with the scaling of E and T so that their relationship is
preserved. Therefore, scaling (67) is performed for the NN–AD model for the strains and
stresses, while the components of C are scaled as

C̃ij =
∂T̃i

∂Ẽj
=

∂T̃i
∂Ti

∂Ti
∂Ej

∂Ej

∂Ẽj
=

σj

σi
Cij, i, j = 1, 2, 3. (68)

3.3.2. Training

In the following, a detailed discussion of the training process of all DNNs implemented
in this research work is provided. We utilize an extended version of the stochastic gradient
descent algorithm, known as Adam [89], for optimizing the parameters of the network
during the training process. The weights and biases of the DNN are initialized using the
Glorot uniform algorithm [90] and zero initialization, respectively. All the neural networks
are trained for 4000 epochs with an exponential decay of learning rate of

η = η initial γ(current step/decay step), (69)

where η represents the learning rate. η initial = 10−3 is the initial learning rate and γ = 0.1
is the decay rate. Here, a decay step of 1000 is employed. The decay of the learning rate
is applied according to Equation (69) every 1000 epochs to obtain a staircase behavior.
For different sizes of the training dataset, the batch size is set such that 100 batches are
obtained in order to have the same number of training updates for different sizes of the
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training dataset. The mean squared error (MSE) is utilized as the loss function. For the
NN–2 model, the loss for a sample can be obtained as

LT (T (E; θT ), T
ref
) =

1
3

3

∑
i=1

(T̃ ref
i − T̃ pred

i (E; θT ))
2, (70)

LC(C(E; θC), C
ref
) =

1
9

9

∑
i=1

(C̃ ref
ij − C̃ pred

ij (E; θC))
2, (71)

where LT and LC indicate the loss for the mapping T and C, respectively. Here, T̃ ref
i denotes

the reference stress value and T̃ pred
i is the prediction of the neural network. Accordingly, C̃ ref

i

is the reference value in the consistent tangent and C̃ pred
i is the corresponding prediction.

The loss for a data sample for the NN–AD architecture is computed as

L(T (E; θT ), T
ref, C ref

) = α LT (T (E; θT ), T
ref
) + β LT ′ (T ′(E; θT ), C

ref
) (72)

= α
1
3

3

∑
i=1

(T̃ ref
i − T̃ pred

i (E; θT ))
2 + β

1
9

9

∑
i=1

(C̃ ref
i − C̃ pred

i (E; θT ))
2, (73)

where α and β are the weighting coefficients for the two components of the loss. In all
the cases, the loss for a batch of data is calculated by taking the average of the per-sample
losses in the batch.

3.3.3. Model Selection

During the training process of each model, we track the validation loss and save
the parameters of the model which lead to the lowest validation loss as the best model
parameters. This helps to avoid overfitting of our deep neural networks. As mentioned
earlier, the data are decomposed randomly into 80% for training and 20% for validation.

3.3.4. Hyperparameter Tuning

Hyperparameters in machine learning are the parameters that are defined by the user.
Their values are set before starting the learning process of the model, such as number of
neurons and hidden layers. The values of the hyperparameters remain unchanged during
the training process and the following prediction. In machine learning applications, it is
important to set the hyperparameters of a model such that the best performance is obtained
regarding both prediction and generalization. Here, we perform hyperparameter tuning
using a simple grid search algorithm to optimize the model performance on the validation
dataset. For this experiment, a dataset with the size of ND = 105 is selected. We investigate
three hyperparameters, i.e., the number of hidden layers Nh, the number of neurons per
each hidden layer Nn, and the activation function ϕ, and carry out the hyperparameter
tuning for the NN–2 architecture. Further, the same hyperparameters are employed for
the NN–AD architecture for the sake of comparability. Moreover, for the NN–AD model,
the weighting coefficients of the two components of the loss, α and β, are studied as well.

Results of the hyperparameter tuning for the number of hidden layers Nh, the num-
ber of neurons per each hidden layer Nn, and the activation function ϕ are reported in
Appendix A. We observe that a model with eight hidden layers, 128 neurons per each hid-
den layer, and a swish activation function leads to Lval

T = 3.52× 10−8 and Lval
C = 2.84× 10−7.

