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Abstract- In this paper a method for finding efficient solutions of a 0-1 Multiple Objective
Linear (Nonlinear) programming Problem using Data Envelopment Analysis (DEA)
technique is proposed. In this method, for each feasible solution of 0-1 Multiple Objective
Programming (0-1 MOP) problem, a Decision Making Unit (DMU) is introduced. Using
the additive model, the relative efficiency of these DMUs is evaluated. Each feasible
solution corresponding to an efficient DMU is the efficient solution of 0-1 MOP problem.
Keywords- 0-1 Multiple Objective Programming, Data Envelopment Analysis, Efficient
Solution
iI. INTRODUCTION

Data Envelopment Analysis (DEA) is a mathematical programming technique, which
is used for the evaluating relative efficiency of Decision Making Units (DMUs) and has
been proposed by Charnes et al. [4]. This technique has been extended by Banker et al.
(BCC model) [2]. Also the additive model, which is used in this paper, has been proposed
by Charnes et al. [5]. There is a close relation between DEA and Multiple Objective
Programming (MOP) [7,8]. In this paper, we have used from this relation for solving 0-1
MOP by additive model. The methods by Liu et al. [8], Bitran [3] and Deckro et al. [6]
have been proposed for solving 0-1 Multiple Objective Linear Programming Problem (0-1
MOLP). These methods are not able to solve the 0-1 MOP problems with nonlinear
structure.

In the next section, MOP is considered. DEA is introduced in section 3. In section 4 a
method for finding efficient solutions of 0-1 MOP by using DEA is proposed. Section 5
illustrates the procedure with some numerical examples and in the last section conclusion
and some remark are put forward.

2. MULTIPLE OBJECTIVE PROGRAMMING

A multiple objective programming problem is defined in the following form:

Max (£, (W) f,(W)... £, W)

Min  (g,W).g,W)...e,(W)) M
st. WeQ
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where  f, fy,, fr and g,,g,,..,g, are objective functions and Q is feasible

region. If all objective functions are linear and €2 is a convex polyhedral, then the problem
(1) is called a multiple objective linear programming problem.
Definition 2.1. W € £ is said to be an efficient solution of the problem (1) if and only if

there does not exist W° & £, such that

(07 b )=, 090 ) 2,0 )2 (1 7)o £, )~ 8, ,67)

and inequality holds strictly for at least one index. _
If in the problem (1) all variables are restricted to be zero - one, then the problem (1) is
called 0-1 MOP problem and is defined as follows in which W=(w,wa,...,w,),

Max (f,(W)f,W)...7.(W)

(6:W) g, (W)....q, W) @
st WeQ

woefol} j=12..n

3. DATA ENVELOPMENT ANALYSIS

Consider n decision making units DMU; (3 =1, 2, ..., r), which each DMU consumes
a m-vector 1n}%ut to produce a s-vector output. Suppose that X; = (x5 X25..., Xny} and Y=
(Y15¥2.-.,¥s) are the vectors of inputs and outputs Values, respectlvely for DMU;, in
which it has been assumed that X; 20 & X; 20 and Y;2 0 & Y # 0. Consider the set S and
itsconvex hull as § = {(X ,,Y,}| j=12,.,n}

c(s)={ XX N =3A,X,.7), 4 =1,4,20, j=12..n }
i=l J=l

Let (X,,Y,) corresponds to DMU,. If a vector (X,Y)€ C(S) can be found such that
X,z (X Y} & (XY)#(X Y),

then DMU, is called inefficient; otherwise, it is calied efficient. To evaluate relative
effictency of DMUs, the following model is used which is known as additive model:

h, = Min wisi"wis:

=] ral

n
N
st Zﬂjyrj ~5. =y, r=La,s
=1 ‘
n
=3 Ax, =5 =-x,, i=1..m 3)
=i ,

le =1

j=1

A 20,57 20,5 20, j=l.,n, i=l.,m, r=l.,s
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We know that DMU, is efficient in the additive model if and only if &, =0.

LEMMA 3.1. The additive model is translation invariant (see [1]).

Since the additive model is translation invariant, it can be used for evaluating the
relative efficiency of DMUs with zero or negative components in the input or output
vectors. Note that the additive model can be used for evaluating the relative efficiency of
DMUSs without input or output which are defined as follows:

The envelopment side of the additive model without input

- 3
& — . -4
Q, =Min —Es,

r=i

st leyrj ~5. = Y, r=1,..,5 (4
=l
> =1
Jj=1
A; 20,87 20, j=l..,n, r=L..s.
and
The envelopment side of the additive model without output
Q, =Min -5
i=l
st - Eﬂjxg —5] ==X, i=1..,m (3
J=t
DA =1
=1
A; 20,57 20, j=lLo.n, i=l..m.

