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Abstract: This paper proposes the D2Q5 Lattice Boltzmann method (LBM) method, in two dimensions
with five discrete lattice velocities, for simulating linear sound wave propagation in closed rooms. A
second-order linear acoustic equation obtained from the LBM method was used as the model equation.
Boundary conditions at the domain boundary use the bounce-back scheme. The LBM numerical
calculation algorithm in this paper is relatively simpler and easy to implement. Parallelization
with the GPU CUDA was implemented to speed up the execution time. The calculation results
show that the use of parallel GPU CUDA programming can accelerate the proposed simulation
27.47 times faster than serial CPU programming. The simulation results are validated with analytical
solutions for acoustic pulse reflected by the flat and oblique walls, the comparisons show very good
concordance, and the D2Q5 LBM has second-order accuracy. In addition, the simulation results in
the form of wavefront propagation images in complicated shaped rooms are also compared with
experimental photographs, and the comparison also shows excellent concordance. The numerical
results of the D2Q5 LBM are promising and also demonstrate the great capability of the D2Q5 LBM
for investigating room acoustics in various complexities.

Keywords: parallel computation; lattice Boltzmann method; pulse propagation; acoustic

1. Introduction

Room acoustic simulation is widely used to design buildings, particularly for spe-
cialized purposes like music, theater, and other particular forms of entertainment, such
as “kabuki”, the Japanese traditional drama. Initial research on room acoustic simulation
was dominated by geometrical methods, such as ray tracing, beam tracing, and the image
source method. This method is relatively simple, and calculation results can be obtained
quickly. The main aspect of this method is the use of high-frequency sound waves so that
they propagate to resemble light transport. In actual situations, a sound wave can have a
low frequency, so the method fails to model phenomena such as diffraction, interference,
and scattering.

With the advancement of digital computers and the development of computational sci-
ence theory, wave-based methods have also evolved to become the primary choice in room
acoustic simulation research. In these methods, waves’ physical phenomena are modeled
mathematically in the form of partial differential equations and solved numerically. The
numerical methods included in the wave-based methods and which are often used are the
finite-differences time-domain method (FDTD) [1–4], the finite element method (FEM) [5,6],
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and the finite volume method (FVM) [7,8]. These methods have heavy computational loads,
especially FEM, which need a large matrices solver.

In the last few years, the lattice Boltzmann method (LBM) has been another approach
gaining importance. It has been developed as a new alternative method for numerical
modeling fluid flows and heat transfer [9,10]. Since LBM is a method that recovers to the
weakly compressible Navier–Stokes equation, small changes in density are still allowed.
However, this small change in density can simulate sound wave propagation.

Salomons et al. [11] studied the LBM application for simulating two-dimensional
sound wave propagation for various benchmark cases. They employed the D2Q9 model,
which is consists of nine velocity sets. A comparison between LBM results and solutions of
the acoustics equations showed that the LBM works well for sound waves, but excessive
dissipation of sound waves cannot be avoided. The LBM’s mesoscopic equations that
were expanded using the Chapman–Enskog procedure yielded the macroscopic Navier–
Stokes equations, which retained nonlinearity and viscous dissipation. They proposed
two ways to reduce the effect of dissipation by reducing the kinematic viscosity and
lattice spacing. Unfortunately, reducing the kinematic viscosity near the value of real
fluid made the LBM calculation unstable. Reducing lattice spacing causes an increasing
number of lattice nodes, and consequently, the computational load is getting higher. Several
researchers have used the multiple relaxation times (MRT) approach for collision operators
to provide almost actual viscosity values [12–15]. Modeling the propagation of acoustic
waves has been accomplished with success using this approach. Nonetheless, the devised
LBM systems result in weakly incompressible Navier–Stokes equations, which generate
streaming flow. Apart from this, because this approach uses the D3Q19 and D2Q9 models
for two-dimensional issues, it has a high computing load and requires a large amount
of memory.