Moreover, our results show that increasing the model complexity to more than the afore-
mentioned values would not lead to a significant gain in the model accuracy. Thus, we
select these model hyperparameters for further analysis.

Other hyperparameters for the NN–AD model are the weighting coefficients α and
β of the components of the loss, i.e., LT and LT ′ . Here, the effect of the weighting on the
obtained validation losses is investigated. The results are reported in Table 1.
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Table 1. Effect of the weighting coefficients α and β for the components of the loss (72) on the
performance of the NN–AD model.

(α, β) Lval
T Lval

T ′

(1, 0.01) 4.84× 10−8 1.35× 10−6

(1, 1) 2.20× 10−8 8.85× 10−8

(1, 100) 3.55× 10−8 2.97× 10−8

We choose α = 1 for all the cases and change β from 0.01 to 100. It can be observed
that having a small β may lead to an imbalanced training where a difference of almost two
orders of magnitude between validation losses LT and LT ′ exists. However, a β of one or
larger results in a more balanced training leading to validation losses with nearly the same
scale. According to the results of this study, we select a model with α = 1 and β = 100 for
further analysis.

4. Numerical Experiments

In this section, the DNN-FE2 approach for the simulation of two canonical test cases
in computational solid mechanics is investigated, i.e., an L-profile and Cook’s membrane,
and compare the results with those of FE2 reference simulation. The numerical experiments
are performed using both architectures, NN-2 as well as NN-AD, to provide a detailed
discussion regarding the accuracy and efficiency of the simulations. The results are re-
ported for the accuracy of the simulations, required time for model development (e.g.,
computational time needed for training), time of numerical simulation, number of load
steps, and the total number of global iterations required for reaching the convergence of
the FE2 simulation. To this end, the absolute percentage error

ε =
|V ref −V pred |
〈|V ref|〉

× 100 (74)

is utilized, where V indicates any component of stress or strain tensors T and E, respectively.
To avoid the division by zero, the absolute mean of the reference solution on the global grid
is employed as the denominator, where 〈·〉 shows the ensemble average.

All DNN models are trained on an NVIDIA RTX A2000 Laptop GPU with CUDA 12.1.
The DNN-FE2 simulations are performed on an 11th Gen Intel(R) Core(TM) i7-11850H @
2.50GHz CPU with 16 threads. In contrast, the FE2 reference simulations are conducted on a
second-Gen Intel(R) Xeon(R) Silver 4216 @ 2.10GHz CPU with 16 processes and one thread
per process. The speed-up gain is calculated by dividing the total time of computation
required by the FE2 reference simulation by that of the DNN-FE2 simulation.

4.1. Problem Setup

For the numerical experiments, we restrict ourselves to two-dimensional test cases,
where a plane strain case is always assumed. The representative volume element (RVE)
under consideration is chosen as a commonly applied geometry in the mechanical analysis
of composite materials; see Figure 2.
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1

1

Figure 2. Geometry of the RVE (dimensions in mm) used as microstructure in the numerical experi-
ments with fibers (grey) and matrix material (blue).

Here, the fiber volume fraction of the applied RVE is approximately 55%. The fibers
are assumed to behave linearly, in an isotropic elastic manner with bulk modulus Kf and
shear modulus Gf; see Table 2.

Table 2. Material parameters for elastic fiber and non-linear elastic matrix material in the RVE.

Kf Gf Km α1 α2
N mm −2 N mm −2 N mm −2 N mm −2 -

4.35× 104 2.99× 104 4.78× 103 5.0× 101 6.0× 10−2

In contrast, the matrix material is modeled with a non-linear elastic material behavior,
which is extracted from an originally viscoplastic constitutive model where the shear
modulus is deformation-depending; see [91]. The particular stress–strain relation reads

T = Km(tr E)I+ Gm(ED)ED with Gm(ED) =
α1

α2 + ||ED||2
. (75)

The material parameters for the non-linear elastic material are the bulk modulus Km
and the parameters α1 and α2; see Table 2. The spatial discretization of the RVE is achieved
with ňe(j)

e = 3456 eight-noded quadrilateral elements and ňe(j)
nodes = 10, 561 nodes.

The application of DNN surrogate models in multiscale simulations is studied for two
macroscale test cases—L-profile and Cook’s membrane; see Figure 3.

