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Abstract: This article derives approximate formulations for Rayleigh waves on a coated orthorhombic
elastic half-space with a prescribed vertical load acting as an elastic Winkler foundation. In addition,
perfect continuity conditions are imposed between the coating layer and the substrate, while suitable
decaying conditions are slated along the infinite depth of the half-space. The effect of the thin layer is
modeled using appropriate effective boundary conditions within the long-wave limit. By applying
the Radon transform and using the perturbation method, the derived model successfully captures
the physical characteristics of elastic surface waves in coated half-spaces. The model consists of a
pesudo-static elliptic equation decaying over the interior of the half-space and a singularly perturbed
hyperbolic equation with a pseudo-differential operator. The pseudo-differential equation gives
the approximate dispersion of surface waves on the coated half-space structure and is analyzed
numerically at the end.

Keywords: Rayleigh waves; coated media; orthorhombic half-space; effective boundary conditions;
asymptotic formulation

1. Introduction

Rayleigh surface waves are a known type of seismic wave described by Lord Rayleigh [1]
that propagates along the surface of elastic media like the Earth’s crust; some of the devel-
opments recorded with regards to Rayleigh surface waves can be found in references [2–4]
and the references appended therein. These waves are formed due to the interaction be-
tween compressional (P-waves) and shear (S-waves) waves near the surface of the Earth.
In addition, when an earthquake or any other source (like volcanic activity, explosions,
and even human-made sources like traffic or construction) generates seismic waves, both
P-waves and S-waves are produced. However, Rayleigh waves are slower than the P-waves
and S-waves, but they have longer wavelengths and are dispersive in nonhomogenous
media, upon which different frequencies travel at different speeds. Furthermore, these
types of waves are comprehensively studied in seismology to understand the behavior of
earthquakes, evaluate the structural integrity of buildings, and aid in the exploration of
subsurface geological structures [5–7], among other applications.

Now that the Rayleigh surface wave has been found to have a vast relevance in the
exploration of subsurface geological structures, we therefore further dissect coated elastic
media [8–10] as a particular case of these structures. In fact, coated elastic media are
structures that combine elastic properties with a protective coating or layer. Elastic media,
such as elastomers or polymers, are known for their ability to deform under stress and
return to their original shape when the stress is removed. More so, the imposition of
the additional layer as a coating to an elastic medium can serve quite a lot of functions,
including aesthetic considerations, surface modification, and protection for the underlying
elastic material, to mention a few [11]. In addition, coated media are very useful in our
daily activities, and are found to model numerous real-life applications. For instance, in the
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medical industry, coating enhances the biocompatibility of elastic material, reduces friction,
and further provides a sterile barrier for medical devices like hand gloves, catheters,
and bandages, to state but just a few [12]. Also, the huge relevance of coated elastic
structures can equally be found in the design and modeling of coated fabrics, coated elastic
bands, and coated cables/wires, among others. Please refer to references [12–22] for more
information on the application of such structures amidst the influence of external forces
and excitations.

In particular, as the present study aims to examine the dynamic characteristics of the
propagation of Rayleigh waves on an orthorhombic-coated orthorhombic-elastic-loaded
elastic half-space, it then becomes imperative to explore a little about orthorhombic ma-
terial [23]. Generally, orthorhombic is a crystallographic term that is used to describe a
specific type of crystal structure exhibited by certain materials [24]. In an orthorhombic
crystal structure, the lattice is defined by three mutually perpendicular axes of unequal
lengths with angles of 90 degrees between each axis. Furthermore, various materials can
have an orthorhombic crystal structure, including, for instance, minerals and certain metals.
Some examples of orthorhombic minerals include aragonite, azurite, and topaz. These
minerals admit distinctive physical properties due to their crystal structure, such as op-
tical properties and cleavage planes. In addition, we mention the notable orthorhombic
crystal, titanium dioxide [25], that is formed naturally as the mineral rutile. In essence,
the orthorhombic crystal structure is one of several possible arrangements in crystalline
materials aside from monoclinic, cubic, hexagonal, and tetragonal materials, to mention a
few [26].

In this regard, the theory of surface waves is concerned with the development of
hyperbolic–elliptic asymptotic models that capture the contribution of surface waves to
the overall dynamic response when surface tractions were first prescribed by Kaplunov
and Kossovich [27] and Kaplunov et al. [28]. Within these formulations, the Rayleigh
wave propagation is described using a hyperbolic equation along the surface (specifically,
a forced wave equation), with decay into the interior governed by quasi-static elliptic
equations. They are derived by perturbing the inhomogeneous dynamic equations in linear
elasticity around the eigen-solution, corresponding to surface waves of arbitrary profiles
that were formerly examined by Sobolev [29], Friedlander [30], and Chadwick [21], among
others, for the plane strain case, and recently extended, by Kiselev and Parker [31], to
the 3D setup. In addition, the approach in reference [28] was later extended to a coated
isotropic elastic half-space by Dai et al. [32]. Moreover, this extension then leads to ele-
gant explicit approximate solutions for the near-resonant regimes of a moving load on
an elastic half-space (see Erbas et al. [33]; Kaplunov et al. [34]), and for examining the
significance of flexural-seismic meta-surfaces (see Wootton et al. [35]). A more methodical
clarification of the approach could be found in works by Ege et al. [36], Kaplunov and
Prikazchikov ([37,38]), and Mubaraki and Almalki [8], among others. Later on, the ap-
proximate model of Kaplunov et al. [28] was extended to the orthorhombic elastic half-
plane by Nobili and Prikazchikov [24], and to elastic half-space of arbitrary anisotropy by
Fu et al. [39].