Room acoustic simulation contains no fluid flow, and the amplitude of the sound
field is much smaller than the ambient pressure, so the effect of viscosity is small and
can be neglected. In this case, the sound field can be modeled using the scalar wave
equation [16]. Based on this fact, the conventional LBM mentioned above [11–15] is not
suitable, and researchers have begun to focus on developing the LBM to model the scalar
wave equation [17–22]. Chopard et al. [19,20] developed the LBM to model radio wave
propagation for the first time. Huang [21] proposed the LBM for modeling the acoustic
wave in geophysical areas. Li et al. [22] successfully developed the LBM for modeling wave
equations with the nonlinear damping and source terms, and Zhang et al. [23] proposed a
lattice Boltzmann model with higher-order accuracy for the wave motion. However, the
model consists of five velocity sets for a one-dimensional case. Shi et al. [24] employ the
multi-energy-level model to reduce dispersion and dissipation error successfully. Their
model needs nine velocity sets for the two-dimensional case. Zhang et al. [25] proposed a
multi-entropy-level lattice Boltzmann model for a two-dimensional sound wave equation.
The proposed method can be used to simulate sound wave propagation correctly, both
in still fluid or small perturbation compressible fluid flows. The shape of the diagram
lattice is a hexagonal polygon with 24 velocity sets. The development of the LBM method
for aeroacoustics modeling was reviewed by Shao and Li [26]. They proposed a LBM
scheme that yields Euler equations and perfectly matched layer (PML) boundary conditions.
Because it involves fluid flow and requires some complicated calculations, this method is
not appropriate for simulating room acoustics. Yan [27] developed the LBM for modeling
scalar wave propagation, and the results showed that the Chapman–Enskog expansion and
the lattice Boltzmann equation yield 1D and 2D linear wave equations with truncation errors
of order two. The model has second-order accuracy and only involves five velocity sets
(known as D2Q5, in two dimensions with five discrete lattice velocities). Velasco et al. [28]
construct the D3Q7 lattice Boltzmann model to simulate a three-dimensional wave equation
in general curvilinear coordinates. Dhuri and Hanasoge [29] analyze the D2Q5 and D2Q9
lattice Boltzmann methods for the simulation of linear acoustic wave propagation. They
employ both the single-relaxation-time BGK and the general multi-relaxation-time (MRT)



Math. Comput. Appl. 2024, 29, 12 3 of 23

collision operators. The model LBM developed by Yan [27] is more straightforward than
that of Dhuri and Hanasoge [29].

Due to the properties of the LBM method developed by Yan [27], we extend the method
for simulation of the sound wave propagation in complex geometries. The parallelization
using the GPU CUDA is proposed to reduce the time processing duration. It is aimed at
the nature of the locality of the system of equations of the LBM. In general, wave modeling
with LBM uses the D2Q9 scheme. This scheme requires relatively more RAM memory,
and the algorithm complexity and elapsed time are higher than they are with the D2Q5
scheme. Moreover, the D2Q9 scheme is equivalent to the weakly compressible Navier–
Stokes equation, so the D2Q9 scheme is better suited for modeling fluid flows or waves that
are nonlinear. The propagation of acoustic waves in a closed room is a wave propagation
phenomenon due to pressure disturbance with a weak amplitude, and consequently, the
equation is linear and the viscosity can be neglected. Thus, D2Q5 is more appropriate but
for modeling acoustic waves in a closed room.

In addition, although the theory underlying the LBM scheme and bounce-back bound-
ary condition is typical, we demonstrate that the D2Q5 LBM scheme method is less complex
than the acoustics equation in the traditional partial differential equation form. The nov-
elty of this study demonstrates that the D2Q5 scheme, despite being less complicated,
can accurately describe reflection and diffraction in spaces with complex geometries with
second-order precision. When relatively basic bounce-back is used, it is also demonstrated
that this boundary condition has high accuracy and can be used for more accurate acoustic
wave modeling [30]. Due to its accuracy, it also significantly contributes to the solution
of numerous challenging acoustic problems employing numerical modeling and parallel
computing. All findings are supported by a comparison of experimental photographs and
the in-depth analysis in this present study.

2. The Lattice Boltzmann Methods

The LBM is a kind of mesoscopic simulation method. It is assumed that fluid is
composed of fictitious fluid particles. Each particle’s streaming and collision processes are
calculated using a particle velocity distribution function [31]. One may obtain governing
equations at a macroscopic level by choosing a specific equilibrium distribution function
and using the Chapman–Enskog expansion. This work uses the scalar wave equation
obtained from the LBM for room acoustic simulation.

∂2 p
∂t2 = C2

s

(
∂2 p
∂x2 +

∂2 p
∂y2

)
(1)

This equation describes the acoustic wave propagation, where p denotes the pressure,
Cs is the sound velocity, t is time, and (x, y) are spatial coordinates.