(A) (B)
Figure 3. Spatial discretization and boundary conditions for macroscale test cases. (A) L-profile;
(B) Cook’s membrane.
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The spatial discretization is achieved with eight-noded quadrilateral elements. As a
result, ne

G = 9 integration points are present in each macroscale element, which means
that nene

G calls of the RVE in Figure 2 are necessary in each global Newton iteration of
a FE2 computation. The L-profile is spatially discretized with ne = 200 elements and
nnodes = 709 nodes. For the Cook’s membrane, ne = 600 elements and nnodes = 1901 nodes
are used. The L-profile has a prescribed displacement boundary condition on the top right
edge with ū2(t) = −3 mm s−1 t. In contrast, the Cook’s membrane is fixed on the left edge
and has an applied displacement boundary condition ū2(t) = 2 mm s−1 t on the right edge.

The initial time-step size of both numerical examples is ∆t0 = 1× 10−3 s, whereas
the simulation is performed for t ∈ [0, 1]. The time discretization is achieved with the
Backward–Euler method; see also Remark 1 regarding the time discretization for purely
elastic problems. Here, the time-step size ∆t is not fixed but chosen based on the number
of Newton iterations Niter and the time-step size of the current step ∆tn,

∆tnew = ∆tn ×


fmax if Niter ≤ 5,
fmin if Niter > 15,
1 if Niter > 5 and Niter ≤ 15.

(76)

In this work, the quantities fmax = 1.2 and fmin = 0.3 are chosen. The termination
criteria of the global Newton iteration are applied as

||∆u|| ≤ tolu and ||G(u)|| ≤ tolG. (77)

It should be mentioned that the applied tolerance values are rarely reported in current
literature to DNN-FE coupling in multiscale applications, which makes it difficult to draw
comparisons. In this work, tolerances tolu = 1× 10−6 and tolG = 1× 10−3 are chosen.

4.2. Investigation on the Size of Dataset

Next, the effect of increasing the size of the dataset on the performance of the DNN
models as well as the efficiency and accuracy of the DNN-FE2 simulations are assessed.
Different sizes of datasets, i.e., ND ∈ {103, 104, 105, 106, 4× 106}, are considered, while each
dataset is generated according to the explanations in Section 3.2. Note that in all the cases,
80% of the samples in the dataset are used for training and 20% for validation. Results are
reported for both NN–2 and NN–AD architectures for having a comprehensive comparison.
It should also be noted that the efficient size of the dataset depends on the complexity
of the model and the mapping that must be learned. Here, results are reported for NN
architectures containing eight hidden layers with 128 neurons per each hidden layer and
swish as the activation function, which are selected based on the results of hyperparameter
tuning; see Section 3.3.4. Figure 4 illustrates the lowest Lval

T obtained during the training of
the DNNs using different sizes of the dataset. It can be seen that increasing the size of the
dataset from 103 to 105 leads to a significant reduction in Lval

T . However, improvements
in the performance of the model are not significant when further increasing ND. We also
report the required time of training in Figure 4. The training time ttrain is normalized by
the computational time tFE2

comp,Cook needed for FE2 simulation of the Cook’s membrane,

trel,train =
ttrain

tFE2

comp,Cook

, (78)

to offer an insight into the cost of developing an NN-based surrogate model for the RVE
in comparison with the FE2 reference simulation. As it is expected, increasing ND results
in an increase in the required training time. It can be observed that even for the largest
dataset (ND = 4× 106), the training time is much shorter than the computational time of
the FE2 simulation. For the dataset with ND of 105, only 1.39% of the computational time of
the FE2 simulation is needed for the training of the NN–AD model.
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Figure 4. Influence of the size of the dataset ND on training time trel,train (78) and validation loss
Lval
T (70) (dashed lines corresponds to NN–AD architecture and solid lines to NN–2 architecture).

