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Abstract: In this paper we develop an approach for obtaining the solutions to systems of linear
retarded and neutral delay differential equations. Our analytical approach is based on the Laplace
transform, inverse Laplace transform and the Cauchy residue theorem. The obtained solutions have
the form of infinite non-harmonic Fourier series. The main advantage of the proposed approach is
the closed-form of the solutions, which are capable of accurately evaluating the solution at any time.
Moreover, it allows one to study the asymptotic behavior of the solutions. A remarkable discovery,
which to the best of our knowledge has never been presented in the literature, is that there are some
particular linear systems of both retarded and neutral delay differential equations for which the
solution asymptotically approaches a limit cycle. The well-known method of steps in many cases is
unable to obtain the asymptotic behavior of the solution and would most likely fail to detect such
cycles. Examples illustrating the Laplace transform method for linear systems of DDEs are presented
and discussed. These examples are designed to facilitate a discussion on how the spectral properties
of the matrices determine the manner in which one proceeds and how they impact the behavior of the
solution. Comparisons with the exact solution provided by the method of steps are presented. Finally,
we should mention that the solutions generated by the Laplace transform are, in most instances,
extremely accurate even when the truncated series is limited to only a handful of terms and in many
cases become more accurate as the independent variable increases.

Keywords: systems of linear delay differential equations; retarded; neutral; Laplace transform;
non-harmonic Fourier series; limit cycles
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1. Introduction

Time delays appear in many systems and applications. The main aspect to consider
in these systems is that the output depends on inputs to the system at previous times [1].
Differential equations that contain time delay effects are called delay differential equations
(DDEs). In these equations the derivative of the state variables depend on the state variables
or even on the time derivatives at previous times. Applications of DDEs appear in many
different fields such as applied mathematics, physics, epidemiology and engineering [2–10].
Retarded DDEs (RDDEs) are equations where the time delay only appears in the state
variable. Neutral DDEs (NDDEs) are equations where the time delays appear in both the
state variables and their time derivatives. Overall, DDEs have a higher degree of complexity
than ordinary differential equations (ODEs). A system may become unstable due to the
time delay, and periodic solutions may then develop [9,11]. In particular in this article
we deal with systems of linear RDDEs and NDDEs. There are many applications of these
systems to real world problems. For instance, systems of NDDEs arise when modeling
circuits that include delayed elements [12]. More specifically, they include circuits related
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to transmission lines and partial element equivalent circuits [12]. Another area where linear
DDEs arise is in micro electro mechanical systems (MEMS) [13].

The development of techniques for discovering analytical or numerical solutions of
DDEs has been the subject of numerous investigations [5,14–23]. For instance, in [24],
a numerical method based on finite differences was developed for solving linear first
order NDDEs. In [25], the authors numerically solved linear fractional DDEs using the
Chelyshkov matrix method. Another interesting work is presented in [26]. The authors
developed a block multistep method to deal with the propagation of derivatives disconti-
nuities in NDDEs. The numerical approach adapted the block multistep method with the
Runge–Kutta Fehlberg variable step strategy to find the solution. A recent work developed
a numerical methodology to solve non-autonomous linear DDEs [27]. The methodology is
based on the use of a spectral discretization of the delayed part to transform the original
problem into a matrix linear ODE and then is solved by numerical integrators based on the
Magnus expansion.

The method of steps (MoS) is a traditional approach, which is frequently used to
obtain the analytical solution of DDEs [9,28–30]. This approach produces a piecewise
analytical solution that is exact. However, because of the expression swell phenomenon,
the procedure of stages frequently fails to give the solution after several steps [28,31,32]. As
a result, the MoS approach in most instances cannot predict how the solution will behave
over a lengthy period of time. DDEs have also been solved using many different numerical
methods [19,33,34].