THEOREM 3.1. The envelopment side of the additive model without input is feasible and
bounded. '
Proof: It can be easily verified that A =(Ay,..., Ay...,Ax)=€, = (0, 0,...,0,1,0,...,0,0) and §*
=(s;7,....8: )= (0,0,...,0) is a feasible solution for this model.

To prove that the envelopment side of the additive model without input is bounded,
consider its dual, which is as follows:
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Max Zury,p +u,

r=1

5
St Zu,y,j +u, <0, j=L..,n

=l

u, 21, r=1,..,5.

. - . & - . . .
Since (u1, up,.. U, Uo) = (1,1,...,Lu) with u, = g}j}gﬂn{—zr:l ¥, isa feasible solution of

the above problem, the dual is feasible. Therefore, the envelopment side of the additive
model without input is bounded.

LEMMA. 3.2. The additive model without input is translation invariant.

The proof is straightforward.

LEMMA 3.3. In the additive model without input, DMU, is efficient if and only if Q; = (),
Proof : Let Q; = 0 and by contradiction, suppose that DMU, is inefficient. So, there exists

a A such that E’;xl/ﬁ: ¥y 2 ¥, r=l..,s in which at least one inequality holds strictly.
That is, there exists an [ which Ejﬂﬁu ¥y 2, and this means that s, > 0. So, there exists

a feasible solution, say (A,S*), such that Q; < 0 and this is a contradiction.
Conversely, suppose that DMU; is efficient in the additive model without input. We
will prove that @, =0.1f Q) <0, then there is an [ which s > 0. Hence, 2:;111 Vi >V,

which is a contradiction.

4. SOLVING 0-1 MOP USING DEA TECHNIQUE
Consider the following problem:
Max (W), f,W).... f, W)
st. g (W)s<b, i=1,2,..,m (6)
w, € 0,1} i=12,.,n

where W=(w,wy,...,w,) and functions f;, fo....fs and 85 82....8m are not necessarily
linear. Let Q={W|g,W)<b, w;e{0.1} i=12...m j=12..n} which is called

H

the set of the feasible solutions of the problem (6).
Two different cases are considered for the problem (6) in the following forms:

4.1. Case 1: Efficient solution with less sources

In this case, suppose that consuming less sources is important. In other words, it is
assumed that in addition to the objective functions are satisfied, less sources are consumed.
Hence, instead of problem (6), the following problem is proposed.
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Max (f,(W), £,(W).... £, (W)

Min (3, (W) g,0W)....g,, (W)

st. g W)<b, i=1,2.,m Q)
ij{O,l}, j=4L2,....n

where f,{W) is the value of (=1, 2,...,8) objective function, and g W) is the value of
consuming i (i=1, 2,...,m) source in which We Q. Corresponding to each feasible

solution W, of the problem (7), the vectors X, and Y are defined as follows:

X, = (xld’xzd"""xmd) & ¥, :(yld’yzd""’ysd)

where, ‘
Vip = £ W,) r=L2..s
&
x, =g W, i=L2..m
In order to use DEA technique for finding efficient solutions of the problem (7), each
vector (X,,Y,) is considered as a DMU where, X; and ¥ are input and output vectors,
respectively. To evaluate the relative efficiency of these DMUs, the additive model is used.

THEOREM 4.2. If DMUy is efficient in the model (3) then W, is efficient solution for
problem (7).

Proof: Let DMU, be efficient in model (3) and by contradiction, suppose that Wy is not
efficient solution for the problem (7). So, there exists W such that:

LW )z, r=12.s
©)
gW,)<e,W,)  i=12..m
and strict inequality holds for at least one index, say index [ or k, i.e:
fiWp) > fi(Wy)  or  gdWp) < g Wa) (10)

In either case, if we consider the vector A inthe form 1 =¢=(0,0,...,0,1,0,...,0,0)

or A =e=(0,0..,010,..,00. From (8) and (10), we have Xip < Xra OF Yig > Vid-
Hence:

n n
2}”;)’5 > Y or Elixki < X+
p= =i

Consequently, s;” >0 or s;” >0. This means that there exists a feasible solution, say

(A,87,8%), where the optimal value of objective function in model (3) should be negative,
and this is a contradiction.