4.3. Numerical Simulations

The numerical results obtained from DNN-FE2 simulations are reported in this section
for the L-profile and Cook’s membrane test cases and compared with the FE2 reference
simulations regarding accuracy and efficiency. The accuracy of the simulations is estimated
by computing the mean and standard deviation of the absolute percentage error, defined in
Equation (74), ε mean and ε std, respectively, over all the components of E and T and over
all the global grid points. The speed-up gain is computed by dividing the total time of
computation for the FE2 reference simulation by that of the DNN-FE2 simulation. Results
are reported for different sizes of the dataset ND and for both architectures NN–2 as well as
NN–AD architectures. We refer to the models trained on datasets with different sizes as
model–∗ where ∗ × 103 shows the size of the dataset.

4.3.1. L-Profile

Results for the simulation of the L-profile test case are summarized in Table 3.

Table 3. Results of the DNN-FE2 simulation of the L-profile for different sizes of the train-
ing/validation dataset.

Model ND εmean (%) εstd (%) Speed-Up Niter Nt

NN–2–1 1× 103 8.79 10.8 232× 104 32
NN–AD–1 1× 103 4.68 8.52 443× 79 30
NN–2–10 1× 104 3.20 4.87 246× 101 32
NN–AD–10 1× 104 0.42 0.69 400× 86 30
NN–2–100 1× 105 2.48 3.68 254× 97 32
NN–AD–100 1× 105 0.21 0.40 462× 73 30
NN–2–1000 1× 106 1.59 2.62 251× 97 31
NN–AD–1000 1× 106 0.20 0.37 452× 76 30
NN–2–4000 4× 106 1.87 2.89 236× 103 32
NN–AD–4000 4× 106 0.15 0.30 462× 73 30

It is evident that both DNN surrogate models, NN–2–1 and NN–AD–1, which were
trained on a dataset with only 1000 samples, are accurate enough for achieving the conver-
gence of the FE2 simulation. This is also the case for the NN–2–10 model leading to ε mean
and ε std of 3.20% and 4.87%, respectively. Employing the NN–AD–10 model as the DNN
surrogate model leads to the convergence of the simulation and provides very accurate
results with ε mean and ε std of 0.42% and 0.69%, respectively. All the DNN-based models
trained on larger datasets lead to the convergence of the simulation. Our results show the
superior performance of the NN–AD models in comparison with the NN–2 models in all
the numerical experiments. For instance, the NN–2–100 model results in ε mean and ε std
of 2.48% and 3.68%, respectively, while the NN–AD–100 model provides more accurate
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results with ε mean and ε std of 0.21% and 0.40%, respectively. Moreover, we observe that
the NN–AD architecture is more efficient regarding the required size of the dataset where
the NN–AD–10 model performs better than the NN–2–4000 model.

Apart from accuracy aspects, the speed-up gain obtained from the DNN-FE2 simulation
is of particular interest. In Table 3, it can be observed that a speed-up of 400× can be ob-
tained from the NN–AD–10 model. This huge speed-up gain shows the excellent potential
of the DNN-FE2 approach for fast and accurate multiscale simulations of solid materials.
Our results show that the NN–AD–4000 model leads to the best performance regarding
the accuracy, speed-up, and the required number of iterations. In general, we can observe
that the NN–AD architecture is more efficient than the NN–2 architecture regarding the
speed-up gain where, for instance, the NN–AD–100 model obtains a speed-up of 462×
against 254× of the NN–2–100 model. The models of both architectures require a quite
similar number of time-steps Nt, which are here load-steps. The lesser number of load-steps
for the NN-AD architecture results from the fewer number of Newton iterations, which
leads to slightly higher load-step sizes according to Equation (76). Moreover, it is evident
that the speed-up of the NN-AD architecture is higher than for the NN-2 architecture. This
is caused, on the one hand, by the lesser number of global Newton iterations Niter because
of the higher prediction accuracy of the consistent tangent matrix. On the other hand, in our
implementation, the NN-AD model consisting of one feedforward neural network and the
backpropagation step for AD is faster to evaluate than the NN-2 model, which comprises
two different feedforward neural networks.