However, the current manuscript intends to make use of the asymptotic approximation
method [32] to explicitly derive approximate equations of motions and the resulting disper-
sion relation, governing the propagation of Rayleigh waves on an orthorhombic-coated
orthorhombic-elastic-loaded elastic half-space. Furthermore, the prescribed vertically
loaded excitation under consideration is taken to be induced using the Winkler elastic
foundation [40], as an extension case to the known work in the literature (see reference [24]
and the references therewith); equally, one may read reference [41] on the refinement of
the Winkler–Fuss elastic foundation. Further, suitable perfect interfacial continuity con-
ditions are imposed between the layer and substrate of elastic half-space, while decaying
boundary conditions are presumed along the depth of the half-space. Furthermore, it is our
aim to derive an approximate model with the help of the long-wave limit approximation
to exhaustively capture the dynamic characteristics of surface waves on the examining
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structure. Indeed, the propagation of Rayleigh waves on such media is presided over
using a perturbed singular hyperbolic equation with a pseudo-differential operator; such
an equation shall be acquired in this study, incorporating all the physical assumptions
imposed. In addition, the study shall analyze the derived model with regard to some
special cases of material constants in elasticity. Furthermore, the novelty of the present
work is the generalization of various considerations (see references [8,24], for instance) in
the case of a 3D orthorhombic-coated orthorhombic-elastic-loaded elastic half-space and is
further supported by the Winkler elastic foundation. In fact, looking at the six (6) elastic
constants posed by an orthorhombic material [23] is enough to figure out the generality,
or rather the complexity, of the present consideration.

2. Formulation of the Problem

Let us consider a thin orthorhombic layer of thickness h coated orthorhombic elastic
half-space, which occupies the domain 0 < xj < ∞ for j = 1, 2 and x3 ≥ 0, further subject
to a prescribed surface loading, which is reinforced using the Winkler elastic foundation;
see Figure 1 for a schematic vision of the coated structure.

Figure 1. A coated elastic orthorhombic half-space reinforced using the Winkler elastic foundation.

The 3D equations of motion are followed by (see, e.g., Achenbach [42])

σ∓11,1 + σ∓12,2 + σ∓13,3 = ρ∓ u∓1,tt,

σ∓21,1 + σ∓22,2 + σ∓23,3 = ρ∓ u∓2,tt,

σ∓31,1 + σ∓32,2 + σ∓33,3 = ρ∓ u∓3,tt,

(1)

with the comma (, ) indicating differentiation with the corresponding variables, u∓n =
u∓n (x1, x2, x3, t), and n = 1, 2, 3 being the plane displacements for the coating − and the
half-space (substrate) + layers. Further, ρ∓ are the mass volume densities, and σ∓1n = σ∓n1,
σ∓2n = σ∓n2, σ∓3n = σ∓n3 are the symmetric stress components for the orthorhombic medium,
which are defined as follows:

σ∓11 = c∓11 u∓1,1 + c∓12 u∓2,2 + c∓13 u∓3,3, σ∓12 = c∓66

(
u∓1,2 + u∓2,1

)
,

σ∓22 = c∓12 u∓1,1 + c∓22 u∓2,2 + c∓23 u∓3,3, σ∓13 = c∓55

(
u∓1,3 + u∓3,1

)
,

σ∓33 = c∓13 u∓1,1 + c∓23 u∓2,2 + c∓33 u∓3,3, σ∓23 = c∓44

(
u∓2,3 + u∓3,2

)
,

(2)

c∓11, c∓12, c∓22, c∓13, c∓23, c∓33, c∓44, c∓55, and c∓66 are elastic constants through Voigt notation, for the
coating “−” and substrate “+” layers, respectively.
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Further, upon inserting the constitutive equations for the stress-displacement relation
expressed in (2) into (1), one gets the following explicit equations of motions for the
governing coated half-space:

c∓11 u∓1,11 + c∓66 u∓1,22 + c∓55 u∓1,33 +
(
c∓12 + c∓66

)
u∓2,12 +

(
c∓13 + c∓55

)
u∓3,13 = ρ∓ u∓1,tt,

c∓66 u∓2,11 + c∓22 u∓2,22 + c∓44 u∓2,33 +
(
c∓12 + c∓66

)
u∓1,12 +

(
c∓23 + c∓44

)
u∓3,23 = ρ∓ u∓2,tt,

c∓55 u∓3,11 + c∓44 u∓3,22 + c∓33 u∓3,33 +
(
c∓13 + c∓55

)
u∓1,13 +

(
c∓23 + c∓44

)
u∓2,23 = ρ∓ u∓3,tt.

