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Abstract. Some general fixed points theorems in Hilbert spaces are proved which
generalize the results from [1].
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1. INTRODUCTION

Let R, be denote the set of all non-negative reals. Let H the set of all real function

g(t,, ..., 1,): R —> R, satisfying the following conditions:
(H,): g is non-decreasing in variables ¢, and £,
(Hz): g(#,0,0,u,u) <u ,Yu>0,

(Hs): there exists # € (0, 1) such that for every u,v € R, with

(Ha): u < g(v,v,u,u+v,0), or

(I_Ib):‘ us< g(v!u’ v’o’u + V) >
we have u<h.v.

Ex. 1. g(t,, ..., t;)=q.max{s,, t,, t:‘,—;—(t4 +1,)} where g€ (0, 1) and h=q.
(Hi). Obviously.

(Hz). g(#,0,0,u,u)=qu <0, YVu>0.

(H,). Let u,v >0 be such that u < g(v,v,u,u+v,0) then u < q.max{v, v,u,%(u +v),0}

which implies u<qv=h.v.
(Hp). If u < g(v,u,v,0,u +v), similarly, we have u <h.v.

Ex. 2. g(t,, .., t;) <[atf +bt} +ct} +d(t4t5)%]%‘ where k>1; a>0;, b,c,d>0
and a+b+c+d<l1.
(Hi). Obviously.

(Hz). g(u,0,0,u,u) =[au* +du* ]% =(a +d)%‘ u<u,Vu>0.
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(Hy). Let wuyveR, te such that w<g(v,vu,u+v0), then we have
v

B Vi
u< ath v=h,.v with h,z(aerJ <l
1-c l-¢

If u<g(v,u,v,0,u+v), similarly, we have u <h,.v with h, = (

Q
-+
(9}
N
H
AN
Pt

Thus g satisfies condition (H3) with # =max{h,, h,}.

1+2 1+2
Ex.3. g(t,, ..., t,)=[at> +bt} —2 +ct} —3
g ) =lat ST

+d 14152 ]}é where
L4,

a>0, bc,d>20 and a+b+c+d<1.

(Hi). Obviously.

5 2
(Ha). g(u,0,0,u,u) = [au* +d — .
1+u
(Hy). Let wu,veR, be such that w<g(v,v,u,u+v,0), then we have

2 % _ 2 %
u< arerav v< “ b2+av v=h,v,where h, €(0, 1).
1-b+v*(1-b-c) 1-b+v*(1-b-c)

V2 <(@+d)*u<u, Vu>0.

If u<g(v,u,v,0,u+v), similarly, we have u <h, v where A, €(0, 1).

Thus g satisfies condition (H;) with # = max{h,, A,}.

Remark 1. There exists the functions g: R’ — R, which satisfies conditions
(H.) - (H3) and is decreasing in variable ¢, and £, .

bit,t
Ex. 4. g(t,, .., t)=[at} +—23—
g(l 5) 1 t22+t32+1

]}é where a>0, b>0 and a+b<1.

(H,). Obviously.
(Hz). g(,0,0,u,u)=(a+ b)%u <u,Vu>0.
(H3). Let u,ve R, be such that u < g(v,v,u,u+v,0), then we have u < a%v =hv,

where he (0, 1). If u< g(v,u,v,0,u+v), then u <hv where h= a% <l1.

2. MAIN RESULTS

Theorem 1. Let 7, and 7, be two mappings from Hilbert space X into itself such
inequality
) [1x =Ty < gbe =yl e = Toxl |y - 2oy

>

x =T, y||,|y - T1x|) holds for allx,y e X

where g € H, then F; = F; , where F; ={xe X: x=Tx}.
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Proof. Let u € F;, be, then
o~ Ty =~ Ty < o~ T Ty~ Ty~ T =
= 2(0,0,|u - T2u||,||u —1,u},0). By (Ha.) we have ||u - Tzu" < Owhich implies v =7,u
thus w € F;, and F, c F; . Similarly, by (Hy), we have F; c F; .

