SOME FIXED POINT THEOREMS IN HILBERT SPACES

Valeriu Popa

Department of Mathematics University of Bacau 5500 Bacau ROMANIA

Abstract. Some general fixed points theorems in Hilbert spaces are proved which generalize the results from [1].

AMS Subject classification (1991): 24 H 25 Key words and phrases: fixed point, Hilbert spaces.

1. INTRODUCTION

Let R_{+} be denote the set of all non-negative reals. Let H the set of all real function

 $g(t_1, ..., t_5): R_+^5 \to R_+$ satisfying the following conditions:

(H₁): g is non-decreasing in variables t_4 and t_5 ,

(H₂): $g(u,0,0,u,u) < u, \forall u > 0$,

(H₃): there exists $h \in (0, 1)$ such that for every $u, v \in R_+$ with

(H_a):
$$u \le g(v, v, u, u + v, 0)$$
, or

$$(H_b): u \leq g(v,u,v,0,u+v),$$

we have $u \le h.v$.

Ex. 1.
$$g(t_1, ..., t_5) = q \cdot \max\{t_1, t_2, t_3, \frac{1}{2}(t_4 + t_5)\}$$
 where $q \in (0, 1)$ and $h = q$.

(H₁). Obviously.

(H₂).
$$g(u,0,0,u,u) = q.u < 0, \forall u > 0$$
.

(H_a). Let $u, v \ge 0$ be such that $u \le g(v, v, u, u + v, 0)$ then $u \le q \cdot \max\{v, v, u, \frac{1}{2}(u + v), 0\}$ which implies $u \le q \cdot v = h \cdot v$.

(H_b). If $u \le g(v, u, v, 0, u + v)$, similarly, we have $u \le h.v$.

Ex. 2. $g(t_1, ..., t_5) \le [at_1^k + bt_2^k + ct_3^k + d(t_4t_5)^{\frac{k}{2}}]^{\frac{1}{k}}$ where $k \ge 1$; a > 0; $b, c, d \ge 0$ and a + b + c + d < 1.

 (H_1) . Obviously.

(H₂).
$$g(u,0,0,u,u) = [au^k + du^k]^{1/k} = (a+d)^{1/k} \cdot u < u, \forall u > 0.$$

(H_a). Let $u, v \in R_+$ be such that $u \le g(v, v, u, u + v, 0)$, then we have $u \le \left(\frac{a+b}{1-c}\right)^{1/k}$ $v = h_1 \cdot v$ with $h_1 = \left(\frac{a+b}{1-c}\right)^{1/k} < 1$.

If $u \le g(v, u, v, 0, u + v)$, similarly, we have $u \le h_2 \cdot v$ with $h_2 = \left(\frac{a+c}{1-b}\right)^{1/k} < 1$.

Thus g satisfies condition (H₃) with $h = \max\{h_1, h_2\}$.

Ex. 3.
$$g(t_1, ..., t_5) = \left[at_1^2 + bt_3^2 \frac{1 + t_2^2}{1 + t_1^2} + ct_2^2 \frac{1 + t_3^2}{1 + t_1^2} + d\frac{t_4 t_5}{1 + t_1^2}\right]^{\frac{1}{2}}$$
 where

a > 0; $b, c, d \ge 0$ and a + b + c + d < 1.

(H₁). Obviously.

(H₂).
$$g(u,0,0,u,u) = \left[au^2 + d\frac{u^2}{1+u^2}\right]^{\frac{1}{2}} \le (a+d)^{\frac{1}{2}} \cdot u < u, \ \forall u > 0.$$

(H_a). Let $u, v \in R_+$ be such that $u \le g(v, v, u, u + v, 0)$, then we have $u \le \left(\frac{a + c + av^2}{1 - b + v^2(1 - b - c)}\right)^{\frac{1}{2}} v \le \left(\frac{a - b + av^2}{1 - b + v^2(1 - b - c)}\right)^{\frac{1}{2}} v = h_1 v$, where $h_1 \in (0, 1)$.

If $u \le g(v, u, v, 0, u + v)$, similarly, we have $u \le h_2 \cdot v$ where $h_2 \in (0, 1)$.

Thus g satisfies condition (H₃) with $h = \max\{h_1, h_2\}$.

Remark 1. There exists the functions $g: R_+^5 \to R_+$ which satisfies conditions (H_1) - (H_3) and is decreasing in variable t_2 and t_3 .

Ex. 4.
$$g(t_1, ..., t_5) = \left[at_1^2 + \frac{bt_4t_5}{t_2^2 + t_3^2 + 1}\right]^{1/2}$$
 where $a > 0$, $b \ge 0$ and $a + b < 1$.

(H₁). Obviously.