(3)

Additionally, the impulsive boundary conditions are prescribed on the surface of the
coating x3 = −h as follows:

σ−i3 = 0, and σ−33 = −P, (4)

where i = 1, 2 and P = P(x1, x2, t) is the prescribed vertical load, which is presumed to be
induced by the Winkler elastic foundation; that is, it takes the following expression [40]:

P = a u−3 , (5)

where u−3 is the displacement component of the coated layer, in which the load is exerted
upon, while a is the stiffness of the reinforced Winkler elastic foundation.

However, the imposed perfect continuity conditions on the interface of the two layers,
that is, at x3 = 0, take the following expression:

σ−n3 = σ+
n3, u−n = u+

n , n = 1, 2, 3, (6)

while the decay depth-wise boundary conditions are assumed to be x3 → ∞ as follows:

u+
n → 0, n = 1, 2, 3. (7)

Hence, the given equations of motions expressed in (3) for the propagation of Rayleigh
waves on a coated orthorhombic elastic half-space will be asymptotically examined. Indeed,
the prescribed impulsive boundary conditions on the surface of the coated layer, coupled
with the imposed perfect continuity conditions, as expressed in (4)–(7), will be utilized for
the acquisition of the resulting approximate solution, as well as the approximate equations
of motions.

3. Derivation of the Effective Boundary Conditions

This section derives the required effective boundary conditions for the acquisition
of the optimal approximate solution as well the approximate equations of motions for
the governing formulation. Thus, we start off this approximation by suppressing the
significance of the thin coated layer at the interface, that is, at x3 = 0.

Here, we take into consideration the following dimensionless small parameter [34]:

K = kh� 1, (8)

where k is the wavenumber. In fact, a very small wavenumber implies that the propagation
of waves happens with a long-wave, while a very small frequency implies the propagation
of waves is with a low-frequency (which is not our case). Please refer to reference [35]
for related studies on the propagation of waves within a low-frequency long-wave band.
Further, we assume the continuity conditions at x3 = 0 to be as follows:

u−n = w+
n , (9)

with w+
n = w+

n (x1, x2, t) for n = 1, 2, 3 are the displacement components on the surface of
the substrate “+”.
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Next, we introduce the following scaled variables:

ξi = k xi, η =
x3

h
, τ− = k C− t, (10)

with

u∗n = k u−n , w∗n = k w+
n , a∗ =

1
k K c−44

a,

σ∗ij =
1

c−44
σ−ij , and σ∗n3 =

1
K c−44

σ−n3,
(11)

where ξi for i = 1, 2, and η are the scaled dimensionless spatial variables; τ− is the scaled
dimensionless temporal variable in the coating; a∗ is the scaled dimensionless stiffness of
the reinforced Winkler’s foundation; u∗n and w∗n are scaled dimensionless displacements; σ∗ij
and σ∗n3 are scaled dimensionless stresses, all for n = 1, 2, 3, and i 6= j = 1, 2; and C− is the
speed in the coating defined by

C− =

√
c−44
ρ−

.

Indeed, the above scaling becomes imperative in order to restrain the complete dependence
of the entire structure on the coating layer. Certainly, the coating layer is partially ignored,
thereby utilizing its full relevance with regards to its prescribed boundary data. In this
case, only the equations of motions in the substrate remain, with an infusion of the coating
boundary conditions in both the substrate equations and the resulting new scaled boundary
and interfacial data. Further, the equation of motions (1) and the constitutive relations
expressed in (2) can then be re-expressed in terms of these new variables, as given below:

σ∗ii,ξi
+ σ∗ji,ξ j

+ σ∗3i,η = u∗i,τ−τ− ,

σ∗33,η + K
(

σ∗i3,ξi
+ σ∗j3,ξ j

)
= u∗3,τ−τ− ,

(12)

and

K σ∗ii =
1

c−44

[
c−i3 u∗3,η + K

(
c−ii u∗i,ξi

+ c−ij u∗j,ξ j

)]
,

K2 σ∗33 =
1

c−44

[
c−33 u∗3,η + K

(
c−i3 u∗i,ξi

+ c−j3 u∗j,ξ j

)]
,

σ∗ij =
c−66
c−44

(
u∗i,ξ j

+ u∗j,ξi

)
, K2 σ∗31 =

c−55
c−44

(
u∗1,η + ε u∗3,ξ1

)
, K2 σ∗32 = u∗2,η + ε u∗3,ξ2

.

(13)

In addition, after utilizing the scaled new variables expressed above, the prescribed bound-
ary conditions in (6) and (9) then take the following expression:

σ∗i3 = 0, σ∗33 = −a∗ u∗3 at η = −1, and

u∗n = w∗n, at η = 0.
(14)

It is appropriate to express the related displacement and stress components in the following
expansion form

 u∗n
w∗n
σ∗mn

 =

u(0)
n

w(0)
n

σ
(0)
mn

+ K

u(1)
n

w(1)
n

σ
(1)
mn

+ ..., m, n = 1, 2, 3. (15)

Therefore, upon using the above equation in (12) and (13), the following system is obtained
at the leading order:
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σ
(0)
ii,ξi

+ σ
(0)
ji,ξ j

+ σ
(0)
3i,η = u(0)

i,τ−τ− ,

σ
(0)
ij =

c−66
c−44

(
u(0)

i,ξ j
+ u(0)

j,ξi

)
,

σ
(0)
33,η = u(0)

3,τ−τ− ,

u∗n,η = 0,

(16)

while the corresponding boundary conditions from (14) take the following form:

σ
(0)
i3 = −a∗ u∗3 , σ

(0)
33 = 0, at η = −1, and

u(0)
n = w∗n, at η = 0.

