MATRIX TRANSFORMATIONS OF SOME GENERALIZED ANALYTIC SEQUENCE SPACES

Tunay Bilgin
Yüzüncü Yıl University, Faculty of Education, Van-Turkey

Abstract-The aim of this paper is to define and to investigate the generalized analytic sequence spaces $c_0^{\nu}(p,s)$, $l_{\infty}^{\nu}(p,s)$ and $l^{\nu}(p,s)$ and to determine the matrices of classes

like,
$$(l_{\infty}^{\nu}(p,s), l_{\infty})$$
, $(c_{0}^{\nu}(p,s), l_{\infty})$, $(l_{\infty}^{\nu}(p,s), l_{\infty})$, $(l_{\infty}^{\nu}(p,s), c)$, $(c_{0}^{\nu}(p,s), c)$, and $(l_{\infty}^{\nu}(p,s), l_{\infty})$

,c), where the sequence space and c are respectively the spaces of bounded and convergent complex sequences.

Key words-Generalized analytic sequence space, Matrix-Transformations

1. INTRODUCTION

Let $p=(p_n)$ be a bounded sequence of strictly positive real numbers and $v=(v_n)$ any fixed sequence of non-zero complex numbers such that

$$\lim_{n \to \infty} \inf |v_n|^{1/n} = r, (0 < r < \infty)$$

We define Bilgin [2] the sequence spaces $c_0^{\nu}(p,s)$ and $l_{\infty}^{\nu}(p,s)$ and $l_{\infty}^{\nu}(p,s)$ as follows;

$$\begin{array}{l} c_o^{\nu}(p,\!s) \ = \{x = (x_n) : n^{-s} \ \big| x_n \ v_n \big|^{p_n} \to 0 \ \text{as} \ n \to \infty \ , \ s \ge 0 \}; \\ l_{\infty}^{\nu}(p,\!s) \ = \{x = (x_n) : Sup_n \ n^{-s} \big| \ x_n \ v_n \ \big|^{p_n} < \infty \ , \ s \ge 0 \}; \\ l^{\nu}(p,\!s) \ = \ \{x = (x_n) : \sum_n \ n^{-s} \ \big| \ x_n \ v_n \ \big|^{p_n} < \infty \ , \ s \ge 0 \}. \end{array}$$

When s = 0, $v_n = 1$ and $p_n = 1$ for every n the spaces $c_0^{\nu}(p,s)$, $l_{\infty}^{\nu}(p,s)$ and $l^{\nu}(p,s)$ turn out to be respectively the scalar sequence spaces c_0 , l_{∞} and l.

When s = 0, $v_n = 1$ for every n these spaces are respectively the well known spaces $c_0(p)$, $l_{\infty}(p)$, and l(p) defined by Maddox [7] and Simons [11].

When , $v_n = 1$ for every n these spaces are respectively the spaces c_0 (p,s) , l_{∞} (p,s), and l (p,s) defined by Başarır [1] and Cakar and Bulut [3].

When s=0 these spaces are respectively $D_0^{\wedge}(p)$, $D_{\infty}^{\wedge}(p)$ and $D^{\wedge}(p)$ defined by Ratha and Srivastava [10]. It may be noted here that the spaces $D_0^{\wedge}(p)$, $D_{\infty}^{\wedge}(p)$ and $D^{\wedge}(p)$ are the same as $(c_0^{\wedge}(p))_v$, $(l_{\infty}(p))_v$, and $(l(p))_v$, (See [4])

Throughout the paper the following inequality will be used frequently. For any C>0 and any complex numbers a, b,

C>0 and any complex numbers a, b,
$$|a| \cdot b| \le C(C^{-q}|a|^q + |b|^p)$$
, where $1 and $p^{-1} + q^{-1} = 1$.$

Using the same kind argument to that in [8], we get that the necessary and sufficient condition for above sequence spaces to be linear is $p \in l_{\infty}$. It is easy to see that $c_0^{\nu}(p,s)$ is paranormed space by

$$g(x) = \operatorname{Sup}_{k} (k^{-s}|x_{k}v_{k}|p_{k})^{1/M}$$
, where $H = \sup_{k} p_{k}$ and $M = \max(1,H)$.