Figures 5 and 6 depict the results obtained from the DNN-FE2 simulation using the NN–
AD–100 model as the DNN surrogate model in comparison with that of the FE2 reference
simulation for all the components of E and T, respectively. The reference solution is
illustrated on the left panel, the DNN-FE2 solution is in the middle, and the absolute
percentage error ε is on the right. It can be observed in Figure 5 that for the normal
components of the strain tensor, E11 and E22, a maximum absolute percentage error of
1.03% is achieved which shows excellent performance of our DNN-FE2 approach. For the
shear strain E12, the error is slightly higher where a maximum absolute percentage error of
4.38% is obtained. The same conclusion can be drawn from Figure 6, where for the normal
components of the stress tensor T11 and T22, the maximum percentage errors are 2.12% and
1.02%, respectively, while for the shear stress, T12, the maximum percentage error is slightly
higher and is equal to 4.26%.

Moreover, Figure 7 shows the distribution of the absolute percentage error in the solu-
tion for the components of T (up) and E (bottom) obtained from the DNN-FE2 simulation us-
ing the NN–AD–100 model on all the integration points of the L-profile test case. The green
area and the marked percentage indicate the samples with less than 1% of error and their
population proportion. We observe that excellent simulation results are obtained where an
absolute percentage error of less than 1% is acquired for most of the samples. For instance,
it can be observed that 94.06% of the samples have an error of less than 1% in the solution
for the shear stress T12.
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Figure 5. Reference data (left) and results obtained from DNN-FE2 simulation (middle) with NN–
AD–100 model as well as error measure (74) (right) for the components of strain tensor E.

Figure 6. Reference data (left) and results obtained from DNN-FE2 simulation (middle) with NN–
AD–100 model as well as error measure (74) (right) for the components of stress tensor T.
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Figure 7. Histograms of the error (74) for the L-profile when applying the NN–AD-100 model. The top
and bottom panels illustrate the error for the components of the stress and strain tensors, T and
E, respectively.

4.3.2. Cook’s Membrane

Furthermore, we apply the DNN-FE2 approach for the simulation of Cook’s mem-
brane test case and compare the obtained solution with that of the reference FE2 . Table 4
summarizes the results for models based on the NN–2 and NN–AD architectures trained
on datasets with different sizes.

Table 4. Results of the DNN-FE2 simulation of the Cook’s membrane different for sizes of the
training/validation dataset.

Model ND εmean (%) εstd (%) Speed-Up Niter Nt

NN–2–1 1× 103 0.68 0.89 242× 123 32
NN–AD–1 1× 103 0.60 0.71 527× 85 30
NN–2–10 1× 104 0.31 0.44 292× 104 32
NN–AD–10 1× 104 0.09 0.13 542× 84 30
NN–2–100 1× 105 0.19 0.26 287× 104 32
NN–AD–100 1× 105 0.02 0.02 554× 82 30
NN–2–1000 1× 106 0.13 0.16 286× 105 32
NN–AD–1000 1× 106 0.03 0.06 575× 79 30
NN–2–4000 4× 106 0.12 0.17 291× 103 32
NN–AD–4000 4× 106 0.01 0.01 611× 73 30

The NN–2–1 and NN–AD–1 models provide a converged solution with less than
1% of error. This is also the case for the NN–2–10 and NN–2–100. Utilizing NN–AD–
10 and NN–AD–100 models leads to the convergence of the simulation with excellent
accuracy. We obtain ε mean and ε std of 0.02% using the NN–AD–100 model, which shows
the excellent capability of the NN–AD architecture for surrogate modeling of the local
macroscale computations. The results show that the NN–AD architecture outperforms the
NN–2 architecture in all the tests where, similar to the results obtained for the L-profile,
the errors ε mean and ε std are almost an order of magnitude lower.

The results are also reported regarding the computational efficiency of the proposed
framework in Table 4 for the second numerical experiment of Cook’s membrane; see
Figure 3B. It can be observed that the NN–AD–10 model obtains a speed-up gain of 542×
for this example. The results show that increasing the size of the dataset leads to a more
efficient simulation with a lesser number of iterations and lower computational time.
The NN–AD–4000 model provides a speed-up of 611× and leads to the convergence of the
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simulation in 30 time-steps. Compared to the L-profile test case, higher speed-up gain is
achieved for the Cook’s membrane. This is due to the fact that the number of elements,
which require microscale computations, is three times higher than that of the L-profile.
This suggests that utilizing the DNN-FE2 approach for more expensive computations, e.g.,
three-dimensional problems, could even lead to a higher speed-up gain.