(17)

The leading order displacement components satisfying (16)4 and (17)2 are then obtained in
the following form:

u(0)
n = w∗n. (18)

From (16)3, (17)1, and (18), we obtain

σ
(0)
33 = (η + 1)w∗3,τ−τ− − a∗ w∗3 . (19)

Moreover, at the next order O(ε), (13)2 and the boundary value problem (14)2 lead to the
acquisition of

u(1)
3 =

1
c−33

(
c−i3 u(0)

i,ξi
+ c−j3 u(0)

j,ξ j

)
, (20)

and
u(1)

n = 0, at η = 0. (21)

From (20) and the boundary conditions expressed in (21), one obtains

u(1)
3 = − η

c−33

(
c−i3 w∗i,ξi

+ c−j3 w∗j,ξ j

)
. (22)

By substituting (18) and (22) into (13)1, we obtain

σ
(0)
ii =

1
c−44

[(
c−ii −

(
c−i3
)

c−33

2)
w∗i,ξi

+

(
c−ij −

c−i3 c−j3
c−33

)
w∗j,ξ j

]
. (23)

Finally, we have, from (16)1, (16)2, (18), and (23), at the same time satisfying (17)1, the
following:

σ
(0)
i3 =

(1 + η)

c−44

[
c−44 w∗i,τ−τ− − c−66 w∗i,ξ jξ j

−
(

c−ii −
(
c−i3
)

c−33

2)
w∗i,ξiξi

−
(

c−ii −
(
c−i3
)

c−33

2)
w∗i,ξiξi

−
(

c−66 + c−ij −
c−i3 c−j3

c−33

)
w∗j,ξiξ j

]
,

(24)

In the original variables, the stress components at the interface x3 = 0 can then be expressed
from (19) and (24) as follows:

σ+
i3 = h

[
ρ− u+

i,tt − c−66 u+
i,jj −

(
c−ii −

(
c−i3
)

c−33

2)
u+

i,ii −
(

c−66 + c−ij −
c−i3 c−j3

c−33

)
u+

j,ij

]
,

σ+
33 = ρ− h u+

3,tt − a u+
3 .

(25)
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Note that, in the absence of the effect of the Winkler elastic foundation (a = 0), the con-
ditions in (25) may obviously be affirmed to correspond to the results reported in refer-
ence [43].

4. Application of the Perturbation Technique

Now that the related effective boundary conditions are derived in (25), we then proceed
to derive the resulting pseudo-differential equation for the transverse and longitudinal
potentials of the governing half-space. Indeed, the model examination of the half-space
(x3 ≥ 0) involves the wave dynamic equations of motions expressed in (2), and subject to
the derived boundary conditions in (25).

Furthermore, we consider the special case of material constants, that is, when

c∓11 = c∓22, c∓13 = c∓23, and c∓44 = c∓55. (26)

The above presumption, which is referred to as a pure mode, means that the displacement
component is parallel everywhere to the anti-plane motion with no additional symme-
try. Subsequently, it is appropriate to deploy the Radon integral transform, defined as
follows [32]:

u(r)
l (x, r, x3, t) =

∫ ∞

−∞
u+

l (x cos r− y sin r, x sin r + y cos r, x3, t)dy, (27)

where

x = x1 cos r + x2 sin r, y = −x1 sin r + x2 cos r, (28)

and

u(r)
x = u(r)

1 cos r + u(r)
2 sin r, u(r)

y = −u(r)
1 sin r + u(r)

2 cos r, (29)

with r ∈
[
0, 1

2 π
]
.

Now, we set u(r)
y = 0, which means that the anti-plane dynamic motion is dissuaded

by the presence of the elastic Winkler foundation. Moreover, the equations of motions
expressed in (2) for the substrate + are rewritten in terms of the present transformation
as follows:

c+11 u(r)
x,xx + β+ u(r)

3,x3 + c+55 u(r)
x,33 = ρ+ u(r)

x,tt,

c+33 u(r)
3,33 + β+ u(r)

x,x3 + c+55 u(r)
3,xx = ρ+ u(r)

3,tt,
(30)

and subject to

c+55

(
u(r)

x,3 + u(r)
3,x

)
= h

(
ρ− u(r)

x,tt − δ− u(r)
x,xx

)
,

c+13 u(r)
x,x + c+33 u(r)

3,3 = ρ− h u(r)
3,tt − a u(r)

3 ,
(31)

where

β+ = c+13 + c+55, and δ− = c−11 −
(
c−13
)

c−33

2

. (32)

Now, let us introduce yet another scaling of the following format:

ξ = k(x− cR t), γ = k x3 τ = k K cR t. (33)

where cR is the speed of the Rayleigh wave.
Then, the transformed equations of motions expressed in (30) can now be rewritten in

the latter new scaling as follows:
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(
c+11 − ρ+ c2

R

)
u(r)

x,ξξ + c+55 u(r)
x,γγ + β+ u(r)

3,ξγ = ρ+ c2
R

(
ε2 u(r)

x,ττ − 2ε u(r)
x,ξτ

)
,

c+33 u(r)
3,γγ + β+ u(r)

x,ξγ +
(

c+55 − ρ+ c2
R

)
u(r)

3,ξξ = ρ+ c2
R

(
ε2u(r)

3,ττ − 2εcR u(r)
3,ξτ

)
.