Recently, a variety of linear DDEs have been solved using the Laplace transform
(LT) [16,32,35,36]. For instance, in [36], the authors computed solutions that featured
resonance for linear DDEs. Furthermore, in [29], the Laplace transform method (LTM) was
employed by the authors to look at the stability of linear DDEs. In addition, in [37], the
authors used the LT to establish the stabilities of fractional systems of first-order linear
differential equations. For systems of DDEs several works have been developed to find the
solutions [38–42]. For instance, in [38], the authors developed a mathematical approach for
the analytical solution to systems of linear RDDEs using the matrix Lambert function. This
approach uses matrix operations and the concept of the exponential of a matrix. However,
this approach requires that the coefficient matrices commute. Moreover, as it has been
pointed out in [43], this previous approach based on the exponential matrix has some flaws;
therefore, it fails to provide an accurate solution. Later, in [41], the authors improved the
previous approach based on the exponential of a matrix to solve systems of linear RDDEs,
but for the general case where the coefficient matrices do not commute. This method
uses the LT to obtain solutions in the form of an infinite series that includes the matrix
Lambert function. On the other hand, in [42], the author developed a method based on
Galerkin approximations to obtain numerical solutions of nonlinear NDDEs. In [39], the
authors developed nonstandard finite difference schemes to obtain numerical solutions
to linear systems of RDDEs, with matrices A and B that commute and that, in general,
are not simultaneously diagonalizable. Interestingly, this requirement is similar to the
one presented in [38] where the approach is analytical instead of numerical. Later on,
the authors improved their approach to account for delay systems with non-commuting
matrices [40]. Recently, there have been improvements in regard to methods of solving
linear RDDEs [44–47]. For instance, in [44], the authors deal with linear differential systems
with a single delay and multiple delays with linear parts given by non-permutable matrices.
Some of these studies rely on the exponential matrix or approximations of it. In addition,
some of these methods require one to have a piecewise solution in different intervals
that depend on the time delays. These works have mainly focused on the existence
and uniqueness of the solutions, even though they provide the procedure to compute
the solutions.

In this paper, we study and develop a new approach for obtaining the analytical
solutions to systems of linear RDDEs and NDDEs. The proposed analytical approach is
based on the LT, inverse Laplace transform (ILT) and the Cauchy residue theorem. In some
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cases we can rely on the Lambert function to compute the poles, which are required for
computing the ILT and therefore the solutions. These solutions have the form of an infinite
non-harmonic Fourier series. The main advantage of the proposed approach is that the
solutions have closed-forms, which are capable of accurately evaluating the solution at any
time. In addition, the LT solution is not piecewise, unlike the MoS solution. Furthermore,
the methodology enables one to study the asymptotic behavior of the solutions and find,
for instance, limit cycles, which are not evident during the early transient dynamics. This
is a feature of the richer dynamics that DDEs offer, and that cannot occur for analogous
first order systems of linear ordinary differential equations. As a matter of fact, to the best
of our knowledge, this has never been presented in the literature before. A key step in
the LTM solution process, when it is applied to linear DDEs, is to evaluate the poles of
the transformed equation, in the s-space. There are infinitely many poles and different
methods can be used to find them [19,32,38,41]. The poles are then used to compute the
ILT, by means of the Cauchy residue theorem [48,49]. The resulting solutions are then
obtained in the form of an infinite non-harmonic Fourier series [32,50–52]. We present a
variety of examples illustrating the methodology in order to facilitate a discussion on how
the spectral properties affect the approach and the solutions.

The remainder of this paper proceeds as follows. In the next section, we recall some
basic definitions for DDEs and the LTM that are necessary to develop the proposed method-
ology. We present the methodology for solving systems of linear RDDEs and NDDEs
with the LTM with a general history. In Section 3, we present numerical results of the
implementation of the proposed methodology to systems of linear RDDEs and NDDEs.
We evaluate the reliability and accuracy of the solutions generated by the LT using the
exact analytical solutions provided by the MoS. Section 4 is devoted to a summary and
discussion of our conclusions.

2. Systems of Linear DDEs

In this paper, we are interested in solving the following general system of linear DDEs:

y′(t) = Ay(t) + By(t − τ) + Cy′(t − τ) , t > 0, (1)

along with the history function y(t) = H(t) , t ∈ [−τ, 0].
Here, y(t), H(t) ∈ Rn and A, B and C are time-invariant n × n matrices where the

delay τ is a positive constant. The existence and uniqueness of the solution of the linear
system (1) has been proved [11,53]. This new approach is based on the LT and the ILT. We
shall solve the linear DDE (1) for several different cases. Now, let us start by deriving the
LT solution.

2.1. Solving Linear Systems of DDEs by the LTM

Let us denote L(y(t)) = Y(s). Then it follows that

L(y(t − τ)) = e−sτY(s) + e−sτ
∫ 0

−τ
y(v)e−svdv (2)

and

L
(
y′(t − τ)

)
= se−sτY(s) + se−sτ

∫ 0

−τ
y(v)e−svdv − y(−τ). (3)

Then, applying the LT to (1), we obtain the matrix equation

Ys − y(0) = AY + (B + Cs)e−sτY + (B + Cs)e−sτ
∫ 0

−τ
y(v)e−svdv − Cy(−τ), (4)

or

(sI − A − (B + Cs)e−sτ)Y = H(0) + (B + Cs)e−sτ
∫ 0

−τ
H(v)e−svdv − CH(−τ). (5)
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The solution of the above equation can be expressed in the form