(H₂).
$$g(u,0,0,u,u) = (a+b)^{1/2}u < u$$
, $\forall u > 0$.

(H₃). Let $u, v \in R_+$ be such that $u \le g(v, v, u, u + v, 0)$, then we have $u \le a^{\frac{1}{2}}v = h.v$, where $h \in (0, 1)$. If $u \le g(v, u, v, o, u + v)$, then $u \le hv$ where $h = a^{\frac{1}{2}} < 1$.

2. MAIN RESULTS

Theorem 1. Let T_1 and T_2 be two mappings from Hilbert space X into itself such inequality

(1)
$$||T_1x - T_2y|| \le g(||x - y||, ||x - T_1x||, ||y - T_2y||, ||x - T_2y||, ||y - T_1x||)$$
 holds for all $x, y \in X$ where $g \in H$, then $F_{T_1} = F_{T_2}$, where $F_T = \{x \in X : x = Tx\}$.

Proof. Let $u \in F_T$ be, then

$$\begin{aligned} & \|u - T_2 u\| = \|T_1 u - T_2 u\| \le g(\|u - u\|, \|u - T_1 u\|, \|u - T_2 u\|, \|u - T_2 u\|, \|u - T_1 u\|) = \\ & = g(0,0, \|u - T_2 u\|, \|u - T_2 u\|, 0) \text{. By (Ha) we have } \|u - T_2 u\| \le 0 \text{ which implies } u = T_2 u \\ & \text{thus } u \in F_{T_1} \text{ and } F_{T_1} \subset F_{T_2} \text{. Similarly, by (Hb), we have } F_{T_2} \subset F_{T_1} \text{.} \end{aligned}$$

Theorem 2. Let T_1 and T_2 be two mappings from Hilbert space X into itself such that inequality (1) holds for all $x, y \in X$ where g satisfies (H₂). If T_1 and T_2 have a common fixed point z, then z is a unique common fixed point for T_1 and T_2 .

Proof. Suppose that T_1 and T_2 have a second common fixed point $z' \neq z$. Then $||z-z'|| = ||T_1z-T_2z'|| \le g(||z-z'||, ||z-T_1z||, ||z'-T_2z'||, ||z-T_2z'||, ||z'-T_1z||) = g(||z-z'||, 0, 0, ||z-z'||, ||z-z'||) < ||z-z'||, a contradiction. In [1] is proved following theorem.$

Theorem 3. Let X be a closed subset of a Hilbert space and T_1 and T_2 be mappings of X into itself satisfying

$$(2) \|T_1x - T_2y\|^2 \le a \|x - y\|^2 + b \|y - T_2y\|^2 \frac{1 + \|x - T_1x\|^2}{1 + \|x - y\|^2} + c \|x - T_1x\|^2 \frac{1 + \|y - T_2y\|^2}{1 + \|x - y\|^2}$$

for all x, y in X, where a,b,c are non-negative reals with a+b+c<1. Then T_1 and T_2 have a unique common fixed point in X.

The purpose of this paper is to extend Theorem 3 and others results from [1] for the functions $g \in H$.

Theorem 4. Let X be a closed subset of a Hilbert space and T_1 and T_2 be mappings of X into itself satisfying inequality (1) for all x, y in X, where $g \in H$. Then T_1 and T_2 have a unique common fixed point in X.

Proof. For arbitrary $x_0 \in X$, define the sequence $\{x_n\}$ as

$$x_1 = T_1 x_0, \quad x_2 = T_2 x_1, \quad \dots, \quad x_{2n} = T_1 x_{2n}, x_{2n+2} = T_2 x_{2n+1} \dots$$

Then we have

$$\begin{aligned} &\|x_{2n+1}-x_{2n}\| = \|T_1x_{2n}-T_2x_{2n-1}\| \le g(\|x_{2n}-x_{2n-1}\|,\|x_{2n}-T_1x_{2n}\|,\|x_{2n-1}-T_2x_{2n-1}\|,\\ &\|x_{2n}-T_2x_{2n-1}\|,\|x_{2n-1}-T_1x_{2n}\|) = g(\|x_{2n}-x_{2n-1}\|,\|x_{2n}-x_{2n+1}\|,\|x_{2n-1}-x_{2n}\|,\|x_{2n-1}-x_{2n}\|,\|x_{2n}-x_{2n-1}\|,\\ &\|x_{2n-1}-x_{2n+1}\|) \le g(\|x_{2n}-x_{2n-1}\|,\|x_{2n}-x_{2n+1}\|,\|x_{2n-1}-x_{2n}\|,0,\|x_{2n-1}-x_{2n}\|+\|x_{2n}-x_{2n+1}\|) \end{aligned}$$
 which implies, by condition (H_b), that

$$||x_{2n+1} - x_{2n}|| \le h . ||x_{2n-1} - x_{2n}||$$
.