(34)

Certainly, (34) can be rewritten in the form of a single partial differential equation of the
fourth-order, contacted by u(r)

x as follows:

C1 u(r)
x,ξξξξ + C2 u(r)

x,ξξγγ + C3 u(r)
x,γγγγ + K

(
D1 u(r)

x,ξξξτ + D2 u(r)
x,ξγγτ

)
−K2

(
E1 u(r)

x,ξξττ + E2 u(r)
x,γγττ

)
− K3 F1 u(r)

x,ξτττ + K4 F2 u(r)
x,ττττ = 0,

(35)

where the coefficients C1, C2, C3, Di, Ei, and Fi, for i = 1, 2, are specified as

C1 =
(
c+11 − ρ+ c2

R
)(

c+55 − ρ+ c2
R
)
, C2 = c+11 c+33 +

(
c+55
)2 − (β+)

2 −
(
c+33 + c+55

)
ρ+ c2

R, C3 = c+33 c+55,
D1 = 2ρ+ c2

R
(
c+11 + c+55 − 2ρ+ c2

R
)
, D2 = 2ρ+ c2

R
(
c+33 + c+55

)
, E1 = ρ+ c2

R
(
c+11 + c+55 − 6 ρ+ c2

R
)
,

E2 = ρ+ c2
R
(
c+33 + c+55

)
, F1 = 4(ρ+)2c4

R, and F2 = (ρ+)
2c4

R .
Moreover, the boundary conditions (31) are then reformed at γ = 0 as follows:

u(r)
x,γ + u(r)

3,ξ =
c−55
c+55

[
K

(
c2

R
c2

0
− δ−

c−55

)
U(r)

x,ξξ +
c2

R
c2

0

(
K3 U(r)

x,ττ − 2K2 U(r)
x,ξτ

)]
,

c+13 u(r)
x,ξ + c+33 u(r)

3,γ =
c−55 c2

R
c2

0

[
K u(r)

3,ξξ − 2K2 u(r)
3,ξτ + K3u(r)

3,ττ

]
− a

k
u(r)

3 ,

(36)

where c0 =
√

c−55 / ρ−.

Thus, accordingly, let us now expand the displacement components u(r)
x and u(r)

3 as
asymptotic series as follows:

u(r)
x = K−1 U(0)

x (ξ, γ, τ) + U(1)
x (ξ, γ, τ) + ...,

u(r)
3 = K−1 U(0)

3 (ξ, γ, τ) + U(1)
3 (ξ, γ, τ) + ... .

(37)

Then, at the leading order, (34)1 becomes(
c+11 − ρ+ c2

R

)
U(0)

x,ξξ + c+55 U(0)
x,γγ + β+ U(0)

3,ξγ = 0, (38)

while (35) gives

C1 U(0)
x,ξξξξ + C2 U(0)

x,ξξγγ + C3 U(0)
x,γγγγ = 0. (39)

Undeniably, the obtained elliptic equation in (39) can alternatively be represented using an
operator notation as follows:

∆1 ∆2 U(0)
x = 0, (40)

with

∆i = ∂2
ξξ + qi ∂2

γγ, i = 1, 2, (41)

where qi for i = 1, 2, which is determined using

qi =

√√√√−C2 + (−1)i
√

C2
2 − 4C1 C3

2C1
, i = 1, 2, (42)
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where C2
2 − 4C1C3 ≥ 0 for i = 1, 2. Indeed, this restriction allows the assumption of only

real quantities, that is, qi ≥ 0. Therefore, the solution for (40) can be obtained with the help
of a pair of plane harmonic functions as follows:

U(0)
x = φ(0)(ξ, q1 γ, τ) + ψ(0)(ξ, q2 γ, τ), (43)

Then, on inserting the solution (43) into (38), amidst exploiting the application of the
Cauchy–Riemann identities for the function g(ξ, qγ), shown as

g,γ = −qH
(

g,ξ
)
, g,ξ =

1
q
H(g,γ) and H(H(g)) = −g, (44)

whereH is Hilbert transform, then we arrive at

U(0)
3 = α1H

(
φ(0)

)
(ξ, q1 γ, τ) + α2H

(
ψ(0)

)
(ξ, q2 γ, τ), (45)

with

αi =
ρ+ c2

R − c+11 + q2
i c+55

β+ qi
, i = 1, 2. (46)

Implying (43) and (45) into leading boundary conditions (36), we deduce at the surface
γ = 0 the following:

(α1 − q1)φ
(0)
,ξ + (α2 − q2)ψ

(0)
,ξ = 0,(

c+13 + c+33 α1 q1
)
φ
(0)
,ξ +

(
c+13 + c+33 α2 q2

)
ψ
(0)
,ξ = 0.