Y = D−1vh, (6)

where
D = sI − A − (B + Cs)e−sτ , (7)

and

vh = H(0) + (B + Cs)e−sτ
∫ 0

−τ
H(v)e−svdv − CH(−τ). (8)

Equation (5) can also be solved via Cramer’s rule, in which case

Yj =
det(Nj)

det(D)
, (9)

and Nj is the matrix formed by replacing column j in D with the vector vh. If all of the entries
in the history vector H(t) are bounded: h1 < H(t) < h2, and integrable for t ∈ (−τ, 0),
then it can be shown that any singularities resulting from the integral term in vh are
removable [32]. In that case, all of the relevant poles are determined by the roots of the
(characteristic) equation

D(s) = det(sI − A − (B + Cs)e−sτ) = 0. (10)

A key step in the LTM solution process, when it is applied to linear DDEs, is to evaluate
all of the poles of the transformed equation, in the s-domain. For instance, Maple software
is capable of computing these poles, but it relies upon the user providing it with an accurate
initial guess. This can be challenging for certain systems, particularly when two or more of
the n (infinite) sequences of poles are clustered close together.

2.2. Computation of the Complex Poles

In order to gain some insight into the locus of the poles, we can divide (10) by sn. The
resulting approximated characteristic equation,

det(I − Ce−sτ) = 0 or det(C − Iesτ) = 0, (11)

can then be used to obtain estimates for the location of the poles (for |s| large, and Im(s) > 0).
These estimates can then be used as the initial guesses for determining the actual poles.
For additional details, we refer the interested reader to previous works [36,54]. Observe
that the second equation (above) is essentially an exact match with the eigenvalue equation
for C. Assuming that the matrix C is non-singular, with distinct eigenvalues one gets n
(infinite) sequences of poles, with approximate locations given by

sj,k =
ln(λj) + 2kπi

τ
j ∈ N, k ∈ N, (12)

in which λj is the relevant eigenvalue.
Other possibilities exist such as a repeated eigenvalue. Oftentimes, if we have a

repeated eigenvalue, then the complex poles will be clustered fairly close together. However,
for n small, one can compute the respective sequences of poles (separately) by factoring
D(s). For example, for a 2 × 2 system, D(s) can be factored via the quadratic formula as
D(s) = (e−sτ − f1(s))(e−sτ − f2(s)). After which, we can determine the relevant sequences
of actual poles from the two respective factors. Interestingly, we do have one example (a
NDDE featuring a limit cycle) in which the matrix C has a repeated eigenvalue. In this
example, however, one can obtain exact formulas for all of the poles. We shall discuss this
in further detail in Section 3.2.

There is also a case for which exact expressions for the poles can be found. If
CA + B = 0, then



Math. Comput. Appl. 2024, 29, 11 5 of 17

det(sI − A − (B + Cs)e−sτ) = det(sI − A − C(sI − A)e−sτ) = det(sI − A)det(I − Ce−sτ) (13)

and since this determinant must equal zero at the poles, it follows that

rj,k =
ln(λj) + 2kπi

τ
, k ∈ N (14)

and
rj = µj, (15)

where the λj and µj are the respective eigenvalues of C and A. Note that to distinguish
the approximate locations where we use s, we shall switch to r when referencing the
actual poles.

Remark 1. All of these formulas are approximates (or exact expressions) for the locations of the
complex poles above the real axis. We know that once we have computed the actual poles and their
residues, the corresponding residues for the poles below the real axis are given by their conjugates.
As a matter of preference (and efficiency) we account for this, when applying the Cauchy residue
theorem by computing two times the real part of the residues above the real axis. It is also worth
mentioning that Maple software can solve (10) directly, using the fsolve command with the complex
option. A second option enables the user to specify a rectangle in the complex plane, in which the
particular root lies. We used this option in conjunction with the formulas for the approximate pole
locations, to compute the actual poles. In most of our examples, the relevant do-loop was able to
achieve this for all k ∈ [2, N], with N being the value at which the series solution is truncated.

2.3. Computation of Poles for RDDEs

For a RDDE (C = 0)

y′(t) = Ay(t) + By(t − τ) , t > 0, (16)

the analogous formulas for the approximate loci of the complex poles (for |s| large, and
Im(s) > 0) can be obtained from the equation

det(Isesτ − B) = 0, (17)

which is essentially an exact match with the eigenvalue equation for B. Assuming the
matrix B is non-singular and has distinct eigenvalues, it follows that one gets n (infinite)
sequences of poles with approximate loci given by

sj,k =
Wk(τλj)

τ
j ∈ N, k ∈ N, (18)

where Wk denotes the Lambert function [19,55–58].
However, if the matrices A and B commute, we can obtain exact formulas for all of

the poles. If we assume the eigenvalues of B are distinct, then A and B can be diagonalized
using the same eigenvectors, in which case