Also $l_{\infty}^{\nu}(p,s)$ is paranormed by g(x) if and only if $\inf p_{k} > 0$.

The space $l^{\nu}(p,s)$ is paranormed by $h(x) = (\sum_{k} k^{-s} |x_k v_k| p_k)^{1/M}$.

All the spaces defined above are complete in their topologies.

If (X,g) is a paranormed space, with paranorm g, then we denote by X^* the continuous dual of X, i.e., the set of all continuous linear functionals on X. If E is any set of complex sequences $x = (x_k)$ then E^{α} will denote the α -dual of E,

$$E^{\alpha} = \{ a: \sum_{k} |a_{k} x_{k}| < \infty, \text{ for all } x \in E \}$$

2. \alpha -AND CONTINUOUS DUALS

In the following Lemmas we have the α -and continuous duals of $c_0^{\nu}(p,s)$, $l^{\nu}(p,s)$

and α -dual of l_{∞}^{ν} (p,s) (see, Bilgin [2])

Lemma 2.1. Let $0 < p_k \le \sup_k p_k < \infty$. Then

(i)
$$(c_o^{\nu}(p,s))^{\alpha} = M_o^{\nu}(p,s)$$

where
$$M_o^{\nu}(\mathbf{p},\mathbf{s}) = \underset{N \geq 1}{\mathbf{U}} \left\{ \mathbf{a} = (\mathbf{a}_k) : \sum_{k} \left| \frac{\mathbf{a}_k}{\mathbf{v}_k} \right| k^{s/p} k \quad N^{-1/p} k \quad \langle \infty, \mathbf{s} \geq 0 \right\}$$

(ii) $(c_0^{\nu}(p,s))^*$ is isomorphic to $M_0^{\nu}(p,s)$.

Lemma 2.2. i) If $1 < p_k \le \sup p_k < \infty$ and $p_k^{-1} + q_k^{-1} = 1$, k = 0,1,2,... then

 $(I^{\nu}(p,s))^{\alpha} = M^{\nu}(p,s)$ and $(I^{\nu}(p,s))^*$ is isomorphic to $M^{\nu}(p,s)$ where

$$M^{V}(p,s) = \left\{ a = (a_{k}) : \sum_{k = 0}^{\infty} \frac{a_{k}}{v_{k}} \right|^{q_{k}} s(q_{k} - 1) N^{-q_{k}} / p_{k} \quad \langle \infty, s \ge 0$$

ii) If $0 < \inf p_k \le p_k \le 1$ then $(I^{\nu}(p,s))^{\alpha} = m^{\nu}(p,s)$ and $(I^{\nu}(p,s))^*$ is isomorphic

to
$$m^{V}(p,s)$$
, where $m^{V}(p,s) = \left\{ a = (a_{k}) : \sup_{k} \left| \frac{a_{k}}{v_{k}} \right|^{p_{k}} k^{s} \ (\infty, s \ge 0) \right\}$

Lemma 2.3. $(l_{\infty}^{\nu}(p,s)) = M_{\infty}^{\nu}(p,s)$, where

$$M_{\infty}^{\nu}(\mathbf{p},\mathbf{s}) = \bigcap_{N \geq 1} \left\{ a = (a_k) : \sum_{k = 1}^{n} \frac{a_k}{v_k} \right\}_{k = 1}^{n} \frac{1}{p_k} \quad \langle \infty, s \ge 0$$

3. MATRIX TRANSFORMATINOS

Let X and Y be any two nonempty subsets of s, the set of all sequences of real or complex numbers, and let $A = (a_{nk})$ be the infinite matrix of complex numbers a_{nk} (n, k = 1,2...). For every $x = (x_k) \in X$ and every integer n, we write

$$A_{n}(x) = \sum_{k} a_{nk} x_{k}$$
 (2)

The sum without limits in (2) is always taken from k = 1 to $k = \infty$. The sequence $Ax = (A_n(x))$, if it exists, is called the transformation of $x = (x_k)$ by the matrix A. We write $A \in (X,Y)$ if and only $Ax \in Y$ whenever $x \in X$.