Yan [27] proposes a new distribution function fα for the macroscopic quantity ∂p/∂t,
and the model has five velocity sets, as shown in Figure 1. Yan proved that the scalar wave
equation (Equation (1)) could be obtained from his model using Chapman–Enskog expansion.
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The evolution of the distribution function fi at position x and time t with the Bhatnagar–
Gross–Krook (BGK) approximation of the collision term can be written as follows:

fi(x + ei∆t, t + ∆t) = fi(x, t)− 1
τ

(
fi(x, t)− f eq

i (x, t)
)

(2)

where ∆x, ∆t, and τ are the lattice spacing, time step, and relaxation time and f eq
i is the equi-

librium distribution function, which can be obtained using the following expressions [27]:

f eq
0 = ∂p

∂t −
2λp
c2

f eq
i = 2λp

4c2 , i = 1, . . . , 4
(3)

The velocity set ei is given by

ei =

{
(0, 0), i = 0

c(1, 0), c(01, 1), c(−1, 0), c(0,−1), i = 1, 2, 3, 4
(4)

The relationship between mesoscopic speed (c), time step (∆t) and spatial step (∆x) is
expressed as follows:

c = ∆x/∆t (5a)

The parameter λ relates the relaxation factor (τ), the Knudsen number (ε), and the
speed of sound (Cs) as follows:

λ = C2
s /ε(τ − 0.5) (5b)

Yan [27] suggested that the Knudsen number is equivalent to a time step: ∆t = ε.
The calculation of Equation (2) consists of collision and streaming steps, which can be

expressed as follows:

f ∗i (x, t) = fi(x, t)− 1
τ

(
fi(x, t)− f eq

i (x, t)
)

(6a)

fi(x + ei∆t, t + ∆t) = f ∗i (x, t) (6b)

f ∗i is the post-collision particle distribution function. The streaming step is illustrated in
Figure 2.
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The quantity ∂p/∂t is chosen as the macroscopic quantity, and it is defined in terms of
the distribution functions as follows:

∂p(x, t)
∂t

=
4

∑
i=0

fi =
4

∑
i=0

f eq
i (7)
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The macroscopic pressure can be obtained by integrating Equation (1) using the
forward Euler method:

p(x, t + ∆t) = p(x, t) +
∂p(x, t)

∂t
(8)

A room may contain solid boundaries or obstacles that reflect the incoming waves.
The bounce-back boundary condition that returns the incoming flux with the opposite sign
can be adopted to model the reflection at the boundary site. This bounce-back boundary
condition is quite simple to be implemented [19–21,30].

3. Parallel GPU CUDA Implementation

The rapid development of computational power and GPUs’ availability attract re-
searchers to use GPUs for numerical simulation [32], including room acoustics model-
ing [33]. A survey on the LBM research for fluid simulation using GPUs was conducted by
Navarro-Hinojosa et al. [34]. This paper develops all LBM algorithms with C programming
language in the Visual Studio 2015 environment and Windows 10 operating system. The
GPU CUDA parallel programming accelerates the computation speed because the number
of lattices is relatively large (around 8.4 millions). The code written using CUDA C is of
two types [35]:

• The host code consists of functions running on the CPU sequent.
• The device code, which is executed on the GPU.

The specification hardware is the CPU I7 Intel processor with RAM 32 GB as the host
and NVIDIA GeForce GTX 1080 TI (11 GB memory) as the device. A double-precision
floating-point type is used for all the data in the simulations. The massive parallel compu-
tation is executed on the GPU.

The lattices in the geometry domain must be mapped to the threads. These threads
are organized into two-dimensional blocks, and each thread is indexed in the form of rows
and columns. Furthermore, the blocks are also organized into two-dimensional grids. The
block identification in the grid is similar to the thread identification in the block. An array
of threads executes a CUDA kernel. A kernel is a function that is invoked from the CPU
and runs on the GPU. The kernel execution and the thread organization are illustrated in
Figure 3.
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The general algorithm of the LBM for the solution of the acoustic equation can be
summarized as follows:

1. Read data: domain geometry (domain size, number of lattice Nx and Ny, location of
the source and the receiver), sound speed Cs, LBM parameter (c, ∆t).

2. Allocate arrays for the p macroscopic quantities ∂p/∂t and the distribution function
fi on the CPU memory and GPU memory using pointers.

3. Initialize p, ∂p/∂t and fi on the CPU memory and then copy to the GPU memory
using the cuda Memcpy command.

4. Set the size of threads per block and blocks per grid.
5. Start the time marching.
6. Compute equilibrium distribution function f eq

i using Equation (3).
7. Collision step (Equation (6a)).
8. Implement bounce-back boundary conditions.
9. Streaming step (Equation (6b))
10. Compute the macroscopic quantity using Equation (7) and the pressure using Equation (8).
11. Repeat step 6 to 10.
12. Write data.

The two programs (see Appendix A) are the initialization part of main program and
kernels that implement the collision, bounce-back boundary, and streaming.