∣∣sI − A − Be−sτ
∣∣ = n

∏
j=1

(s − µj − λje−sτ), (19)

where µj and λj are the respective corresponding eigenvalues of A and B.
Therefore, the complete sequence of poles is given by

rj,k = µj +
1
τ

Wk(τλje
−µjτ), j = 1, 2, . . . , n. (20)
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Let us restrict our brief discussion about the real poles to the case when the coeffi-
cient matrices are all 2 × 2. The exact number of real roots is determined by the matrix
entries/parameters and τ. For NDDEs, there can be at most six, because if all of the matrices
were diagonal, then the characteristic equation would be

D(s) = (s − A11 − (B11 + C11s) e−sτ) (s − A22 − (B22 + C22s) e−sτ) = 0. (21)

And it is possible, although granted unlikely, for both of these factors to have three
real roots. For RDDEs, however, there can be at most four. The real poles can be computed
by plotting the graph of D(s) for s real, then using the (approximate) points where the
graph intersects the s-axis as the initial guesses for determining the actual poles.

Obviously, other methods can be used to find the poles. Regardless of the method,
once the poles have been computed one can apply the Cauchy residue theorem to ob-
tain the solution y(t). If all of the poles are order one, the residues can be computed
using L’Hopital’s rule. If this is how one decides to proceed, then, in conjunction with
Cramer’s rule,

cj,k =
det(Nj)

D′(s)

∣∣∣∣
s=rj,k

. (22)

Thus, for a DDE with M real poles,

yj(t) =
M

∑
m=1

cj,merj,mt + 2

[
Re

∞

∑
k=1

cj,k erj,kt

]
, j = 1, 2, . . . , n. (23)

where cj,k denotes the residue of the complex pole at s = rj,k and cj,m denotes the residue of
the real pole at s = rj,m.

We will see in the next section that the solutions generated by the LTM are reliable
and valid over the entire time domain. On the other hand, the MoS can rarely produce a
solution that is capable of evaluating y(t) for t large.

3. Examples of Systems of Linear RDDEs and NDDEs

In this section, we present a variety of examples illustrating the implementation of
the proposed methodology for obtaining solutions to the linear DDE (1). In particular, we
consider examples of systems of first-order linear RDDEs and NDDEs. First, we consider
two RDDEs for which we can use the Lambert function to compute the poles. We then
consider three additional RDDEs for which the poles must be computed numerically. The
fourth example features a system for which the solution approaches a limit cycle, and the
final RDDE example involves a system with 3 × 3 matrices. For NDDEs, we present two
examples. First, we consider a system where the solution approaches an equilibrium point.
We conclude with an example, for which the solution approaches a limit cycle. For all of the
examples, we compute the errors by comparing the LT solution with the analytical solution
that is obtained by the MoS.

3.1. Linear RDDEs

In this subsection, we deal with linear systems of the form y′(t) = A y(t) + B y(t − τ).
We first consider the simple case where the matrix A = 0.

Example 1. Consider the following linear system of RDDEs:

y′(t) =
[
−1 3
1 −2

]
y(t − τ), t > 0, (24)

y(t) = H(t) =
[

1
1/2

]
, t ∈ [−τ, 0].
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where τ = 1 and y ∈ R2. In this example, the characteristic equation is derived from the following
matrix

sI − B e−sτ .

Taking the determinant of this matrix and setting it to zero, one obtains the characteristic
equation

s2 + 3se−s − e−2s =

(
s −

(
−3

2
+

√
13
2

)
e−s

)(
s −

(
−3

2
−

√
13
2

)
e−s

)
= 0.

In this case, we can obtain exact expressions for the two infinite sequences of poles in terms of
the Lambert function. In particular,

r1,k = Wk

(
−3

2
+

√
13
2

)
,

and

r2,k = Wk

(
−3

2
−

√
13
2

)
.

Figure 1 depicts the solution given by the LTM. We also include the graph of the
solution in the phase space. In this example the solution becomes unbounded due to the
fact that at least one pole has a positive real part, i.e., Re(rik) > 0. In Figure 2, we include
the graph of the absolute errors. The LT solution is very accurate despite the fact that we
only used 50 terms in this example. Notice that the error decreases with time.

Figure 1. Solution of the linear system of RDDEs (24) over t ∈ [0, 10τ] using the LTM (left). The compo-
nents of the solution are y1(t) (blue) and y2(t) (red). Solution in the phase space for t ∈ [0, 14] (right).

Figure 2. Absolute errors of the solution of the linear system of RDDEs (24) over t ∈ [0, 10τ] using
LTM. Absolute error for y1(t) (left) and y2(t) (right).