Necessary and sufficient conditions for a matrix $A = (a_{nk})$ to be in the calss Y) for different sequence spaces X and Y are given by several authors ([1], [3], [5], etc.). Our results in this note characterize some of the classes like, $(l_{\infty}^{\nu}(p,s), l_{\infty})$, $(c_0^{\nu}(p,s), l_{\infty}),$

$$(l^{\nu}(p,s), l_{\infty}), (l^{\nu}_{\infty}(p,s), c), (c^{\nu}_{0}(p,s), c), and (l^{\nu}(p,s), c).$$

Theorem 3.1. $A \in (l_{\infty}^{\nu}(p,s), l_{\infty})$ if and only if there exists an integer N > 1such that

$$\sup_{n} \sum_{k} \left| a_{nk} / \nu_k \right| k^{s/pk} N^{1/pk} < \infty.$$

Proof. For sufficiency take an integer $N > \max (1, |Sup_k| k^{-s} | v_k x_k | Pk)$. Then

$$\sup_{n} \left| \sum_{k} a_{nk} x_{k} \right| \leq \sup_{n} \sum_{k} \left| a_{nk} x_{k} \right|$$

$$= \sup_{n} \sum_{k} \left| a_{nk} / v_{k} \right| k^{s/p_{k}} (k^{-s} |x_{k} v_{k}|^{p_{k}})^{1/p_{k}}$$

$$< \sup_{n} \sum_{k} \left| a_{nk} / v_{k} \right| k^{s/p_{k}} N^{1/p_{k}} < \infty$$

and therefore $A \in (l_{\infty}^{\nu}(p,s), l_{\infty}).$

For the necessity suppose that $A \in (l_{\infty}^{\nu}(p,s), l_{\infty})$ but there is an N > 1 such that

$$\sup_{n} \sum_{k} |a_{nk}/v_{k}| k^{s/pk} N^{1/pk} = \infty.$$

 $\sup_{\mathbf{n}} \sum_{k} |a_{nk}/v_k| k^{s/p_k} N^{1/p_k} = \infty.$ Then the matrix $\mathbf{B} = (b_{nk}) = ((a_{nk}/v_k)k^{s/p_k}N^{1/p_k}) \notin (\ell_{\infty}, \ell_{\infty})$ for some integer N

> 1. So there exists $x \in \ell_{\infty}$ with ||x|| = 1 such that $\mathbf{B} x \notin l_{\infty}$. Now $y = (y_k) = (k^{s/p_k} N^{1/p_k} x_k / v_k) \in l_{\infty}^{\nu}(\mathbf{p}, \mathbf{s})$, but $\mathbf{A} \mathbf{y} = \mathbf{B} \mathbf{x} \notin l_{\infty}$ which contradics the fact that $A \in (l_{\infty}^{\nu}(p,s), l_{\infty})$ and this completes the proof.

Theorem 3.2. $A \in (c_0^{\nu}(p,s), l_{\infty})$ if and only if there exists an integer B > 1 $D = \sup_{n} \sum_{k} |a_{nk}/v_{k}| k^{s/pk} B^{-1/pk} < \infty$ such that

Proof. The proof is easy.