(47)

Thus, the classical Rayleigh wave equation follows:

Det
[

α1 − q1 α2 − q2
c+13 + c+33 α1 q1 c+13 + c+33 α2 q2

]
= 0, (48)

having the equivalent expression

λ =
α1 − q1

α2 − q2
=

c+13 + c+33 α1 q1

c+13 + c+33 α2 q2
. (49)

Then, the elastic potentials ψ(0) and φ(0) can easily be related to each other as follows:

ψ(0) = −λ φ(0) at γ = 0. (50)

Therefore, the solution obtained in (45) may be expressed in terms of only one potential
function ψ(0) or φ(0) as follows:

U(0)
3 = (α1 − α2 λ)H

(
φ(0)

)
(ξ, 0, τ) =

1
λ
(λ α2 − α1)H

(
ψ(0)

)
(ξ, 0, τ). (51)

Furthermore, upon going further to the next order, (34)1 and (35) then take the following
expressions: (

c+11 − ρ+ c2
R

)
U(1)

x,ξξ + c+55 U(1)
x,γγ + β+ U(1)

3,ξγ = −2ρ+ c2
R U(0)

x,ξτ , (52)

and

C3 ∆1 ∆2 U(1)
x = −2ρ+ c2

R

[(
c+11 + c+55 − 2ρ+ c2

R

)
U(0)

x,ξξξτ +
(
c+33 + c+55

)
U(0)

x,ξγγτ

]
. (53)
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The general solutions for U(1)
x and U(1)

3 are obtained in a similar manner to reference [24]
as follows:

U(1)
x (ξ, γ, τ) = φ(1)(ξ, q1 γ, τ) + ψ(1)(ξ, q2 γ, τ) +

γ

2C3
(
q2

2 − q2
1
)[ϑ1

q1
φ̄
(0)
,τ −

ϑ2

q2
H
(

ψ
(0)
,τ

)]
, (54)

U(1)
3,γ(ξ, γ, τ) = α1 q1 φ

(1)
,ξ (ξ, q1 γ, τ) + α2 q2 ψ

(1)
,ξ (ξ, q2 γ, τ)

− 1
β+

[
2ρ+ c2

R +
ϑ1

c+3333
(
q2

2 − q2
1
)]φ

(0)
,τ −

1
β+

[
2ρ+ c2

R +
ϑ2

c+3333
(
q2

1 − q2
2
)]ψ

(0)
,τ

+
γ

2C3
(
q2

2 − q2
1
) [ϑ1 α1H

(
φ
(0)
,ξτ

)
− ϑ2 α2H

(
ψ
(0)
,ξτ

)]
,

(55)

and

U(1)
3,ξ (ξ, γ, τ) = α1H

(
φ
(1)
,ξ

)
+ α2H

(
ψ
(1)
,ξ

)
− 1

q1 β+

[
2ρ+ c2

R +
ϑ1
(
2c+55 q1 − α1 β+

)
2C2 q1

(
q2

2 − q2
1
) ]

φ̄
(0)
,τ

− 1
q2 β+

[
2ρ+ c2

R +
ϑ2
(
2c+55 q2 − α2 β+

)
2C2 q2

(
q2

1 − q2
2
) ]
H
(

ψ
(0)
,τ

)
+

γ

2C2
(
q2

2 − q2
1
)[ϑ2 α2

q2
ψ
(0)
,ξτ −

ϑ1 α1

q1
φ
(0)
,ξτ

]
,

(56)

where

ϑi = −2ρ+ c2
R

[
c+11 + c+55 −

(
c+33 + c+55

)
q2

i − 2ρ+ c2
R

]
. (57)

At order O(1), the boundary conditions (36) lead to

U(1)
x,γ + U(1)

3,ξ =
c−55
c+55

(
c2

R
c2

0
− δ−

c−55

)
U(1)

x,ξξ ,

c+13 U(1)
x,ξ + c+33 U(1)

3,γ =
c−55 c2

R
c2

0
U(0)

3,ξξ −
a
k

U(0)
3 , at γ = 0.

(58)

Now, upon putting the solutions acquired in (43), (45), and (54)–(56) into (58), and via the
application of the Cauchy–Riemann relations earlier expressed in (44), one obtains

(α1 − q1)H
(

φ
(1)
,ξ

)
+ (α2 − q2)H

(
ψ
(1)
,ξ

)
− (α1 − q1)

(
δ11H

(
φ
(0)
,τ

)
+ δ12H

(
ψ
(0)
,τ

))
−

c−55
c+55

(
c2

R
c2

0
− δ−

c−1313

)(
φ
(0)
,ξξ + ψ

(0)
,ξξ

)
= 0,

(
c+13 + c+33 α1 q1

)
φ
(1)
,ξ +

(
c+13 + c+33 α2 q2

)
ψ
(1)
,ξ −

(
c+13 + c+33 α1 q1

)(
δ21 φ

(0)
,τ + δ22 ψ

(0)
,τ

)
−

c−55 c2
R

c2
0

(
α1H

(
φ
(0)
,ξξ

)
+ α2H

(
ψ
(0)
,ξξ

))
= − a

k
(α1 − α2 λ)H

(
φ(0)

)
, at γ = 0,

(59)

where

(α1 − q1)δ1i =
1

qi β+

2ρ+ c2
R + ϑj

(
αj β+ +

(
β+ − 2c+55

)
qi
)

2C2 qi

(
q2

i − q2
j

)
,

and
(
c+13 + c+33 α1 q1

)
δ2i =

1
β+

2ρ+ c+33 c2
R −

ϑi(
q2

i − q2
j

)
.