Example 2. Consider the following linear system of RDDEs:

y′(t) =
[
−5 0
0 −5

]
y(t) +

[
2 −1
−1 2

]
y(t − τ), t > 0, (25)

y(t) = H(t) =
[

1
2

]
, t ∈ [−τ, 0].

where τ = 3.

In this example we consider a system for which the matrices A and B commute. Recall,
that in Section 2 it was shown that when this is the case, we can obtain exact expressions
for both sequences of poles, in terms of the Lambert function. Therefore, substituting the
eigenvalues of A and B into (20), we find that
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r1,k =
1
3

Wk

(
9 e15

)
− 5,

and
r2,k =

1
3

Wk

(
3 e15

)
− 5.

Figure 3 depicts the exact solution given by the LTM. We also include the graph of the
solution in the phase space. The solution approaches the equilibrium point (0, 0). This is
due to the fact that all the poles have negative real part, i.e., Re(rj,k) < 0. In Figure 4, we
include the graph of the absolute errors. The LT solution is very accurate despite the fact
that we only used 50 terms in this example. Notice that the error decreases with time.

Figure 3. Solution of the linear system of RDDEs (25) over t ∈ [0, 10τ] using the LTM (left). The compo-
nents of the solution are y1(t) (blue) and y2(t) (red). Solution in the phase space for t ∈ [0, 20] (right).

Figure 4. Absolute errors of the solution of the linear system of RDDEs (25) over t ∈ [0, 10τ] using
LTM. For y1(t) on the (left) and y2(t) on the (right).

Example 3. Consider the following linear system of RDDEs:

y′(t) =
[
−1 −2
−1 −2

]
y(t) +

[
−3/2 0
−2 −1

]
y(t − 2), t > 0, (26)

y(t) = H(t) =
[

2 − t/2
2t + 3

]
, t ∈ [−2, 0].

In this example we consider a system where the matrices A and B do not commute. Recall,
as mentioned in Section 2, that when this is the case, we cannot obtain exact expressions for both
sequences of poles. We can, however, use the formulas given by (18) to obtain estimates for the
locus of the two infinite sequences of poles in terms of the Lambert function. These approximates are
given by

s1,k =
1
2

Wk(−2),

and
s2,k =

1
2

Wk(−3).

Figure 5 depicts a contour plot (in the complex plane) of the magnitude of D(s), in
which the actual poles lie within the closed blue curves. The sequence of red dots indicate
the approximate locations of the poles given by (18). Figure 6 depicts the exact solution
given by the LT solution. We also include the graph of the solution in the phase space. The
solution approaches an equilibrium point. In Figure 7, we include the graph of the absolute
errors. Even though we truncated the series in this example at N = 20, the LT solution is
highly precise.
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Figure 5. Sequence of poles in the complex plane for the linear system of RDDEs (26).

Figure 6. Solution of the linear system of RDDEs (26) over t ∈ [0, 10τ] using the LTM (left).
The components of the solution are y1(t) (blue) and y2(t) (red). Solution in the phase space for
t ∈ [90, 200] (right).

Figure 7. Absolute errors of the solution of the linear system of RDDEs (26) over t ∈ [0, 10] using
LTM. For y1(t) on the (left) and y2(t) on the (right).

Example 4. Consider the following linear system of RDDEs:

y′(t) =
[
−3 w1
0 w2

]
y(t) +

[
0 −π
π 0

]
y(t − τ), t > 0, (27)

y(t) = H(t) =
[

8
0

]
, t ∈ [−τ, 0].

where w1 = 17π2+324π
√

3−324
18π

√
3+324

, w2 = −π(37π−18
√

3)
6π

√
3+108

and τ = 1.

In this example we consider a system in which the solution asymptotically approaches
a limit cycle. As was the case in the previous example, the matrices A and B do not
commute. Therefore, we rely on numerical methods to compute the poles, using (18) to
provide the initial guesses. The eigenvalues of B are given by λ = ±iπ; therefore, the
approximated locations of the complex poles for |s| large and Im(s) > 0 are given by

s1,k =
Wk(iπτ)

τ
and s2,k =

Wk(−iπτ)

τ
, k ∈ N.