Theorem 3.3. i) If $1 < p_k \le \sup p_k < \infty$ then $A \in (l^{\nu}(p,s), l_{\infty})$ if and only if

$$\sup_{n} \sum_{k} |a_{nk}/v_{k}|^{qk} R^{-qk} k^{s(qk-1)} < \infty \text{ for some integer } R > 1.$$

ii) If $0 < \inf p_k \le p_k \le 1$ then $A \in (l^{\nu}(p,s), l_{\infty})$ if and only if $\sup_{n,k} k^s |a_{nk}/v_k|^{pk} < \infty$

$$\sup_{n,k} k^s |a_{nk}/v_k|^{pk} < \infty$$

Proof. i) Sufficiency. By using the inequality (1) we get

$$\left|a_{nk}x_{k}\right| \leq R\left(\frac{a_{nk}}{v_{k}}\right|^{q_{k}} k^{s(q_{k}-1)} R^{-q_{k}} + k^{-s} \left|v_{k}x_{k}\right|^{p_{k}}\right)$$

for every n. Then, we obtain $(A_n(x)) \in l_{\infty}$, whenever $x \in l^{\nu}(p,s)$.

Necessity. Using the same kind of argument to that in [3], the necessity of the condition is obtained in a similar manner as done in Theorem 3(i), by choosing a sequence x

$$\begin{aligned}
&\in \mathsf{I}^{\nu}(\mathbf{p},\mathbf{s}); & x_{k} &= \delta^{H/p}_{k} \left| \frac{a_{nk}}{v_{k}} \right|^{q_{k}-1} & \operatorname{sgn}(\frac{a_{nk}}{v_{k}})_{k}^{s(q_{k}-1)} V^{-1} Q^{-q_{k}/p_{k}} \\
& x_{k} &= 0; k > ko
\end{aligned} ; 1 \le k \le k_{0},$$

for all n, where $V = \sum_{k=1}^{k_0} |a_{nk}/v_k|^{qk} Q^{-qk} k^{s(qk-1)}$ and an integer Q>1 such that $Q\delta^H > L$. $(|A_n(x)| \le L)$

ii) The sufficiency and the necessity can be proved respectively by the same kind of argument used in Theorem 2 (ii)([3]), and by the uniform boundedness principle.

Theorem 3.4. $A \in (c_0^{\nu}(p,s), c)$ if and only if

i) there exists an integer B >1 such that

$$D = \sup_{n} \sum_{k} |a_{nk}/v_{k}| k^{s/pk} B^{-1/pk} < \infty$$

ii) $\lim_{n} (a_{nk}) = \alpha_k$, for each k.

Proof. Necessity. Let $A \in (c_O^{\nu}(p,s), c)$. Since $e_k = (0,0,0,...0,1,0,...)$ in $c_O^{\nu}(p,s)$ (ii) must hold. Put $y_n = \sum_k a_{nk} x_k$, (y_n) is a sequence of continuous linear functionals on $c_O^{\nu}(p,s)$ such that $\lim_n y_n$ exists. Therefore by uniform boundedness principle for $0 < \delta < 1$, there exists $S_{\delta}[0] \subset c_O^{\nu}(p,s)$ and constant K such that $|y_n| \le K$ for each n and $x \in c_O^{\nu}(p,s)$. Let us define $x^r = (x_k^r) \in c_O^{\nu}(p,s)$ by following

$$x_{k}^{r} = \begin{cases} \delta^{M/p_{k}} k^{s/p_{k}} \operatorname{sgn} \left(a_{n,k} / v_{k} \right) / v_{k}, 0 \le k \le r \\ 0, \text{ otherwise} \end{cases}$$

where M=max(1,sup p_k). Now $x^r = (x_k^r) \in S_\delta$ [0] and

$$\sum_{k \le r} \left| a_{nk} / \nu_k \right| k^{s/pk} B^{-1/pk} \le K$$

for each n and r, where $B=\delta^{-M}$. Therefore (i) holds.