Figures 8 and 9 show the results obtained from the DNN-FE2 simulation employing
the NN–AD–100 model as the DNN surrogate model in comparison with that of the
FE2 reference simulation for all the components of E and T, respectively. It can be observed
that for all the components of strain and stress tensors, very accurate results can be obtained.
For normal strains E11 and E22 and the shear strain E12, the maximum absolute percentage
errors are 0.14%, 0.16%, and 0.18%, respectively. Moreover, for the stress components T11,
T22, and T12 the maximum errors are equal to 0.23%, 0.38%, and 0.10%.

Figure 8. Reference data (left) and results obtained from DNN-FE2 simulation (middle) with NN–
AD–100 model as well as error measure (74) (right) for the components of strain tensor E.

We also report the distribution of the absolute percentage errors over all the integration
points for Cook’s membrane test case in Figure 10.

For this case, the green area and the marked percentage indicate the samples with
less than 0.1% of error and their population proportion. It can be seen that for most of the
sample points, an error of less than 0.1% has been obtained. Our results show the excellent
capability of the NN–AD models for very accurate and efficient FE2 simulations.
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Figure 9. Reference data (left) and results obtained from DNN-FE2 simulation (middle) with NN–
AD–100 model as well as error measure (74) (right) for the components of stress tensor T.

Figure 10. Histograms of the error (74) for the Cook’s membrane when applying the NN–AD-100
model. The top and bottom panels illustrate the error for the components of the stress and strain
tensors, T and E, respectively.
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4.4. Load-Step Size Behavior

Since FE2 computations usually require small initial time-step sizes ∆t0, the application
of certain time-step control schemes is reasonable. In general, the determination of the
time-step size ∆tnew for the following time-step depending on the current time-step size
∆tn can be achieved via different methods. In this contribution, we consider the number of
(global) Newton iterations Niter for the load step-size control; see Equation (76).

The step-size behavior, when using a step-size control based on global Newton itera-
tions, is shown for our two numerical experiments in Figure 11.
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Figure 11. Step-size behavior of DNN-FE2 simulations (red) with NN–AD–100 model and FE2 reference
simulation (blue), only accepted time-step sizes are shown. (A) L-profile; (B) Cook’s membrane.

For the L-profile, the overall step-size behavior is quite similar for both the FE2 reference
simulation and with embedding the DNN surrogate model NN–AD–100; see Figure 11A.
However, it is evident that the initial time-step size, which is chosen as ∆t0 = 10−3 s, is
suitable for the surrogate model, but not for the FE2 reference simulation as the time-step
size is rejected multiple times and convergence is initially reached at ∆t = 9× 10−5 s.
The rejections of the initial time-step size, which represents here the initially applied
load-step, result from divergence at the global macroscale level.

A similar behavior is observed for the Cook’s membrane and shown in Figure 11B.
The first accepted time-step size is ∆t = 3× 10−4 s, whereas the DNN surrogate already
shows convergence at ∆t0 = 10−3 s. In contrast to the L-profile, the step-size behavior
shows significant differences. For the reference FE2 simulation of the Cook’s membrane,
a certain limit exists, where the step size decreases because of failures in the local-level
computations of the MLNA (RVE computations), i.e., the applied load leads to certain
limitations in the step-size behavior of the RVEs. However, the DNN-FE2 computation with
the embedded DNN surrogate model is successfully converging even for higher step sizes.
The different step-size behaviors for L-profile and Cook’s membrane are obtained due to
different magnitudes of the strains at each macroscale integration point that result from the
loading conditions in Figure 3; see the results in Figures 5 and 8 as well.

As a result, the application of DNN surrogate models is not only possible for load-step
size controlled FE2 computations, but it also leads to certain advantages. On the one hand,
higher initial load-step sizes are possible and, on the other hand, certain limitations in
the load-step size can be overcome and thus larger step sizes can be applied compared to
classical FE2 computations.