4.2. Case 2: Efficient solution in general case
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Recall that W is an efficient solution of the problem (6) if and only if there does
not &xist W’ such that:

(1) £ ) £, )2 (1, W) £, o, £, W)

and strict inequality holds at least for one index.
Corresponding to each feasible solution W, of the problem (6), the vector Y, is defined

as Yd = (yldayms"-a y.sd)
whére,

v, =f,W,) r=12..s an

Each vector Yy is considered as a decision making unit (DMU,) without input vector. In
this case, we have assumed that the value of consuming sources does not effect in the
appointment of the efficient solutions. Therefore, for finding the efficient solutions of the
problem (6), the constructed DMUs are evaluated by the additive model without input
(model (4)).

THEOREM 4.3. If DMUj, is efficient in the model (4), then Wy is an efficient solution of
the problem (6). _

Proof: Let DMU, be efficient in the model (4) and by contradiction, suppose that Wy is not
efficient solution of the problem (6). So, there should be a Wg such that:

LW )2 £,W,) r=12,.,s

and strict inequality holds for at least one index, say index [, i.e fifWp) > fifWa). If we
consider the vector A in the form A = ¢ =(0, 0,..., 0, 1, 0,..., 0, 0), then from (11) and
f,(WB)> £,(w,) we will have yig > yiu. Hence, Z;l A, ¥y > ¥y - Consequently, 55 >0.

This means that there exists a feasible solution, say (A,5"), where the optimal value of the
objective function in the model (4) should be negative, and this is a contradiction.

Therefore, by considering the models, the algorithms for case 1 and case 2 can be
summarized as follows:

An algorithm for finding efficient solution with less input (case 1)
Step O: Start,
Step 1: Find all feasible solution of the problem (7),
Step 2: For each feasible solution, construct a DMU according to (8),
Step 3: Evaluate the relative efficiency of the constructed DMUs using the model (3),
Step 4: End.

An algorithm for finding efficient solution (case 2)

Step 0: Start,
Step 1: Find all feasible solution of problem (6),
Step 2: For each feasible solution, construct 2 DMU according to (11),
Step 3: Evaluate the relative efficiency of the constructed DMUs using the model (4),
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Step 4: End.
5. NUMERICAL EXAMPLES

Example 1: Consider the following 0-1 MOP problem.

Max 3w, +6w; + 5w ~ 2w, + 3w}

Max 6w, +7w, +4w, + 3w, — 8w,

Max 5w, —3w, + 8w, ~4w, + 3w,

st —2w, +3w, +8w; —w, + 5w, <13
6w, + 2w, +4w, +4w, - 3w, <15
4w, = 2w, + 6w, ~ 2w, +w; <11
Wy, Wy, Wy, w,, ws & {0,1}

The problem has 5 variables therefore, the number of feasible solutions is equal or less
than 2°. In the Table 1, the column 2 denotes all feasible solutions of the problem. The
corresponding outputs and inputs of the feasible solutions have been presented in columns
3 and 4, respectively. -

Table 1: Feasible solutions, inputs and outputs

No W, Output Input
1 (0,0,0,0,1) (3,-8,3) (5,-3,1)
2 (0.6,0,1,00 (-2,3,-4) (-1,4,-2)
3 (0,0,1,0,0) (5,4,8) (8,4,6)
4 (0,1,0,0,0) (6,7,-3) (3,2,-2)
5 (1,0,0,0,0 ~ {3,6,5) (-2,6,4)
6 (0,0,0,1,1) (1,-5,-1) (4,1,-1)
7 (0,0,1,0,1) (8,-4,11) (13,1,7)
8 (0,1,0,0,1) (9,-1,0) (8,-1,-1)
9 (1,0,0,0,1) (6,-2.8) (3,3,5)
10 (0,0,1,1,0) (3,7,4) (7.8,4)
11 (0,1,0,1,0) (4,10,-7) (2,6,-4)
12 (1,0,0,1,0) (1,9,1) (-3,10,2)
13 (0,1,1,0,0) (11,11,5) (11,6,4)
14 (1,0,1,0,0) (8,10,13) (6,10,10)
15 (1,1,0,0,0) (9,13,2) (1,8,2)
16 (0,0,1,1,1) (6,-1,7) (12,5,5)
17 (0,1,0,1,1) (7,2,-4) (7.3,-3)
18 (1,0,0,1,1) (4,1,4) (2,7,3)
19 (1,0,1,0,1) (11,2,16) (11,7,11)
20 (1,1,0,0,1) (12,5,5) (6,5,3)
21 (0,1,1,1,0) (9,14,1) {10,10,2)
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22 (1,0,1,1,0) (6,13,9) (5,14,8)
23 (1,1,0,1,0) (7,16.-2) (0,12,0)
24 (1,1,1,0,0) (14,17,10) (9,12,8)
25 (1,1,0,1,1) (10,8,1) (3,9,.1)