However, there is an additional complex pole at (exactly) r = iπ/6. This fact is relevant
in producing the limit cycle, since what plays the most crucial role in the asymptotic
behavior is the real part of the poles. If they are all negative, the solution will decay. In this
example, the design of the matrices A and B leads to a solution in which both y1 and y2 are
of the form

yj(t) = aj,1 sin
(π

6
t
)
+ aj,2 cos

(π

6
t
)
+ 2

[
Re

∞

∑
k=1

cj,kerj,kt

]
, j = 1, 2, (28)

where the real parts of all of the complex poles in the sum are negative.
Figure 8 depicts the exact solution given by the MoS and the LT solution. We also

include the graphs of the LT solution in the phase space for different time intervals. The
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solution approaches a limit cycle (an ellipse), but certainly not in an obvious way. Observe
that in Figure 8 (plot in the middle), where the t-range has passed well beyond that of the
MoS solution, that there is still no compelling evidence to suggest that the solution will
eventually stabilize. As a matter of fact the behavior of the solution seems chaotic. This is
because the first term in the sum decays very slowly and therefore continues to perturb the

limit cycle until around t = 500, after which
∣∣∣∣2[Re

∞
∑

k=1
cj,kerj,kt

]∣∣∣∣ < 1.0 × 10−6.

This is a remarkable aspect of some particular linear systems of RDDEs, since this type
of dynamic behavior is not achievable for analogous (in this case, first-order 2 × 2) linear
ODE systems. On the left hand-side of Figure 9, we include the graph of the absolute
errors of each of the components of the LT solution. The LT solution becomes increasingly
more accurate as t increases. For example, the maximum error for t > 6 is approximately
10−11. On the other hand, on the right-hand side of Figure 9, it can be seen that the error
of the numerical solution produced by the dde23 built-in Matlab function increases and
that it is much larger than the one generated by the analytical LT solution. Similar results
have been found for other types of linear DDEs [32,59]. It is important to remark that the
truncated LT solution was produced with only 15 terms, and can be evaluated at any time t.

Figure 8. Solution of the linear system of RDDEs (27) over t ∈ [0, 12] using both the MoS and the
LTM (left). The components of the solution are y1(t) (dashed-blue) and y2(t) (solid red). Solution
(LT) in the phase space for t ∈ [0, 36] (middle) and for large t (right).

Figure 9. Errors of the truncated LT solution (15 terms) of the linear system of RDDEs (27) over
t ∈ [0, 10] (left-hand side) and over t ∈ [6, 10] (middle). Errors of the numerical solution (dde23) of
the linear system of RDDEs (27) over t ∈ [0, 10] (right-hand side).

Example 5. In this example we present a system in which the matrices A, B ∈ R3×3.

y′(t) =
11

100

−2 −1 0
−1 −2 0
1 0 −2

 y(t)− 1
5

0 2 3
0 4 5
1 0 0

 y(t − 2), t > 0, (29)

y(t) = H(t) =

1 − 2t − t2

−2t2 − 4t
4 + t2

, t ∈ [−2, 0].



Math. Comput. Appl. 2024, 29, 11 11 of 17

Here, the matrices A and B do not commute. Consequently, we again rely on (18) to obtain the
approximates for the locus of the three infinite sequences of poles. These approximates are given by

sj,k =
Wk(τλj)

τ
, j = 1..3 , k ∈ N

in which the three eigenvalues of B are 1/5 and −1/2 ±
√

17/10. As is the case with most of
our examples, these approximates are sufficiently close to the actual complex poles so that one can
compute them all in a single do-loop.

Remark 2. It is, however, worth emphasizing that from a practical standpoint, one must truncate
the LT series solution. In this example, we used N = 15; hence, the do-loop only computed 45 of the
actual poles.

Figure 10 clearly depicts the locus of the three sequences of poles in the complex plane.
Figure 11 depicts the exact solution given by the MoS and the LT solution. We also include
the graphs of the LT solution in the phase space. In Figure 12, we include the graph of
the absolute errors of each of the components of the solution. The LT solution is relatively
accurate despite the fact that we only used 15 terms in this example. Notice that the error
decreases with time.

Figure 10. Sequence of poles in the complex plane for the linear system of RDDEs (29).

Figure 11. Solution of the linear system of RDDEs (29) over t ∈ [0, 16] using the MoS and the
LTM (left). The components of the solution are y1(t) (dashed), y2(t) (solid) and y3(t) (dashed-point).
Solution (LT) in the phase space for t ∈ [0, 25] (right).

Figure 12. Absolute errors of the solution of the linear system of RDDEs (29) over t ∈ [0, 10] using
LTM. For y1(t) on the (left), y2(t) on the (middle) and y3(t) on the (right).

3.2. Linear NDDE Examples

In this subsection, we deal exclusively with examples of systems of first-order linear
NDDEs. As mentioned before, oftentimes for the NDDEs, we need to rely on numerical
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methods to compute the poles or roots of the characteristic equation. The linear systems
have the following form y′(t) = A y(t) + B y(t − τ) + C y′(t − τ).