4. Results and Discussion

The convergence rate of D2Q5 LBM is explained in detail before going into further
discussion. Two kind of error calculations are used to measure the convergence rate,
as follows:

e∞(t) =
∥∥∥pLBM − panalytic

∥∥∥
∞
= max

(∣∣∣pLBM(x, y, t)− panalytic(x, y, t)
∣∣∣)

e2(t) =
∥∥∥pLBM − panalytic

∥∥∥
2
=

√
N
∑
k
(pLBM(xk ,yk ,t)−panalytic(xk ,yk ,t))

2

N

(9)

where N is the total number of the lattice and the exact solution of pressure is defined
as follow:

p(x, y, t) = sin(2πx) sin(2πy) cos(2
√

2 πt); 0 ≤ x ≤ 1; 0 ≤ y ≤ 1 (10)

The numerical results were obtained at t = 1 using constant τ = 1, sound speed
Cs = 1 m/s, and mesoscopic speed c = 100 unit for various resolutions ∆x = (0.1, 0.05, 0.033,
0.025, 0.02). The convergence rate of the D2Q9 LBM is shown in Figure 4 as follows.

It can be seen from Figure 4 that the D2Q9 lattice Boltzmann has second-order accuracy.
Furthermore, the numerical error, i.e., the deviation between the numerical and the exact
solution, decreases proportionally to the square of the numerical resolution. This is in
accordance with the results obtained by Viggen [17], who performed the convergence rate
for D2Q9 LBM.

All simulations use constant sound speed Cs = 340 m/s and mesoscopic speed
c = 1000 unit. The domain geometries are closed rooms, with all walls being hard solids that
reflect waves perfectly. The initial conditions are ∂p/∂t = 0, and the pressure distribution
in the form of a smooth Gaussian pulse. The pulse is described as follows:

p(x, y) = e−((x−xs)
2+(y−ys)

2)/R2
(11)

where (xs, ys) is the center of the pulse and R denotes the width of the pulse.
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4.1. Simulation of Reflection Waves

This section aims to validate the numerical results of the LBM method, verify the
boundary condition, and the acceleration of the use of parallel GPU CUDA programming.
Two examples of acoustic wave simulations reflected by walls are used as examples of
calculations. The LBM numerical calculation results with a variety of resolutions compared
with exact solutions. The analytical solution of the composition of the direct wave and the
reflected wave, derived by Tam [36], is used to evaluate the LBM results. The analytical
solution is obtained using the virtual image concept, and it is given as follows:

p(x, y, t) =
∞∫

0

exp
(
−ξ2

4α

)
cos(Csξt)J0(ξη1)ξdξ +

∞∫
0

exp
(
−ξ2

4α

)
cos(Csξt)J0(ξη2)ξdξ (12)

where η1 =
√
(x − xs)

2 + (y − ys)
2, η2 =

√
(x − x′s)

2 + (y − y′s)
2, α = 1/R2, (x′s, y′s) is the

position of an image of a pulse center and J0 is the Bessel function of the first kind. The first
term of right-hand side terms describes the direct wave propagation, and the second term
describes the reflected wave. Once the exact solution has been calculated, numerical tests
for various mesh resolutions can be carried out to validate LBM’s accuracy.

The first example is the reflection of acoustic waves by a flat wall, and the room is a
rectangle of 20.48 × 10.24 m2 (Figure 5). The center of the Gaussian pulse (xs, ys) = (10, 2)
and the position of the image’s center (x′s, y′s) = (10,−2) are obtained using the bottom sur-
face wall as the mirror, while the receiver used to record the signal is put in position (10, 3)
and the width of the pulse R = 1/

√
30. Various mesh resolutions ∆x = (0.02, 0.01, 0.005)