Sufficiency. Suppose (i)- (ii) hold and $x \in c_0^{\nu}(p,s)$. Hence for $0 < \epsilon < 1$, there exists r;

$$\forall k > r$$
 $\left| k^{-s/pk} x_k v_k \right|^{pk/M} \le \frac{\varepsilon}{B(2D+1)} < 1$

and therefore k > r

$$B^{1/p_k} \left| k^{-s/p_k} x_k v_k \right| < B^{M/p_k} \left| k^{-s/p_k} x_k v_k \right| < \left(\frac{\varepsilon}{2D+1} \right)^{M/p_k} < \frac{\varepsilon}{2D+1} < B.$$

By (i) and (ii) we have
$$\sum_{k} |\alpha_{k}/v_{k}| k^{s/p_{k}} B^{-1/p_{k}} < D$$
 and
$$\sum_{k} |(a_{nk} - \alpha_{k})(x_{k})| \le \sum_{k} (|a_{nk}x_{k}| + |\alpha_{k}x_{k}|)$$

$$= \sum_{k} (|(a_{nk}/v_{k})v_{k}x_{k}| + |(\alpha_{k}/v_{k})v_{k}x_{k}|)$$

$$\le B(\sum_{k} |a_{nk}/v_{k}| k^{s/p_{k}} B^{-1/p_{k}})$$

$$+ \sum_{k} |\alpha_{k}/v_{k}| k^{s/p_{k}} B^{-1/p_{k}}) < 2BD < \infty$$

for each n. Hence $\sum_{k>r} |(a_{nk} - \alpha_k)(x_k)| < \varepsilon$ for each n.

Therefore, we have $\lim_{n} \sum_{k} a_{nk} x_{k} = \sum_{k} \alpha_{k} x_{k}$. This proves that $A \in (c_{0}^{\nu}(p,s), c)$.

Theorem 3.5. $A \in (l_{\infty}^{\nu}(p,s), c)$ if and only if

- i) $\sum_{k} |a_{nk}/v_k| k^{s/pk} N^{1/pk}$ convergens uniformly in n for all integers N >1,
- ii) $\lim_{n}(a_{nk})=\alpha_k$, for each k

Proof. Sufficiency. By (i) $\sum_{k} a_{nk} x_{k}$ converges uniformly in n for each $x \in l_{\infty}^{\nu}(p,s)$. Therefore $\lim_{n} \sum_{k} a_{nk} x_{k} = \sum_{k} \alpha_{k} x_{k}$ and hence sufficiency holds.

Necessity. Suppose that $A \in (I_{\infty}^{\nu}(p,s), c)$. Since $e_k \in I_{\infty}^{\nu}(p,s)$, (ii) must hold. If (i) does not hold, then $((a_{nk}/\nu_k)k^{s/p_k}N^{1/p_k}) \notin (\ell_{\infty},c)$ for some integer N > 1, whence as in Theorem 3.1 there is $x \in I_{\infty}^{\nu}(p,s)$ such that $(\sum_k a_{nk}x_k) \notin c$. This completes the proof of the Theorem.

Theorem 3.6. $A \in (I^{\nu}(p,s),c)$ if and only if

i)
$$C(R) = \sup_{n} \sum_{k} |a_{nk}/v_{k}|^{qk} R^{-qk} k^{s(qk-1)} < \infty$$
 for some integer $R > 1 \left(1 < p_{k} \le \sup_{k} p_{k} < \infty\right)$ and $\sup_{n,k} k^{s} |a_{nk}/v_{k}|^{p_{k}} < \infty \left(0 < \inf_{k} p_{k} \le k \le 1\right)$

ii) $\lim_{n} (a_{nk}) = \alpha_k$, for each k,

Proof. We consider only the case $1 < p_k \le \sup p_k < \infty$. Necessity. Let

 $A \in (I^{\nu}(p,s),c). Since \ e_k \in I^{\nu}(p,s) \ , \ (ii) \ must \ hold. \ Now, \ y_n \ exists \ for \ each \ n$ and