26 (1,0,1,1,1) (9,5,12) (10,11,9)
27 (1,1,1,1,1) (15,12,9) (13,13,7)
28 {0,0,0,0,0) 0,0,0) (0,0,0)

presented in the columns 3 and 5 of the Table 2, respectively.
Table 2: The obtained results from models of (3) and (4)

No Wi Opt. Value of Wit Opt. value of Wit
(4) 3
1 (0,0,0,0,1) 43 - 0 Efficient
2 (0,0,0,1,0) 44 - 0 Efficient
3 (0,0,1,0,0) 24 - 0 Efficient
4 (0,1,0,0,0) 31 - 0 Efficient
5 (1,0,0,0,0) 27 - 0 Efficient
6 (0,0,0,1,1) 46 - 12.76 -
7 (0,0,1,0,1) 24 - 0 Efficient
8 (0,1,0,0,1) 33 - 0 Efficient
9 (1,0,0,0,1) 29 - 0 Efficient
10 (0,0,1,1,0) 27 - 16.72 -
11 (0,1,0,1,0) 34 - 0 Efficient
12 (1,0,0,1,0) 30 - 0 Efficient
13 (0,1,1,0,0) 14 - 0 Efficient
14 (1,0,1,0,0 0 Efficient 0 Efficient
15 (1,1,0,0,0) 17 - 0 Efficient
16 0,0,1,1,1) 29 - 15.86 -
17 (0,1,0,1,1) 36 - 0 Efficient
18 (1,0,0 1,1) 32 - 12.30 -
19 (1,0,1,0,1) 0 Efficient 0 Efficient
20 (1,1,0,0,1) 19 - 0 Efficient
21 (0,1,1,1,0) 17 - 9.31 -
22 (1,0,1,1,0} 13 - 0 Efficient
23 (1,1,0,1,0) 20 - 0 Efficient
24 (1,1,1,0,0) 0 Efficient 0 Efficient
25 (1,1,0,1,1) 22 - 0 Efficient
26 (1,0,1,1,1) 11 - 12 -
27 (1,1,1,1,1) 0 Efficient 0 Efficient
28 (0,0,0,0,0) 41 - 0 Efficient
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The last column of table 2 shows that DMUg, DMU;q, DMU 5, DMU; 3, DMUjy; and
DMUys  are  inefficient and other DMUs are  efficient.  Therefore,

Q = Q—{W,, W,y W,s, Wys, W, , W, | is the set of the efficient solutions of the Example 1 in

the case 1. Column 4 of table 2 shows that DMUy, DMUo, DMU,4 and DMUy; are
efficient and other DMUSs are inefficient. Therefore, X' = {Wyy, Wio, Way, Wa7} is the set of
the efficient solutions of the Example 1 in the case 2.

Example 2: Consider the following 0-1 MOP problem.

Max 4w, -3w, + 5w,

Max 2w, +7w, —w,

st owy 2w, +wy, <7
3w, +w, +2w, <6
Wy, Wy, W, € {o.1}.

The feasible solutions, inputs, outputs and the obtained results from models (3) and (4)
are shown in the Tables (3) and (4).

Table 3: Feasible solutions, inputs and outputs of Example 2

No W; Qutput Input
I (0,0,0) (0,0 (0,0)
2 (1,0,0) (4,2) (1,3)

3 0,1,0 (-3,7) (2,1)
4 (0,0,1) (5,-1) (1,2)
5 (1,1,0) (1,9) 3.4
6 (1,0,1) 9,1) (2,5)
7 (0,1,1) (2,6) (3,3)
8 (1,1,1) (6,8) (4,6)

Table 4: The obtained results from models (3) and (4)

No W; Opt. value of Wi Opt. value of Wi
(4) (3}
1 (0,0,0) 14 - 0 Efficient
2 (1,0,0) 8 - 0 Efficient
3 (0,1,0) 10 - 0 Efficient
4 (0,0,1) 10 - 0 Efficient
5 (1,1,0) 0 Efficient 0 Efficient
6 (1,0, 0 Efficient 0 Efficient
7 (0,1,1) 6 - 0 Efficient
8 (1,1,H 0 Efficient 0 Efficient
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6. CONCLUSION

In general, solving 0-1 MOP in which objective functions and constraints are not
linear is a hard task. It seems that the suggested algorithms in this paper are the only ones,
which solve the nonlinear problems and find the efficient solutions. If the problem has a
rather large size, then to solving the problem needs more computational effort. By
considering convexity constraint of the additive model and the additive model without
input, some efficient solutions of the problem may be lost.
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