meters were used to validate the LBM. Since the mesoscopic speed c is kept constant, time
steps are set to be ∆t = (20, 10, 5)× 10−7 second. The simulations are stopped when the
maximum of time Tmax = 21 ms is reached in order to avoid the wave hitting the upper
wall. The direct acoustic waves propagate radially with a constant sound speed until they
hit the bottom wall and are reflected upward. Figure 6 depicts the process of the reflection
of the acoustic waves by the flat bottom wall at times t = 3 ms, t = 9 ms, t = 15 ms, and
t = 21 ms. Figure 7a compares the LBM results and analytical solution of pressure at the
receiver. Figure 7b presents the difference between those results. An excellent agreement is
found between the analytical solution and the numerical results, thus validating LBM for
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the acoustic wave modeling. It is also shown that the accuracy of the LBM can be increased
by decreasing the ∆x.
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The second example is aimed to test the accuracy of LBM with an oblique wall as the
boundary condition. The room is a closed five-sided polygon made from a square-shaped
room with a solid wedge block. The oblique boundary is typically treated as staircases.
A set of Boolean masks for the pressure and the distribution functions is derived for the
staircase boundary handling [30]. The mask value in the lattice nodes in the air subdomain
is one, while the value in the solid subdomain is 0. The bounce-back boundary conditions
are implemented in the solid subdomain, where the mask values are zero. The staircase
boundary condition approach can also be used in a curved boundary condition. Figure 8
shows the second sample room’s shape, the center of the pulse (xs, ys) = (6, 6) and the
receiver positions (x, y) = (5, 7). The position of the center’s image (x′s, y′s) = (9.5, 2.5)
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is obtained by mirroring the position of the Gaussian pulse against the oblique surface wall.
Initial conditions and the width of the pulse are the same as in the first example. As before,
various mesh resolutions ∆x = (0.02, 0.01, 0.005) meters were used, and the time steps
were ∆t = (20, 10, 5)× 10−7 second. The simulations proceeded until time Tmax = 18 ms.
The snapshots of pressure pulse propagation are presented in Figure 9 at times t = 1.25 ms,
t = 5.00 ms, t = 8.75 ms, and t = 12.50 ms. The corresponding of the pressure record at the
receiver is presented in Figure 10a. Similar to the first example, Figure 10b shows that the
LBM’s accuracy increases if the mesh resolution increases. From both figures, it can be
inferred that LBM can handle oblique boundary conditions accurately.
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The performance of GPU implementation on the wave reflection simulation is de-
termined in this work. Two comparisons were made against implementing the same
algorithm of the LBM in the CPU. As described in Section 4.1, the following parameters
of mesh resolutions ∆x = (0.2, 0.1, 0.05) meter and time steps ∆t = (20, 10, 5)× 10−7

were used. The number of threads per block was 16 × 16. Table 1 compares GPU and
CPU performances for the simulation of wave reflection by the flat wall, the simulations
are obtained over 21,000 time steps, and the maximum speed up is 22.96. The comparison
for the simulation of wave reflection by an oblique wall obtained over 12,000 time steps
is shown in Table 2. Both of the tables show that the speed-up or the acceleration ratio
is quite varied, and the performance in GPU is even better than that in CPU, with the
lattice size increasing. Table 2 also confirms that the lattice size configuration significantly
impacts GPU’s performance; the speed-up can achieve 24.47. So, the performance of the
square lattice size in the second example is much better. The overall performance regarding
speed-up becomes substantially better in GPU than CPU programs whenever the lattice
size increases.

Table 1. Comparison of performances of LBM implementations in GPU and CPU of the first example,
obtained over 21,000 iterations.

No Lattice Size ∆x (m) ∆t (s) CPU Time (s) GPU Time (s) Speed-Up (×)

1 1024 × 512 0.020 2 × 10−6 367.33 18.74 19.61
2 2048 × 1024 0.010 1 × 10−6 1760.29 76.67 22.96
3 4096 × 2048 0.005 5 × 10−7 7491.60 340.97 21.97

Table 2. Comparison of performances of LBM implementations in GPU and CPU of the second
example, obtained over 12,000 iterations.

No Lattice Size ∆x (m) ∆t (s) CPU Time (s) GPU Time (s) Speed-Up (×)

1 608 × 608 0.020 2 × 10−6 213.48 9.66 22.09
2 1216 × 1216 0.010 1 × 10−6 961.13 37.68 25.51
3 2432 × 2432 0.005 5 × 10−7 4350.60 158.40 27.47
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4.2. Simulation of Acoustic Pulse Propagation in a Complicated Room