(60)

Using (50) and implicit differentiation with respect to ξ, we arrive at
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[(
c+13 + c+33 α2 q2

)(
c+13 + c+33 α1 q1

) − (α2 − q2)

(α1 − q1)

]
ψ
(1)
,ξξ − [(δ21 − δ11)− λ(δ22 − δ12)]φ

(0)
,ξτ

−
[(

ρ− c2
R − δ−

)
(1− λ)

c+55(α1 − q1)
+

ρ− c2
R(α1 − λ α2)(

c+13 + c+33 α1 q1
) ]H(φ

(0)
,ξξξ

)

= −
a(α1 − α2 λ)H

(
φ
(0)
,ξ

)
k
(
c+13 + c+33 α1 q1

) , at γ = 0.

(61)

By simplifying this formula, we obtain

2 φ
(0)
,ξτ +

b
q1

φ
(0)
,ξξγ =

a(α1 − α2 λ) φ
(0)
,γ

k q1
(
c+13 + c+33 α1 q1

) , at γ = 0, (62)

where the constant b inherits the properties of both coating and substrate, given explicitly by

b =
1
B

[(
ρ− c2

R − δ−
)
(1− λ)

c+55(α1 − q1)
+

ρ− c2
R(α1 − λ α2)(

c+13 + c+33α1 q1
) ], (63)

which takes both positive and negative values corresponding to the local minimum and
maximum of the phase velocity equal to the Rayleigh wave speed, while the constant B
contains properties of the substrate only takes the following form:

B = −1
2
[δ21 − δ11 − λ(δ22 − δ12)]. (64)

Then, on re-expressing (62) in the form of the original variables (x, x3, t), one obtains

φ
(r)
,xx −

1
c2

R
φ
(r)
,tt +

bh
q1

φ
(r)
,xx3 =

a(α1 − α2 λ) φ
(0)
,3

B q1
(
c+13 + c+33α1 q1

) , at x3 = 0. (65)

In addition, the elliptic equation for the potentials φ(r) and ψ(r) are then found to be

φ
(r)
,xx + q1 φ

(r)
,33 = 0, and ψ

(r)
,xx + q2 ψ

(r)
,33 = 0. (66)

Moreover, let us now introduce their respective inverse transforms as follows:

ψ
(r)
1 = ψ(r) cos r, and ψ

(r)
2 = ψ(r) sin r.

Hence, (65) and (66) may be reinterpreted by inverting the respective transforms as follows:

∆ φ + q1 φ,33 = 0, and ∆ ψi + q2 ψi,33 = 0, (67)

which govern the decay along the depth of the half-space (x3 ≥ 0), the interior, and in
addition to the boundary conditions at x3 = 0 given below:

∆ φ− 1
c2

R
φ,tt +

bh
q1

∆ φ,3 =
a(α1 − α2 λ) φ,3

B q1
(
c+13 + c+33α1 q1

) , (68)

and

∆ ψi −
1
c2

R
ψi,tt +

bh
q2

∆ ψi,3 =
a(λ α2 − α1)ψi,3

λ B q2
(
c+13 + c+33α1 q1

) . (69)

Once again, let us say that Equation (68) can be presented in terms of a pseudo-differential
equation on the surface x3 = 0 of the coated structure as
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∆ φ− 1
c2

R
φ,tt − bh

√
−∆ ∆ φ = − a(α1 − α2 λ)

√
−∆ φ

B
(
c+13 + c+33α1 q1

) , (70)

where
√
−∆ is the pseudo-differential operator (for more details, see reference [32]).

Therefore, (70) reduces to the plane strain problem (x1, x3, t); that is, it takes the
following form:

φ,11 −
1
c2

R
φ,tt − bh

√
−∂2

11 φ,11 = −
a(α1 − α2 λ)

√
−∂2

11 φ

B
(
c+13 + c+33α1 q1

) at x3 = 0. (71)

Certainly, Equation (71) leads to the acquisition of the resulting approximate dispersion by
using the solution φ(x1, 0, t) = f (0) eik(x1−ct), where c is the phase velocity, and f (0) is an
arbitrary function, which further results in obtaining

c
cR

=

√
1− b K +

a h(α2 λ− α1)

KB
(
c+13 + c+33α1 q1

) , (72)

with cR in the latter equation equally denoting the speed of the Rayleigh wave.