5. Speed-Up with JAX and Just-in-Time Compilation

JAX [82] is a Python library developed by Google Research for high-performance
numerical computing. It utilizes an updated version of Autograd [92] for automatic differen-
tiation of native Python and NumPy functions. JAX supports reverse-mode differentiation
as well as forward-mode differentiation, and the two can be composed arbitrarily to any
order. Moreover, JAX uses XLA (accelerated linear algebra) [93] to compile and run NumPy
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programs on GPUs and TPUs (tensor processing units), which is performed by just-in-time
(JIT) compilation and execution of the calls. JAX also allows just-in-time compilation of
user-defined Python functions into XLA-optimized kernels using a one-function application
programming interface, jit. Compilation and automatic differentiation can be composed
arbitrarily, so one can express sophisticated algorithms and obtain maximal performance
without leaving Python. These properties allow the implementation of our NN–AD ar-
chitecture for RVE surrogate modeling efficiently using JAX. In the following, we discuss
just-in-time compilation and its application in our DNN-FE2 simulation framework in
combination with FORPy [87].

5.1. Just-in-Time Compilation

Just-in-time (JIT) compilation is a technique used in modern programming languages
to improve the performance of code execution at runtime. With JIT compilation, the code
is compiled from a high-level language into machine code at the moment it is needed,
rather than ahead of time. This allows a more efficient use of resources and can lead to
significant performance improvements, especially for applications that require repeated
execution of the same code. JIT compilers work by analyzing the code being executed and
dynamically generating optimized machine code that is tailored to the specific execution
context. In particular, when a program is executed, the JIT compiler analyzes the code
being executed and identifies hot spots or sections of code that are frequently executed.
These sections of code are then compiled into machine code and stored in memory for
future use. The next time the same section of code is executed, the JIT compiler can use the
pre-compiled machine code instead of interpreting the code again. This leads to significant
performance improvements, as the program spends less time interpreting code and more
time executing the machine code.

The JIT compiler in JAX is based on XLA, a domain-specific compiler that optimizes
numerical computations for modern hardware architectures. With JAX, users can write a
Python code that looks like a NumPy code but runs much faster on specialized hardware.
This makes JAX an ideal library for scientific computing, machine learning, and other
high-performance computing tasks. In addition to JIT compilation, JAX also provides tools
for distributed computing and parallelization, making it a versatile library for a wide range
of applications.

5.2. Speed-Up with JAX and JIT

JIT compilation is of interest in the DNN-FE2 approach since a repeated execution of
the surrogate model in every iteration and for every integration point occurs. Thus, the JIT
compilation of the prediction function, which is called from the FORTRAN finite element
code through FORPy, allows for more efficient use of resources and can lead to significant
performance improvements. To this end, we developed the NN–AD–100 model using JAX
and a neural network library and ecosystem for JAX called Flax [94]. Further, the prediction
function is compiled using jax.jit transformation.

The results are reported in Table 5, where we compare the computational efficiency
of our TensorFlow and JAX implementations. It should be noted that we utilize the same
set of hyperparameters and similar training processes for both implementations. It can
be seen that the required time of training is shorter for the JAX implementation, and it is
equal to 9.49× 10−3 of the computational time required for FE2 simulation of the Cook’s
membrane. Moreover, we gain a significant speed-up from the JAX implementation in
comparison with the TensorFlow implementation. The speed-up gain for the L-profile and
Cook’s membrane test cases are, respectively, equal to 4629× and 5853× for JAX and 462×
and 554× for TensorFlow. To the best of the authors’ knowledge, our JAX implementation
provides the highest speed-up in the context of DNN-FE2 simulations for non-linear elastic
material behavior in the literature.
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Table 5. Comparison of JAX and TensorFlow implementations of the surrogate model NN–AD–100
regarding the computational efficiency.