 $x \in I^{\nu}(p,s)(y_n = \sum_k a_{nk}x_k)$. If we put $A_n = (y_n)$, then (A_n) is a sequence of continuous real functionals on $I^{\nu}(p,s)$ and further $\sup_n |A_n| < \infty$ on $I^{\nu}(p,s)$. By uniform boundedness principle desired result (i) follows. Sufficiency. Suppose that the conditions (i) and (ii) hold. Then the series $\sum_k a_{nk} x_k$

sufficiency. Suppose that the conditions (i) and (ii) hold. Then the series $\sum_k a_{nk} x_i$ converges for each n and $x \in I^{\nu}(p,s)$. We have

$$\lim_{r} \lim_{n} \sum_{k=1}^{r} |a_{nk}/v_{k}|^{q_{k}} R^{-q_{k}} k^{s(q_{k}-1)} \le C(R)$$
 that is,

$$\sum\nolimits_{k} \left| \alpha_{k} / \nu_{k} \right|^{q_{k}} \mathbf{R}^{-q_{k}} \; k^{s(q_{k}-1)} < \sup\nolimits_{n} \sum\nolimits_{k} \left| a_{nk} / \nu_{k} \right|^{q_{k}} \mathbf{R}^{-q_{k}} \; k^{s(q_{k}-1)} < \infty$$

Thus, $\sum_{k} \alpha_k x_k$ converges for each $x \in I^{\nu}(p,s)$. For each $x \in I^{\nu}(p,s)$ we can

choose

 $r \ge 1$ such that

$$\sum_{k\geq r} |k^{-s}| x_k v_k |^{p_k} < 1.$$

By using the inequality (1) it is easy to check that

$$\sum_{k>r} |(a_{nk} - \alpha_k) x_k| < 2R(2 C(R) + 1) \left(\sum_{k>r} |k^{-s}| x_k v_k|^{p_k} \right)^{1/H} (H = \sup p_k).$$

Therefore $\lim_{n} \sum_{k} a_{nk} x_{k} = \sum_{k} \alpha_{k} x_{k}$

Acknowledgement-The author is grateful to the referee for making valuable comments which improved the presentation of the paper.

REFERENCES

- [1]- M.Başarır, On some new sequence spaces and related matrix transformations; *Indian J.Pure Appl. Math.* **26**, 1003-1010, 1995.
- [2]- T. Bilgin, Dual Spaces of Certain sequence spaces, Y.Y.U. Journal of Faculty of Education, 1, 81-88, 1996.
- [3]- E. Bulut and Ö. Çakar, The sequence space l(p,s) and related matrix transformations, *Comm.Fac.Scie.Ankara University*, Seri A₁, 28, 33-44, 1979.
- [4]- R. Colak, P.D. Srivastava and S. Nanda, On certain sequnce spaces and their Köthe Toeplitz duals, *Rendiconti di Matematica*., Serie VII, **13**, 27 39, 1993.
- [5]- C.G. Lascarides, A study of certain sequnce spaces of Maddox and a generalization of a theorem of Iyer; *Pacific J. Math.* **38**, 487–500, 1971.
- [6]- C.G. Lascarides and I.J.Maddox, Matrix transformations between some classes of sequence spaces, *Proc. Camb. Phil. Soc.* **68**, 99-104, 1970.
- [7]- I.J. Maddox, Spaces of strongly summable sequences, *Quaterly J. Math.Oxford* **18** 345-355, 1967.
- [8]- I.J. Maddox, Some properties of paranormed sequence spaces, J. London Math. Soc. 1, 316-322, 1969.
- [9]- I.J. Maddox, Operators on the generalized entire sequences, *Proc. Cam. Phil. Soc.*, 71, 491-494, 1972.
- [10]-A. Ratha and P.D. Srivastava, Matrix transformations between some classes of generalized analytic sequence spaces; Y.Y.U. Journal of Faculty of Education 1, 29-45, 1994.
- [11]- S. Simons, The sequence spaces $l(p_v)$ and $m(p_v)$. Proc.London Math.Soc.15, 422-436, 1965.