Example 6. Consider this first linear system of NDDEs:

y′(t) = −1
6

[
5 1
2 8/3

]
y(t) +

1
3

[
1 1
2 1

]
y(t − τ) +

2
9

[
−3 1
4 −1

]
y′(t − τ), t > 0, (30)

y(t) = H(t) =
[
(τ/2 − t)2

−(τ + t)t

]
, t ∈ [−τ, 0].

where τ = 2. In this example, the matrices in (30) do not satisfy the condition CA + B = 0. Hence,
the required complex poles must be computed numerically. Recall, that for a NDDE the approximate
placements of these poles for |s| large and Im(s) > 0 are given by (12). Therefore, substituting the
eigenvalues of C into (12) provides one with the sequences of initial guesses

s1,k =
ln(−4/9 + 2

√
5/9) + 2kπi

τ
, s2,k =

ln(−4/9 − 2
√

5/9) + 2kπi
τ

, k ∈ N. (31)

Remark 3. The eigenvalue λ2 = −4/9 −2
√

5/9 is negative. When this is the case, it is advisable,
for some softwares, to use the equivalent initial guess s2,k =

ln(|λ2|)+(2k−1)πi
τ .

All of the complex poles have negative real parts, and there are three real poles: two
with negative real parts (s = r−1, r−2,) and the other at exactly s = r = 0. Therefore, the
solution assumes the form

yj(t) = aj,0 + aj,1 er−1t + aj,2 er−2t + 2

[
Re

∞

∑
k=1

cj,k erj,kt

]
j = 1, 2, (32)

with the coefficients being given by (22). Hence, the solution approaches a stable equilib-
rium point at (a1,0, a2,0) = (46/77, 138/77) as t → ∞.

Figure 13 depicts the location of the sequence of poles in the complex plane. Notice
that there are two clear sequences of poles. Figure 14 depicts the solution given by the
LT solution. It includes the plot in the phase space. The solution approaches a stable
equilibrium point. In Figure 15, we include the graph of the absolute errors. The LT
solution is relatively accurate despite the fact that we only used 50 terms. Notice that the
error decreases with time.

Figure 13. Sequence of poles in the complex plane for the linear system of NDDEs (30).

Figure 14. Solution of the linear system of NDDEs (30) over t ∈ [0, 50] using the LTM (left). The
components of the solution are y1(t) (blue) and y2(t) (red). Solution in the phase space for t ∈ [30, 50]
(right).
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Figure 15. Absolute errors of the solution of the linear system of NDDEs (30) over t ∈ [0, 50] using
LTM. For y1(t) on the (left) and y2(t) on the (right).

Example 7. Consider the following linear system of NDDEs:

y′(t) =

 1
24 +

ln( 29
30 )

6 − 1
40 +

ln( 29
30 )

2

− 1
72 +

5 ln( 29
30 )

18
1

120 +
5 ln( 29

30 )
6

y(t) +

− 1
24 − ln( 29

30 )
6

1
40 − ln( 29

30 )
2

1
72 − 5 ln( 29

30 )
18 − 1

120 − 5 ln( 29
30 )

6

 y(t − 2)

+

[
1 0
0 1

]
y′(t − 2), t > 0, (33)

y(t) = H(t) =

 5 − (t + 1)2 sin(3πt)− 1
5 (t

2 − 1)− 2
5
( 29

30
)t

− 5
3 + 1

3 (t + 1)2 sin(3πt)− 1
3 (t

2 − 1)− 2
3
( 29

30
)t

, t ∈ [−2, 0].

In this final example, we present a system where the solution asymptotically approaches a limit
cycle. The matrices in this NDDE satisfy the condition CA + B = 0. Recall, from Section 2, that
this enables one to acquire exact expressions for all of the poles, using the factorization

D = sI − A − (B + Cs)e−sτ = (sI − A) (I − Ce−sτ). (34)

From which, it follows that

det(D) = (s − 1/20) (s − ln(29/30)) (1 − e−sτ)2. (35)

The complex poles (for Im(rk) > 0) are determined by the (1− e−sτ)2 factor, and are therefore
given by

rj,k =
ln(λj) + 2kπi

τ
=

2kπi
τ

j, k ∈ N. (36)

Remark 4. The matrix C has a repeated eigenvalue, λ = 1 (with multiplicity 2). And there are
four real poles, at r = 1/20, r = ln(29/30) and r = 0 (with multiplicity 2). Dealing with an
infinite sequence of complex poles of order 2 typically requires one to incorporate the appropriate
modifications, when applying the Cauchy residue theorem to compute the ILT [36]. Fortunately,
it is not necessary to do so for this particular system. Observe that the matrix D can be (further)
factored as