Framework trel,train Speed-Up for L-Profile Speed-Up for Cook’s Membrane

TensorFlow 1.39× 10−2 462× 554×
JAX 9.49× 10−3 4629× 5853×

6. Conclusions

In the present work, a DNN-FE2 approach is explained in detail to significantly acceler-
ate multiscale FE2 simulations. In general, the algorithmic structure of FE2 computations is a
Multilevel-Newton algorithm, even for the case of purely elastic material behavior without
internal variables. The main source of computational costs are the local macroscale com-
putations, which include the numerous computations of representative volume elements.
Thus, in the DNN-FE2 approach, we replace the local macroscale computations by drawing
on a deep neural network surrogate model, which is very fast to evaluate after sufficient
training. Here, it turns out that using automatic differentiation and Sobolev training to
obtain the consistent tangent information is superior to an approach with two deep neural
networks for the prediction of stresses and consistent tangent regarding data efficiency
and prediction accuracy. Moreover, in step-size-controlled computations, the deep neural
network surrogates are able to overcome certain step-size limitations of the FE2 reference
computations. For the Cook’s membrane as a particular example in this contribution, we
achieve a speed-up factor of more than 5000 compared to a FE2 reference simulation when
using just-in-time compilation techniques together with an efficient coupling between dif-
ferent programming codes using the FORPy library. The main advantage of the explained
DNN-FE2 approach is that it can be easily implemented to the existing finite element codes
since just the evaluation of a surrogate model for each macroscale integration point has to
be considered.
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Appendix A. Hyperparameter Tuning

We conduct hyperparameter tuning using a grid search algorithm to optimize the
performance of the model on the validation dataset. For this purpose, we employ a dataset
with a size of ND = 105. Our attention is directed towards three specific hyperparameters:
the number of hidden layers Nh, the number of neurons per hidden layer Nn, and the choice
of the activation function ϕ. We apply hyperparameter tuning to the NN–2 architecture.
Results obtained from different sizes of the neural network (number of hidden layers
Nh × number of neurons per hidden layer Nn) with swish activation function are reported
in Table A1.

Table A1. Summary of the results obtained for training and validation losses and the required time
of training for different sizes of the NN–2–100 model. Results are reported for models with swish
activation function.

Nh× Nn Ltrain
T Lval

T Ltrain
C Lval

C trel,train

64×2 1.06×10−6 1.06×10−6 1.35×10−4 1.33×10−4 6.97×10−3

64×4 1.49×10−7 1.51×10−7 3.58×10−6 3.68×10−6 8.36×10−3

64×8 1.02×10−7 1.04×10−7 9.27×10−7 9.35×10−7 1.17×10−2

64×16 1.66×10−7 1.70×10−7 3.93×10−7 4.29×10−7 1.81×10−2

128×2 1.13×10−6 1.11×10−6 1.71×10−4 1.67×10−4 7.80×10−3

128×4 1.14×10−7 1.15×10−7 9.47×10−7 1.03×10−6 9.19×10−3

128×8 5.05×10−8 4.96×10−8 2.58×10−7 3.10×10−7 1.45×10−2

128×16 5.22×10−8 5.30×10−8 2.19×10−7 3.35×10−7 2.08×10−2

256×2 1.55×10−6 1.54×10−6 1.60×10−4 1.58×10−4 7.90×10−3

256×4 7.95×10−8 8.02×10−8 5.08×10−7 5.85×10−7 1.18×10−2

256×8 7.10×10−8 7.00×10−8 1.01×10−7 1.67×10−7 1.75×10−2

256×16 5.19×10−8 5.18×10−8 3.35×10−7 1.76×10−7 3.37×10−2

The training and the validation losses are reported for both mappings, T and C, which
are selected during the training process as the best models based on the lowest validation
loss. Also, the relative time of training trel,train is outlined. It is evident that the lowest
validation loss Lval

T = 4.96 × 10−8 is obtained from a deep neural network with eight
hidden layers and 128 neurons per hidden layer, where the corresponding validation loss
Lval
C = 3.10× 10−7 is obtained. The results show that networks with a larger number of

parameters lead to losses with the same order of magnitude and do not show a considerable
improvement while requiring more time for training. Therefore, we select Nh = 8 and
Nn = 128 for our analysis, see Table A1.

Moreover, Figure A1 illustrates the influence of the choice of activation function on
the learning curves for both mappings, T and C.

Figure A1. Influence of the choice of activation function on the learning process; Lval
T (left) and

Lval
C (right). Results are reported for models containing 8 hidden layers and 128 neurons per each

hidden layer.
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Results are reported for deep neural networks with Nh = 8 and Nn = 128. Similar
influence in all the other cases with different sizes of the neural network can be observed.
Further, it can be seen that the swish activation function performs better than sigmoid
and tanh. It should be noted that rectified linear unit (ReLU) activation function is not
used since the mapping requires to be continuously differentiable, especially for the NN–
AD architecture.
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