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Abstract- In . this paper, we consider the generalized nonlinear quasi-variational
inequalities problem for set-valued mappings and construct an iterative algorithm for find
the approximate solution of this problem by exploiting the projection method and prove the
existence of the solution to our problem involving relaxed Lipschitz and relaxed monotone
mappmgs and the convergence of the iterative. sequences generated by th1s algorithm.
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1. INTRODUCTION :

Vanatlonal mequahty theory has been" ‘extended and generahzed in several
directions -using new, innovative and novel technique to' study a wide class of problem:
arising in pure and applied. sciences, see for example {2, 3, 4, 6] and reférences therein.
Inspired and motivated by the recent research works 5, 9,:10], in this paper, we study the
projection method which suggests a iterative algorithm for a generalized nonlinear quasi-
variational inequality for set-valued mappings. We prove the existence for our mequahly
and the convergence of iterative sequences generated by the algonthms e

2 PRELIMINARIES - ‘
_ . Let H be a real Hilbert space with norm and inner product are denoted by . | | and
{.,+)» Tespectively. Let K be a nonempty closed convex subset of H. Let F, G be point-to-set
mapping. Let A, T,S,g be nonlinear mappings from H into itself, and K{.): Hw%»ZH be a point-
to-set mapping. Then, we consider the problem finding veK, xe F(u) ye G(u) such that
g(u)e K(u) and the foliowmg relation is satisfied: . .
o AAg(),g(v)-g(u)) 2 (Au),g(v)- g(U)) o (T (x) S(y),g(v) g(u)> (2.1)
for all g(v)e K(u) where p >0 1is a constant and set K(u) is defineas - . . .
. K(u) = m{u) + K, o (22)
where m is a pomt -to-point mapping and. Kisa closed convex set. Then the problem (2.1)
is called generalized nonlinear quasi- -variational lnequahty problem
To prove our main result, we need the following Lemmas and concepts.
Definition 2.1- A mapping g:H~>H is said to be ‘
(i) strongly monotone, if there ex1sts a constant o >0, such that
(gl — glu) , w1 = Uz) 20 [uy = ug |12, for all ue H i=1,2;
(i)  Lipschitz continuous, if there exists a constant 1) > 0, such that
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| g(uy) - g(uz) H<nlu —w i, for all ye H, i=1,2.
Definition 2.2 [1,7] - Let F:H —2" be a point-to-set mapping is said to be
(i)relaxed Lipschitz continuous with respect to a mapping T:H—H, if there exists a
constant r 2 0, such that
(T(x) = T(X2) , U1 —wy < — | Iu; u, |12, for all ue H, xie F(uy), i=1,2;
(irelaxed monotone with respect to a mapping S:H—H, if there exists a constant s > 0,
such that
(S(xe) - S(xa) ; ur = wp) 25 [ lwy = up ||, for all we B, xeF(w), i=1,2;
(111)L1psch1t4 continuous, if forc 2 1,
~ Hx - X2”<CHU] ugil for all wie H, x;€ F(uy), i=1,2.
Lemma 2.1- Let K(u) be of type (2.2). Then ue K is a solution to the problem 2.1y if and
only if ue K, x&F(u), ye G(u) satisfies g(u)E K(u) and
(-0, g() - gw) 20, forall g e K, (23)
where ®(u): H—H and E,G:H—2" is point-to-set mapping, for some constant p > 0, _
(D), g(v)) = (w.g(v)) — p (T(X) — S(¥),8(") + ((Ao(I-g)J(u),g(v)), (24)
for all g(v)e K(u), where the operator Ao(I-g) is defined as
[ Ao(I-g)l(uv) = A(w) —A(g(u)), forall ue H. .
Lemma 2.2- Let K(u) be defined as (2.2). Then, ue K, x€F(n) and ye G(u} is a solution to
the problem (2.1) if and only if ue K, xe F(u) ye G(u) satisfies g(u)e K(u) and
2(u) = m(u) + Proj ¢ H[g(u) — u + ¢(u) ~ m(u)], 2.5)
where m:H-->H, ¢(u) is defined as (2.4), and Projx H denotes the projection of H onto K.
Lemma 2.3- Let A,g:H~>H be Lipschitz continuous with Lipschitz constants -& and 7,
respectively; and T,S:H-»H. be Lipschitz continuous with constants § >0 and o > 0,
respectively. Let F:H—2" be a relaxed Lipschitz continuous with respect to T and
Lipschitz continuous with corresponding constants r < 0 and
e>1. Let GGH—2" be a relaxed monotone with respect to S and Lipschitz continuous with
corresponding constants s >0 and ¢ = 1, respectlvely Then, tor any constant p > 0, there
exists 0> 0, such that
[locup) = ¢luy 1< 8 [Tur—ua |1, for all ur, weH,
where ¢(u) is defined as (2.4). It turn out that - R
o 9= [1+2p(r—s)+p(Be+ac) 11‘2+§(1+n) (2.6)
Proof- For each vy,;pe H, by (2.4) we have  ~ o
f(¢(u1) <E)(u2) g ls | (g = w2~ p(T(x1) = S(y1)) ~ (T(uz) — S(y2)), g(V)) |
+ (A = A - (AGD)-Alg).gv) |
< Huy—ua = p(TGx) = T(x2)) +p (S = SN | g [
o A@) - AW - (Ago-Ae) || Hew 1. @)
Further since F is a relaxed Llpschltz and G is a relaxed monotone, we have
| l o= ua = P(T(x1) = T2 + p (S(y1) = S 2= {lw — w2
' '—2p ( T(Xl) T(Xz), Uy~ l.lz) + 2p < S(y;) S(}’z) )~ 112>
' - p* I (T(x1) = T(x2)) = (S(y1) — S(y2)) | 12
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< Hur“‘uz|§2+29r!1111““112$|2w298I|U1““Uz||2+9 (68'*053) HU;”uzliz L
<1 -2p(s 1)+ p* (B3+ac) !Iupuz-lig..- (2.8)
And, A and g are Lipschitz continuous, we have . - S