Similarly, by condition (H_b), we have

$$||x_{2n} - x_{2n-1}|| \le h.||x_{2n-1} - x_{2n-2}||$$
.

Hence we get

$$||x_{n+1} - x_n|| \le h^n . ||x_1 - x_0|| \text{ for all } n \in N^*.$$

Hence $\{x_n\}$ is a Cauchy sequence. Since X is closed, there exists $u \in X$ which is the

limit of x_n , i.e. lim $x_n = u$. Since $x_{2n+1} = T_1 x_{2n}$ and $x_{2n+2} = T_2 x_{2n+1}$ are subsequence of $\{x_n\}$, $\{T_1 x_{2n}\}$ and $\{T_2 x_{2n+1}\}$ also converge to the same limit u. We now prove that u is a common fixed point of T_1 and T_2 . Consider

$$\begin{aligned} & \left\| u - T_{2}u \right\|^{2} = \left\| (u - x_{2n+1}) + (x_{2n-1} - T_{2}u) \right\|^{2} \le \left\| u - x_{2n+1} \right\|^{2} + 2\operatorname{Re} < u - x_{2n+1}, x_{2n+1} - T_{2}u > + \\ & + \left\| (x_{2n+1} - T_{2}u) \right\|^{2} = \left\| u - x_{2n+1} \right\|^{2} + \left\| T_{1}x_{2n} - T_{2}u \right\|^{2} + 2\operatorname{Re} < u - x_{2n+1}, x_{2n+1} - T_{2}u > \le \\ & \le \left\| u - x_{2n+1} \right\|^{2} + g^{2} \left(\left\| x_{2n} - u \right\|, \left\| T_{1}x_{2n} - x_{2n} \right\|, \left\| T_{2}u - u \right\|, \left\| x_{2n} - T_{2}u \right\|, \left\| u - T_{1}x_{2n} \right\| \right) + \\ & + 2\operatorname{Re} < u - x_{2n+1}, x_{2n+1} - T_{2}u > . \end{aligned}$$

Letting $n \to \infty$, so that $x_{2n}, x_{2n+1} \to u$ and $\text{Re} < u - x_{2n+1}, x_{2n+1}, T_2 u > \to 0$ we get $||u - T_2 u|| \le g(0, 0, ||T_2 u - u||, ||T_2 u - u||, 0)$.

By condition (H_a) follows that $||u - T_2 u|| \le 0$, which implies $T_2 u = u$. By Theorems 1 and 2 follows that u is unique common fixed point for T_1 and T_2 .

Corollary 1. Let X be a closed subset of a Hilbert space and T_1 and T_2 be mappings on X into itself such that

a)
$$||T_1x - T_2y|| \le k \cdot \max\{||x - y||, ||x - T_1x||, ||y - T_2y||, \frac{1}{2}(||x - T_2y|| + ||y - T_1x||)\}$$

where $k \in (0, 1)$, or

b)
$$||T_1x - T_2y||^k \le a||x - y||^k + b||x - T_1x||^k + c||y - T_2y||^k + d[||x - T_2y|| \cdot ||y - T_1x||]^{\frac{k}{2}}$$

where $k \ge 1$, a > 0, $b, c, d \ge 0$ and a + b + c + d < 1, or

$$||T_{1}x - T_{2}y||^{2} \le a||x - y||^{2} + b||y - T_{2}y||^{2} \frac{1 + ||x - T_{1}x||^{2}}{1 + ||x - y||^{2}} + c||x - T_{1}x||^{2} \frac{1 + ||y - T_{2}y||^{2}}{1 + ||x - y||^{2}} + d\frac{||x - T_{2}y|| \cdot ||y - T_{1}x||}{1 + ||x - y||^{2}}$$

where a > 0, $b, c, d \ge 0$ and a+b+c+d < 1,

holds for all x, y in X. Then T_1 and T_2 have a unique common fixed point in X.

Remark 2. From Corollary 1(c) for d = 0 follows Theorem 3.

Theorem 5. Let X be a closed subset of a Hilbert space and $\{T_n\}_{n\in\mathbb{N}}$ a sequence of mapping on X into itself satisfying inequality

(3).
$$||T_n x - T_{n+1y}|| \le g(||x - y||, ||x - T_n x||, ||y - T_{n+1}y||, ||x - T_{n+1}y||, ||y - T_n x||)$$
 for all $x, y \in X$, where $g \in H$. Then the sequence $\{T_n\}_{n \in N}$ has unique common point in X .

Proof. By Theorem 4, T_1 and T_2 have a unique common fixed point. By Theorem 1, z is unique fixed point for the sequence $\{T_n\}_{n\in\mathbb{N}}$.