>

Theorem 2. Let 7, and 7, be two mappings from Hilbert space X into itself such
that inequality (1) holds for all x,y € X where g satisfies (H;). If 7, and 7, have a
common fixed point z, then z is a unique common fixed point for 7, and 7,.

Proof. Suppose that 7| and 7, have a second common fixed point z'# z. Then
|z - 2] =iz - 1,2 < gl - Teh T3z~ T -Tlp =

= g(“z —2'1,0,0,
In [1] is proved following theorem.

>

|z—z|,|]z - z|)) <]z - 2|, a contradiction.

Theorem 3. Let X be a closed subset of a Hilbert space and 7, and 7, be mappings
of X into itself satisfying

2 1+ = T’

L fe—yf

4y -Lf

@ |hx- Ty <alx-y +b]y-Ty) .
T+~

¥ c||x - Tx|

forall x,y in X, where a,b,c are non-negative reals with a+b+c<1. Then 7, and
7, have a unique common fixed point in X .

The purpose of this paper is to extend Theorem 3 and others results from [1]
for the functions g e H.

Theorem 4. Let X be a closed subset of a Hilbert space and 7, and 7, be mappings
of X into itself satisfying inequality (1) for all x,y in X, where g e H. Then 7, and
I, have a unique common fixed point in X .

Proof. For arbitrary x, € X , define the sequence {x } as

X, =0%g, X, =1,%,, ..., X0, = 11X, %5, =T, %5,,-.
Then we have
”xZnH = Xy, " = ||T;x2n = 1% !< g(ii-\‘zn - ler—lN’len = Lx,, b iP2n s — %54
lxln ~13%,, 4 ”f‘|x2n-—l =1 %, E') = g(“xzn = Xgn1 ’lXZn = X0 >| Xon-1 ™ Xaulp)®an — *2s H
“'\‘2»»1 = X1 Il) = g(l Xon — xzn—xluzxzn = Xonst ’"x2n~1 = %2, ,0,|x2"_, Xt ixZn - «Vzn.nﬂ)

which implies, by condition (), that
| = h.”x:,_,H -X,, l :
Similarly, by condition (Hy), we have
2n = %2na || < 1] .

Hence we get
x, — x| forall neN".

X

2+l x2n

Xon1 = Xona

X x (|<h".

n+l = *n
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Hence {x,} is a Cauchy sequence. Since X is closed, there exists #w € X which is the

limit of x,,1.e lim x, =u. Since x,, , =7\x,, and x,, , =T,x, | are subsequence
of {x,}, {I;x,,} and {7,x,, ,} also converge to the same limit u. We now prove that
u is a common fixed point of 7, and 7,. Consider

ﬂu = Tzun2 = ”(u — Xy )t (xzn Ll u)“2 = Hu
+“(x2m1 - Tzu)”2 :!

= ”" - x2n+1

znul +2Re<u—x,,...%,.~Lu>+

H T i 4 — ><
+i7,x,, —Qu“ F2RE <~ %5015, — oS

HTZu — == T221I

.X?”'“

e N
I|” - I;XZM :) g

2

2 2 cli I il
I +g (llxln - ”! ,]71\71 xZn >
+2ZRe<u—x,_ ..%

2n+l —’] u>

Letting 77 — oo, so that \Zn, ooy =1 and Re<wu—x,, ., x, . Tu>—>0 we get
l 2 = T«'h,()) .
By condition (Hy) follows that |« —7,u| <0, which implies Z,u = . By Theorems 1

and 2 follows that u is unique common fixed point for 7, and 7,.

Corollary 1. Let X be a closed subset of a Hilbert space and 7, and 7, be mappings
on X into itself such that

a) |Tx-Toy| < k-max{jx— yl|x - Ty - Eﬂ,dh Ty +y - T}

where k € (0, 1), or
b) [Tox =Tyl <ale =yl + bl = T+ lly = Ty + el =Ty - 73

where k21, a>0, b,c,d>0 and a+b+c+d<1,or

' x—Tx|’
|1 =Tyl <alx =) + 8]y -7 —‘!
el
c) 1 T 112 e —7T 7
e rp LR BA BTl - T
L+ 1+ -]

where a>0, b,c,d >0 and a+b+c+d <1,
holds for all x,y in X . Then 7, and 7, have a unique common fixed point in X .