I iAcuo Auy) - (A(g(uo) A(g(az))) 1 < 1] At ~ A | B
=+ A - A(g(u:a) i I
<Elluy~uall+mE oy —ue
<Eremlu-wll. @9
From (2.7)- (2 9) we have
[ (pcan) - @(uz) o) <0 iuﬁ R AIRIFEGOLUER
where 6 is given by (2.6), it follows that

|1¢<u§> olup) 1| < SUPgyen (o) — §lua), g(v>> TIERY Il<@ | im —u I

3. MAIN RESULTS

In this section, we consider those conditions under which the solution of the
gencral:zcd nonlinear quasivariational inequalities problem (2.1) exists and the sequences
of approximate solution which is defined in Algorithm 3.1, converges to the exact solution
of the generalized nonlinear quasivariational inequalities problem (2.1).
Algorithi 3.1~ Given uoe H, compute ups) by the rule -

Uns1 = Uy~ (g = m)(un) + Proj x H{(g - m)(un) Uy + ()], (3.1)

where (g — m) is defined by s L
(8- m)(u) g(u) m(u},
and p >0 isaconstant,andn=0, 1, 2,.. ‘
Theorem 3.1- Let gzzH—Hbe a LIpQChItZ continuous Wlth prschﬂz constant
1 > 0 and sirongly monotone with constant ¢ > 0 ; and let A,T,S:H—H be L}pschltz
continuous with Lipschitz constants & > 0, B > 0 and o > 0, respectively. Let I: H—-2"be a
relaxed.  Lipschitz continuous with. respect to - T and: Lipschitz .continuous with
corresponding constants r < Oand €2 1; and G: :H—2" be a relaxed monotone with respect
to S and Lipschitz continuous with corresponding constants 5> Qandc > 1. Let m:H-—H
be a Lipschitz continuous with respect to constant v > 0.
Assume that :
. - {(m(up) - mu)us - vy = (g(ul) g(uz)» <A oy~ w17 forall w,weH, (3.2)
for some constant A such that Ag € A £ v(1 = 26 + 1), where '
Ao= inf {M:{m(u;)-m(uy), ui—uz—(g(ul) g(uz))><M | ]u1 ~uy |12 for all u,ue H).
Further assume that

o q=[(1-206+1%)+V° +2}H‘2+§(1 ~m2t -<21 : (33)

T (s-~r)>2<Bs+coa>[q<1 =g ‘

T hen, the pro’nlem (1.1) has a solution u*e H, x*e F(u*), y*e G(u") a.nd for ali p > 0 such
that

lp— s~ ne+ ey < [(s = 1)* - 4q(1 - q)(Be + _coc) i‘2(138 + coc) L (3.4)
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the approximate solution of sequences {us}, {%a} and {ya} generated by the Algorithm 3.1,
converges strongly to u*, x* and y*, respectively.
Proof- By Lemma 2.2, (u*x*y*) is a solution of the problem (2 1) if and only if
u*e H,x*e F(u*), y*e G(u*) and satisfies (2.5).
Let us introduce the mapping N:H—H defined by
N(u) = u~ gu) + m(u) + Proj x Hlg(u) — v + ¢(u) — m(u)], for ue H,
where ¢(u) is given by (2.4). For all u ,u,& H, we have
[N D - New) H<2 a0z - [g(u1) — gua)] ) - mGag) |
+ 11001 = ¢tua) 1. - (3.5)
Since g is strongly monotone and Lipschitz continuous with constants ¢ and 1,
respectively, and m is Lipschitz continuous with constant v, it can be obtained that using
(3.2}
[T~z - (gu-gu)) + m@ ) = muz) = lu1— vz~ (g )-gl) {12+ [Im(uy)
—m(uz) [[?+2 (m(u) - m@ua), uy—uz - (g - gu))
<{1-20+n)+0 2+ 2] Hu—uy|l% foralluu,eH (3.6)
From (3.5) - (3.6) and Lemma 2.3, we obtain
HN(ul)wN(uz)Hﬁ(Zq+61) [luy~usyll, (3.7)
where
8 =1 +2p(r-s)+p Be+oc)V?
q={(1-20+n")+0* + 22 2+ E( L+ 27,
sincer<s,q<1\2and (s —1>2Be+oc){q(1-pI"2,
for all p > 0, such that
lp~ (s —0)(Be + cony® | < [(s — 1)~ 4q(1 ~ q)(Be + coy’] " *(Be + co”,
we have
20+601=2q+[1+2p (r=s)+p*Be+oac)*IM*<
Hence N is a contraction mapping. Then it follows that N has a unique ﬁxed point u*e H.
. By Lemma 2.2, u*e H, x*eF(u*), y*e G(u*) is solution of the problem (2.1). Since u*eH,
x*e F(u*) and y*e G{u*) satisfies (2.5), then from (3.1), we deduce that
I I Upiy — U* I [< 2 | Iun —u*—(g(uﬁ) “g(ﬂ*)) + mfu,) — m{u*) ' ‘ + I |¢(un) o(u*) l ]
<(2q+05) [Hu,—u*|]
o=(2q + 0 " Hu—urll.
Noting that 2 q + 6; <1, we obtain that {u,} converges strongly to u*. Similarly , we show
that {x:} and {y.} strongly converges to x* and y*, respectively. This completes the proof.
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