Corollary 2. Let X be a closed subset of a Hilbert space and $\{T_n\}_{n\in\mathbb{N}}$ a sequence of mappings on X into itself such that

a)
$$||T_n x - T_{n+1} y|| \le k \cdot \max\{||x - y||, ||x - T_n x||, ||y - T_{n+1} y||, \frac{1}{2}(||x - T_{n+1} y|| + ||y - T_n x||)\}$$

where $k \in (0, 1)$, or

b)
$$\|T_n x - T_{n+1} y\|^k \le a \|x - y\|^k + b \|x - T_n x\|^k + c \|y - T_{n+1} y\|^k + d [\|x - T_{n+1} y\| \cdot \|y - T_n x\|]^{\frac{k}{2}}$$

where $k \ge 1$, a > 0, $b, c, d \ge 0$ and a + b + c + d < 1, or

$$||T_{n}x - T_{n+1}y||^{2} \le a||x - y||^{2} + b||y - T_{n+1}y||^{2} \frac{1 + ||x - T_{n}x||^{2}}{1 + ||x - y||^{2}} + c||x - T_{n}x||^{2} \frac{1 + ||y - T_{n+1}y||^{2}}{1 + ||x - y||^{2}} + d\frac{||x - T_{n+1}y|| \cdot ||y - T_{n}x||}{1 + ||x - y||^{2}}$$

where a > 0, $b, c, d \ge 0$ and a+b+c+d < 1,

holds for all x, y in X. Then the sequence $\{T_n\}_{n\in\mathbb{N}}$ have a unique common fixed point.

Theorem 6. Let X be a closed subset of a Hilbert space and T_1 and T_2 be mapping on X into itself satisfying inequality

(4). $||T_1^p x - T_2^q y|| \le g(||x - y||, ||x - T_1^p x||, ||y - T_2^q y||, ||x - T_2^q y||, ||y - T_1^p x||)$ for all $x, y \in X$, where $g \in H$, and p, q are some positive integers. Then T_1 and T_2 have a unique common point in X.

Proof. T_1^p and T_2^q satisfy all conditions of the Theorem 4. Hence they have a unique common fixed point, say u, so that $T_1^p u = u$, $T_2^q u = u$.

Now, $T_1^p u = u$ implies $T_1(T_1^p u) = T_1 u$ and $T_1^p(T_1 u) = T_1 u$. Hence $T_1 u$ is a fixed point of T_1^p . Similarly, $T_2 u$ is a fixed point of T_2^q . Now if $u \neq T_2 u$, we have

$$||u - T_2 u|| = ||T_1^p u - T_2^q (T_2 u)|| \le g(||u - T_2 u||, ||u - T_1^p u||, ||T_2 u - T_2^q (T_2 u)||, ||u -$$

which is a contradiction. Thus $u=T_2u$. Similarly we get $u=T_1u$. If v is another common fixed point of T_1 and T_2 then clearly v is also a common fixed point of T_1^p and T_2^q . By Theorem 4, T_1^p and T_2^q have a unique common fixed point.

Corollary 3. Let X be a closed subset of a Hilbert space and T_1 and T_2 be mappings on X into itself such that

a)
$$||T_1^p x - T_2^q y|| \le k \cdot \max\{||x - y||, ||x - T_1^p x||, ||y - T_2^q y||, \frac{1}{2}(||x - T_2^q y|| + ||y - T_1^p x||)\}$$

where $k \in (0, 1)$, or

b)
$$\|T_1^p x - T_2^q y\|^k \le a \|x - y\|^k + b \|x - T_1^p x\|^k + c \|y - T_2^q y\|^k + d[\|x - T_2^q y\| \cdot \|y - T_1^p x\|]^{\frac{k}{2}}$$

where $k \ge 1$, a > 0, $b, c, d \ge 0$ and a + b + c + d < 1, or

$$||T_1^p x - T_2^q y||^2 \le a||x - y||^2 + b||y - T_2^q y||^2 \frac{1 + ||x - T_1^p x||^2}{1 + ||x - y||^2} + c$$

$$+ c||x - T_1^p x||^2 \frac{1 + ||y - T_2^q y||^2}{1 + ||x - y||^2} + d \frac{||x - T_2^q y|| \cdot ||y - T_1^p x||}{1 + ||x - y||^2}$$

where a > 0, $b, c, d \ge 0$ and a + b + c + d < 1,

holds for all x, y in X and p, q positive integers. Then T_1 and T_2 have a unique common fixed point.

Remark 3. Corollary 3(c) for d = 0 is Corollary 2 of [1].

REFERENCES

1. V.P. Koparde and B.B. Waghmode, Fixed points for mappings with rational expression II. The Mathematics Educations, 28, 65-70, (1994).