Remark 2. From Corollary 1(c) for d =0 follows Theorem 3.

Theorem S. Let X be a closed subset of a Hilbert space and {7,},., a sequence of
mapping on X into itself satisfying inequaiity
3. Ay~

x,yeX, where g € H. Then the sequence {7, n},,eN has unique common point in X .

for all

n+ly

|J

Proof. By Theorem 4, 7, and 7, have a unique common fixed point. By Theorem 1,
z is unique fixed point for the sequence {7}, , .
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Coroliary 2. Let X be a closed subset of a Hilbert space and {7} ., a sequence of
mappings on X into itsell such that

iere a it i PSR ' il 5 1 o e
o) [T~ T o] 5k maxtfe— e~ T =Ty Qo Tl =Ty
where £ {0, 1), or

b) !i}"":r = 7',”,,_\/";;){ < aﬁx = _)'Hk 4 bﬂx - Y;,xﬁk i cgiy =T |k + d[||x = ’[;Hyi!- lly = 'I;,xn]'k/é

where k>1, a>0, bc,d >0 and a+b+c+d <1, or

e g 3 el TAf
17> =T <alx =y +oly T — 5

2
9 L[ -y
+C‘||x—Tx21+||)’“Tn+1y|2 |- Ty -T.x

R T P 4=

where a>0, b,c,d>0 and a+b+c+d <1,

holds for all x,y in X . Then the sequence {7 },, have a unique common fixed -
point.

Theorem 6. Let X be a closed subset of a Hilbert space and 7, and 7, be mapping
on X into itself satisfying inequality

@). |[17x -T2y < g - A e -T2 [y - Ty |

where g €H, and p,q are some positive integers. Then 7, and 7, have a unique
common point in X .

> ’x_Tqu

i x”) forall x,ye X,

Proof. 7,7 and T, satisfy all conditions of the Theorem 4. Hence they have a unique
common fixed point, say u, so that I)\'u=u, T 'u=u.

Now, 7,’u =u implies 7}(7;’u)=Tu and T\ (Tiu)=Tu. Hence T\u is a fixed point
of 7,7 . Similarly, 7,u is a fixed point of 7. Now if u # T,u , we have

Hu — Tzu“ = “Tl”u =77 (Tzu)N < g(“u =Lu |,“u = Tl"ui |T2u -T2 (u)|,|ju — T,)(T,u)
“.’/'Zu = T“’u”) = g(”u = g~ T:,_u“) < ||u = T2u||

which is a contradiction. Thus » =7,u . Similarly we get # =7,u . If v is another

> & b

0,0, “u = 15u

>

common fixed point of 7] and 7, then clearly v is also a common fixed point of 7;”
and 7. By Theorem 4, 7, and 7} have a unique common fixed point.

Corollary 3. Let X be a closed subset of a Hilbert space and 7] and 7, be mappings
on X into itself such that

a) nT,"x = Tzqy.l <k. max{ﬂx -y

LT -2y

L et B IR

where £ (0, 1), or
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1‘"”1"
J,

b) iiT.px - T{’y“k <a|x- y"k o+ bﬂx — T,”x"k + cny = Tz"y“k + d['i‘lx - ;’;*)'ii. Hy -7 A;

where k>1, a>0, b,c,d>0 and a+b+c+d<1,or
2

s 120l sale ot oy - f S
¢) L+ -y
BRI B o M a1
L= 1+ -y

where a>0, b,c,d>0and a+b+c+d <1,

holds for all x,y in X and p,q positive integers. Then 7, and 7, have a unique
common fixed point.

Remark 3. Corollary 3(c) for d =0 is Corollary 2 of [1].
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