This section conducted two simulations to test the LBM’s capability to model pulse
propagation in a complex-shaped room. The LBM results were compared with sound pho-
tographs obtained by Osswald experimentally using the Schlieren imaging technique [37,38].
The sound photographs are in the public domain and provided by ETH Zurich [38]. Ex-
perimental data, such as room dimensions and pulse parameters, are unavailable, so the
data are only estimated for the simulation. The room geometry, particularly the position
of the pulse and the shape, is made to be as close as possible to the experimental data.
Figure 11a,b show the geometry of the two types of complicated rooms studied in this
paper. The red rectangular shape indicates the center of the pulse position, and the green
circle indicates the receiving position for recording the pressure pulse signal. The first type
of room contains geometric details in the form of a rectangle at the top and bottom of the
walls, while room Type 2 is more complicated with additional circular niches on the top,
bottom, and right of the walls. The complicated shape causes the complex phenomena
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of waves, such as reflection, diffraction, and interference of waves, to emerge. The initial
conditions are the same as the previous examples, i.e., ∂p/∂t = 0 and the smooth Gaussian
function for the pressure distribution.
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Figure 12a–d show the successive propagation of the acoustic pulse in room Type 1
(see also Figure 13). At first, the waves propagate in all directions. The left wall reflects the
waves to the right. The waves, which go up and down, are diffracted by rectangular solids
located in the upper and lower corners of the wall. With the progress of time, the number of
wavefronts increases due to multiple diffractions by some thin rectangular solids mounted
above and below the wall. The wave interference process is also well observed; when
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two wavefronts meet, the amplitude increases, marked by a darker red color. Like the pulse
propagation process in room Type 1, Figure 14a–d show the acoustic pulse snapshots in
room Type 2 (see also Figure 15). The difference between what happens in room Type 1 is
that some waves that enter the niches will be trapped, and only a tiny part of the waves
can return to the main chamber.
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The behavior of acoustic pulse propagation, such as reflection, diffraction, and inter-
ference, has been simulated well in a complicated room. The visualization of the simulation
results may deepen the intuitive understanding of acoustic wave behavior in arbitrary
sound fields, and to validate the simulation results, the sound photographs provided by
Ref. [38] are used for comparison. The successive sound photographs in room Type 1,
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shown in Figure 12, are compared with Figure 13. The photographs describing the acoustic
pulse propagation in room Type 2 are compared with Figure 15. Qualitatively, it can be
concluded that the numerical results obtained in the present work have excellent agree-
ment with those presented by experimental photographs. These comparisons illustrate the
potential of using LBM for studying acoustic wave propagation.

Figure 16a,b present the recording of pulse propagation at the receivers in each room.
There are so many spikes in the signal that indicate the wavefronts of the scattered waves.
The amplitude of the scattered waves in room Type 2 is lower than the scattered waves in
channel 1, and this happens because some waves are trapped in the niches of room Type 2.
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4.3. Comparison between LBM and FDTD Methods

A comparison of LBM calculations with FDTD is given in this section. Equation (1)
which models acoustic wave propagation in the traditional partial differential equation
form is solved numerically using the FDTD method. Equation (1) is converted into a system
of partial equations of order one as follows [39]:

∂p
∂t = −ρC2

s

(
∂vx
∂x +

∂vy
∂y

)
∂vx
∂t = − 1

ρ
∂p
∂x

∂vy
∂t = − 1

ρ
∂p
∂y

(13)
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where ρ is the air density, and
(
vx, vy

)
are acoustic particle velocity components.

By sampling data at different positions in a finite space–time lattice and employing
the finite differences method, the FDTD method approximates the continuous-wave field
in space and time. The FDTD method employs a staggered grids; the pressure and the
velocity components are stored at different positions, as depicted in Figure 17 [39].
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The FDTD method has difficulty dealing with non-rectangular domains due to the or-
thogonal grid structure of the FDTD. The non-rectangular domain boundaries are typically
treated as staircases, which may cause degradation of the numerical solution accuracy. The
second problem of Section 4.1 is used as an example of comparing LBM calculations with
FDTD. The domain has an oblique boundary which is treated as the staircase boundary as
depicted in Figure 18. Regarding how to handle non-rectangular boundaries, the FDTD and
LBM approaches are very similar. However, the FDTD method’s calculations are more com-
plex than those of the LBM method because the pressure and particle velocity components
are positioned differently. Similar to the LBM method calculation, a set of masks for the
pressure and particle velocity grids is needed for the FDTD method calculation [39]. The
masks are a collection of grids that match the simulation’s pressure and particle velocity
grids. A grid point will be included in the simulation space if the matching mask value
for that grid point is 1 (air region), and it will be excluded from the simulation space if the
mask value is 0 (solid wedge block). The implementation of the FDTD staircase boundary
conditions is complicated and cumbersome.
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In this simulation, the position of the pulse center is at (xs, ys) = (7, 5), the receiver
positions is at (x, y) = (5, 7), and the mesh resolutions are ∆x = 0.01 Figure 19a compares
the LBM and FDTD results with analytical/exact solution of pressure at the receiver.
Figure 19b presents the difference between those results. From both figures, it can be
inferred that accuracy of the FDTD and the LBM methods are almost the same.

Math. Comput. Appl. 2024, 29, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 18. Staircase boundary. 

 
(a) 

Figure 19. Cont.