5. Model Verification

In the case of the absence of the coating layer and the Winkler elastic foundation, that
is, when h = 0 and a = 0, then (71) may be identical to the hyperbolic Equation (38) in
reference [24]. Moreover, for an isotropic material case, the specified elastic constants c∓mn
(m = n = 1, 2, 3) for the orthorhombic elastic now take the following reduced form:

c∓11 = c∓33 = λ∓ + 2µ∓, c∓13 = λ∓, c∓55 = 2µ∓, (73)

where λ∓ and µ∓ are the respective Lame’s elastic constants [42], then the equation ex-
pressed in (70) may be compared with Equation (5.3) of Dai et al. [32] while disregarding
the effect of external loading as follows:

∆ φ− 1
c2

R
φ,tt − b0h

√
−∆ ∆ φ = 0, (74)

where

b0 =
µ
(
1− β2

R
)

2B0

[
ρ− c2

R
µ−

(αR + βR)− 4βR

(
1− κ−2

0

)]
, (75)

with

B0 =
βR
αR

(
1− α2

R

)
+

αR
βR

(
1− β2

R

)
−
(

1− β4
R

)
, αR =

√
1−

ρ+c2
R

λ+ + 2µ+
, βR =

√
1−

ρ+c2
R

µ+
, (76)

and

µ =
µ−

µ+
κ0 =

√
λ− + 2µ−

µ−
. (77)

Furthermore, the approximate dispersion relation expressed in (72) may then be reduced,
leading to a similar approximate dispersion relation, as reported in reference [8], given as

c
cR

=

√
1− b0 K− b1 ζ

K
, (78)
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where

b1 =
µ αR

(
1− β2

R
)

2B0
, and ζ =

h a
µ−

. (79)

In short, it is part of the novelty of the present work to categorically state that various
considerations have been generalized by our examination. As an example, in the absence of
the reinforcement induced by the elastic Winkler foundation, the results of the present study
are reduced to those of Nobili and Prikazchikov, as reported in reference [24]. Further, when
the isotropic material case is considered, the present study matches the results obtained by
Dai et al. [32]. In the same vein, our finding coincides with the recent results of Mubaraki
and Almalki [8] in the absence of the action of magnetic field force.

In this regard, we endeavour here to numerically analyze the significance of the
imposed loading on the coated substrate, which was presided over by the elastic Win-
kler foundation. In light of this, the obtained approximate dispersion relation in (72)
for orthorhombic-coated orthorhombic half-space, is simulated numerically, considering
the combination of soft-stiff and stiff-soft materials, respectively. In fact, the cilicon (Si)
material [44] is sought after as a soft material, which admits the following material data:

c−11 = 11.6 GPa, c−13 = 5.4 GPa, c−33 = 16.6 GPa, c−55 = 9.5 GPa, ρ− = 2329 kgm3,

while for the stiff material, aluminum nitride (AIN) material [45] is considered, which has
the following physical data:

c+11 = 34.5 GPa, c+13 = 12.0 GPa, c+33 = 39.5 GPa, c+55 = 11.8 GPa, ρ+ = 3260 kgm3.

Thus, we have portrayed in Figures 2 and 3 the influence of the scaled dimensionless
Winkler foundation parameter ζ+ = ha

c+55
on scaled dimensionless phase speed c

cR
against

the dimensionless wavenumber K. More precisely, Figures 2 and 3 shows the variational
significance of the Winkler foundation parameter on the dispersion of waves in a soft-
coated stiff-substrate, and in stiff-coated soft-substrate structures, respectively. Notably,
from Figure 2, it is noted that an increase in the Winkler foundation parameter lessens the
acquired approximate dispersion relation through the phase speed versus the wavenumber
curve. Moreover, one can also observe that the dispersion relation attains its maximum in
the absence of the elastic Winkler foundation. Additionally, when a swap of materials is
made between the material constants of the coating and that of the half-space substrate
layers, as portrayed in Figure 3, that is, a media with stiff-coated soft-substrate, an op-
posite tread is realized. Thus, the choice of material or combination of materials is very
important with regard to the vibration analysis and design of dissimilar single, coated, and
multilayered structures.
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Figure 2. Influence of the scaled dimensionless Winkler foundation parameter ζ+ on scaled dimen-
sionless phase speed c

cR
versus the dimensionless wave number K on a Si-coated AIN-substrate.
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Figure 3. Influence of the scaled dimensionless Winkler foundation parameter ζ+ on scaled dimen-
sionless phase speed c

cR
versus the dimensionless wavenumber K on an AIN-coated Si-substrate.



Math. Comput. Appl. 2023, 28, 109 15 of 16

6. Conclusions

The present study asymptotically derived the approximate equations of motions and
dispersion relation governing the propagation of Rayleigh waves on a loaded orthorhombic-
coated orthorhombic elastic half-space. More precisely, the prescribed vertically loaded
excitation was presumed to be in favor of an elastic Winkler foundation. Indeed, perfect
continuity conditions were imposed between the coated layer and elastic half-space. Cer-
tainly, the derived model was found to comprehensively capture the physical characteristics
of elastic surface waves, where the propagation of Rayleigh waves on the governing media
was described using a singularly perturbed hyperbolic equation, admitting a pseudo-
differential operator. Furthermore, upon utilizing the long-wave limit approximation for
elastic surface waves, the decay over the interior of the half-space was described using a
pseudo-static elliptic equation, through the acquisition of appropriate effective boundary
conditions; further, the significance of the thin coating layer on the dispersion of surface
waves on the coated structure was equally examined. Finally, as the orthorhombic material
happened to generalize several other materials of real-life relevance, the present study then
serves as an interesting monograph for the examination of the dispersion of surface waves
on coated media in the fields of linear elasticity and material science.
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