D = (1 − e−sτ) (sI − A). (37)

And as a result, both of the numerators (determinants) in (9) include a common factor of
1 − e−sτ . It can also be shown, however, that there is an additional common factor of (s − 1/20).
Therefore, when simplified, one finds that

Yj =
det(Nj)

det(D)
=

(1 − e−sτ) (s − 1/20) Rj(s)
(s − 1/20) (s − ln(29/30)) (1 − e−sτ)2 , (38)

where Rj(s) denotes the remaining terms, once the common factors are removed, and where
Rj(ln(29/30)) ̸= 0. From which, it is now evident that what we have is a removable singu-
larity at r = 1/20, two real poles, both of order one, at r−1 = ln(29/30) and r0 = 0, along with
an infinite sequence of order one complex poles (above the real axis) at rj,k =

2kπi
τ .
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Therefore, the solution assumes the form

yj(t) = aj,0 + aj,1

(
29
30

)t
+ 2

[
Re

∞

∑
k=1

cj,k e
2kπi

τ t

]
j = 1, 2, (39)

with the coefficients being given by (37). For example, cj,k =
1
2

Rj(
2kπi

τ )

( 2kπi
τ −ln(29/30))

.

Notice, by virtue of the fact that all of the complex poles have zero real part, that the
series component of the solution is a regular harmonic Fourier series. Hence, as t → ∞,
both y1(t) and y2(t) oscillate steadily with a frequency of τ = 2. This can be seen clearly
on the left-hand side of Figure 16 where the solution given by the LT solution is displayed.
Figures 16 and 17 also include plots in the phase space. Observe that on the right-hand
side of Figure 16 where the t-range is small, but has surpassed that of the MoS solution,
there is scant evidence to suggest that the solution will eventually stabilize. However, it
appears that for t = 120 to 150, the LT solution eventually stabilizes to the limit cycle, as
observed on the right-hand side of Figure 17. In Figure 18, we include the graph of the
relative errors. The LT solution is relatively accurate despite the fact that we only used
50 terms. In this particular example the error does not asymptotically approach zero but it
has a lower bound. This bound appears due to the fact that the functions y1(t) and y2(t)
asymptotically approach a periodic steady state. The correct LT solution must therefore do
likewise, which explains why the sum in (39) is a regular Fourier series. As a consequence,
as t → ∞, the truncated LT solution exhibits the same type behavior as, e.g., the regular
Fourier cosine series for a saw tooth function, where the absolute error is also periodic,
with spikes at each of the endpoints. Note that the errors can be reduced by increasing the
number of terms in the series.

Figure 16. Solution of the linear system of NDDEs (33) over t ∈ [224, 232] using the LTM (left).
The components of the solution are y1(t) (blue) and y2(t) (red). Solution in the phase space for
t ∈ [0, 24] (right).

Figure 17. Solution of the linear system of NDDEs (33) in the phase space for t ∈ [120, 150] (left) and
t ∈ [329, 339] (right).

Figure 18. Relative errors of the solution of the linear system of NDDEs (33) over t ∈ [0, 30] using
LTM. For y1(t) on the (left) and y2(t) on the (right).
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4. Conclusions

In this work, we developed and implemented a new approach for obtaining analytical
solutions of systems of linear RDDEs and NDDEs. The proposed analytical approach
is based on the LT, ILT and Cauchy’s residue theorem. We discovered that there are a
variety of situations that can arise depending on the spectral properties of the matrices
and whether the system involves an RDDE or NDDE. For RDDEs the method for finding
the poles is dictated by the commutative property of the matrices A and B. The obtained
solutions have the particular form of an infinite non-harmonic Fourier series. One of the
main advantages of the proposed approach is the closed-form of the solutions, which are
accurate and easy to evaluate at any time. In addition, it allows one to study the asymptotic
behavior of the solutions. Thus, the proposed approach provides a practical solution for
the user community. Another remarkable result is that for some linear systems of both
retarded and neutral delay differential equations, the location of the poles, can lead to
solutions which approach asymptotically to a limit cycle. This is an interesting aspect since
this type of dynamic behavior is not achievable for autonomous systems of linear ODEs.
We provided several examples illustrating the methodology. The examples were designed
to facilitate a discussion on how the spectral properties of the matrices determine and
affect the procedure for computing the solution. These examples show the variability and
richness of the behavior of the solutions of DDEs. Finally, we made comparisons between
the LTM and the MoS solutions in order to show the reliability of the proposed approach,
even when the truncated series is limited to only a handful of terms. Future works or open
problems are related to dealing with repeated poles and discontinuous input functions in
linear systems of DDEs. This would require careful attention when applying the ILT and
the use of the Cauchy residue theorem.
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