Math. Comput. Appl. 2024, 29, 12 19 of 23Math. Comput. Appl. 2024, 29, x FOR PEER REVIEW 21 of 25 
 

 

 
(b) 
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5. Conclusions and Future Works 
In this paper, we extended the D2Q5 LBM to simulate two-dimensional acoustic 

pulse propagation in closed rooms using CUDA C parallel programming. We showed 
that the D2Q5 scheme has prospective potential as an alternative for modeling acoustic 
wave propagation, besides using conventional acoustic equations. This study signifi-
cantly contributes to the solution of numerous challenging acoustic problems employing 
numerical modeling and parallel computing. To the best of our knowledge, the D2Q5 
scheme and its parallel programming have never been used for acoustic modeling for real 
problems. The proposed simulation can be accelerated 27.47 times faster, where the 
hardware is the Nvidia GeForce GTX 1080 TI GPU and the processor of CPU is Intel I7. 
Some key points for the concluding remarks can be summarized as follows: 
• A comparison of the numerical simulations of the D2Q5 LBM with the analytical 

solutions shows that the D2Q5 LBM has second-order accuracy. 
• Comparing the snapshots of pressure fields of the LBM in the complicated rooms 

with the experimental sound photographs also shows excellent agreement. 
• The complex behavior of wave propagation in closed rooms, such as reflection, 

diffraction, and interference, can be simulated well using the LBM method. The 
numerical results of LBM are promising, and we also demonstrate the LBM’s capa-
bility for studying room acoustic. 

Author Contributions: Conceptualization, P. and A.T.W.; methodology, P.; validation, P. and 
D.B.S.; formal analysis, P. and D.B.S.; investigation, P.; resources, A.T.W.; data curation, D.B.S.; 
writing—original draft preparation, P. and A.T.W.; writing—review and editing, P. and A.T.W.; 
supervision, A.T.W.; project administration, D.B.S. and A.T.W.; funding acquisition, A.T.W. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is 
not applicable to this article. 

Figure 19. Comparisons of signal recorded at the receiver (a) comparison between numerical (LBM
and FDTD) pressure and analytical solutions of pressure at the receiver; (b) discrepancies of numerical
(LBM and FDTD) and analytical solutions.

5. Conclusions and Future Works

In this paper, we extended the D2Q5 LBM to simulate two-dimensional acoustic pulse
propagation in closed rooms using CUDA C parallel programming. We showed that the
D2Q5 scheme has prospective potential as an alternative for modeling acoustic wave prop-
agation, besides using conventional acoustic equations. This study significantly contributes
to the solution of numerous challenging acoustic problems employing numerical modeling
and parallel computing. To the best of our knowledge, the D2Q5 scheme and its parallel
programming have never been used for acoustic modeling for real problems. The proposed
simulation can be accelerated 27.47 times faster, where the hardware is the Nvidia GeForce
GTX 1080 TI GPU and the processor of CPU is Intel I7. Some key points for the concluding
remarks can be summarized as follows:

• A comparison of the numerical simulations of the D2Q5 LBM with the analytical
solutions shows that the D2Q5 LBM has second-order accuracy.

• Comparing the snapshots of pressure fields of the LBM in the complicated rooms with
the experimental sound photographs also shows excellent agreement.

• The complex behavior of wave propagation in closed rooms, such as reflection, diffrac-
tion, and interference, can be simulated well using the LBM method. The numerical
results of LBM are promising, and we also demonstrate the LBM’s capability for
studying room acoustic.
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Appendix A

The following two programs, i.e., the initialization part of main program and kernels
that implement the collision, bounce back boundary, and streaming, are provided in detail.

The initialization part of main program is described as follows:

double *p = 0, *dpdt = 0, *d_p = 0, *d_dpdt = 0, *u = 0;
double *fo0 = 0, *fo1 = 0, *fo2 = 0, *fo3 = 0, *fo4 = 0;

double *d_fo0 , *d_fo1, *d_fo2 , *d_fo3, *d_fo4 ;
p = (double *)malloc(Ny*Nx*sizeof(double));

dpdt = (double *)malloc(Ny*Nx*sizeof(double));
fo0 = (double *)malloc(Ny*Nx*sizeof(double));
fo1 = (double *)malloc(Ny*Nx*sizeof(double));

. . .
cudaMalloc((void**)&d_p, Ny*Nx*sizeof(double));
cudaMalloc((void**)&d_dpdt, Ny*Nx*sizeof(double));

cudaMalloc((void**)&d_fo0, Ny*Nx*sizeof(double));
cudaMalloc((void**)&d_fo1, Ny*Nx*sizeof(double));

. . .
for(int j=0;j<Ny;j++)

{
for(int i = 0;i < Nx;i++)

{
id= I2D(Nx,i,j);

dpdt[id] = 0.0;
p[id] = exp(-30*((xx[i]-xs)*(xx[i]-xs)+(yy[j]-ys)*(yy[j]-ys)));

fi0[id] = dpdt[id]-2*lambda*p[id]/c2;
fi1[id] = lambda*p[id]/c2/2;
. . .

}
}
cudaMemcpy(d_p, p, Ny*Nx*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_dpdt, dpdt, Ny*Nx*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_fo0, fo0, Ny*Nx*sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d_fo1, fo1, Ny*Nx*sizeof(double), cudaMemcpyHostToDevice);
. . .
int dimx = 16;
int dimy = 16;
dim3 blocks(dimx,dimy);
dim3 grids((Nx+blocks.x-1)/blocks.x,(Ny+blocks.y-1)/blocks.y);

cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start);

for(iter = 1; iter < Nsteps; iter++){
Collide_kernel<<<grids, blocks>>>(d_fo0, d_fo1, d_fo2, . . .);
Bounce_Back_BCs_kernel<<<grids, blocks>>>(d_fo0, d_fo1, d_fo2,. . .);
Stream_kernel<<<grids, blocks>>> (d_fo0, d_fo1, d_fo2, . . .);

}
cudaEventRecord(stop);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&GPUtime,start,stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);

cudaMemcpy(p, d_p, Ny*Nx*sizeof(double), cudaMemcpyDeviceToHost);
writeVTK_c((int) iter,p, “Acoustic_D2Q5_device_oblique_reflection”);

https://www.e-pics.ethz.ch/en/ba_use/
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The kernels that implement the collision, bounce back boundary, and streaming are
described in detail as follows:

__global__ void Collide_kernel1(double *d_fo0, double *d_fo1, double *d_fo2, . . .)
{

unsigned int i = threadIdx.x+ blockIdx.x*blockDim.x;
unsigned int j = threadIdx.y+ blockIdx.y*blockDim.y;
unsigned int id = i + j * blockDim.x * gridDim.x;
. . .
omega = 1.0/tau1;

omega1 = 1.0 - omega;
//Macroscopic flow props:
d_dpdt[id] = d_fi0[id] + d_fi1[id] + d_fi2[id] + d_fi3[id] + d_fi4[id];
d_p[id] = d_p[id] + d_dpdt[id]*dt;

//Calculate equilibrium f’s
f0eq = d_dpdt[id]-2.0*lambda*d_p[id]/c2;
f1eq = lambda*d_p[id]/c2/2.0;
f2eq = lambda*d_p[id]/c2/2.0;
f3eq = lambda*d_p[id]/c2/2.0;
f4eq = lambda*d_p[id]/c2/2.0;

//Do collisions
d_fo0[id] = omega1 * d_fi0[id] + omega * f0eq;
d_fo1[id] = omega1 * d_fi1[id] + omega * f1eq;
d_fo2[id] = omega1 * d_fi2[id] + omega * f2eq;
d_fo3[id] = omega1 * d_fi3[id] + omega * f3eq;
d_fo4[id] = omega1 * d_fi4[id] + omega * f4eq;
}

__global__ void Bounce_Back_BCs_kernel (double *d_fo0, double *d_fo1, double *d_fo2, . . .)
{

unsigned int i = threadIdx.x+ blockIdx.x*blockDim.x;
unsigned int j = threadIdx.y+ blockIdx.y*blockDim.y;
unsigned int id = i + j * blockDim.x * gridDim.x;

if (d_solid[id] == 1) {
d_fo1[id] = d_fi3[id];
d_fo2[id] = d_fi4[id];
d_fo3[id] = d_fi1[id];
d_fo4[id] = d_fi2[id];

}
}

__global__ void Stream_kernel (double *d_fo0, double *d_fo1, double *d_fo2, . . .)
{
int im1,ip1,jm1,jp1;

unsigned int i = threadIdx.x+ blockIdx.x*blockDim.x;
unsigned int j = threadIdx.y+ blockIdx.y*blockDim.y;
unsigned int id = i + j * blockDim.x * gridDim.x;

jm1=j-1;
jp1=j+1;
if (j==0) jm1=0;
if (j==(Ny-1)) jp1=Ny-1;
im1 = i-1;
ip1 = i+1;
if (i==0) im1=0;

if (i==(Nx-1)) ip1=Nx-1;
d_fi0[id] = d_fo0[I2D(Nx,i,j)];
d_fi1[id] = d_fo1[I2D(Nx,im1,j)];
d_fi2[id] = d_fo2[I2D(Nx,i,jm1)];
d_fi3[id] = d_fo3[I2D(Nx,ip1,j)];
d_fi4[id] = d_fo4[I2D(Nx,i,jp1)];

}
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