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Abstract- Dynamics of a magnetoelastic beam in a periodic magnetic field is
investigated. For this aim, a new measurement tool for the observation of vibrations of
the beam is introduced in place of using common strain-gauge technique. Several
analyses including power spectra, maximal Lyapunov exponent, correlation dimension
and time series clustering are carried out to determine vibrational aspects of the system.
As a result of these analyses, it is found that the system extremely depends on the
frequency of external field, even, the nonlinear character of the motion exhibits more
complexity for the odd excitation frequencies.
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1. INTRODUCTION

Deterministic systems with linear and nonlinear behaviours have been
investigated frequently in many phenomena, for instance elastic structures, chemical
reactions and electrical circuits for their wide usage in different areas [1,2,3]. In this
manner, there has been growing interest in investigating complex behaviors of such
systems. One of the investigation areas, elastic structure has been studied by many
scientists for some decades because of the common - usage in many technical devices,
for instance, generators, motors, transformers and fusion reactors [4].

The first comprehensive studies on vibrations of buckled and curved plates were
carried out by Cummings and Eisley [5,6]. Tseng and Dugundji studied the nonlinear
vibrations of a buckled beam with fixed ends and observed both periodic and
nonperiodic motions in their experimental and theoretical works [7,8]. They also
explored the snap-through motion for their dynamic system. In addition, Moon and
Holmes examined the vibrations of a forced magnetoelastic beam which was buckled by
magnetic forces and it was found out that the harmonic excitation of this system
exhibited chaotic snap-through behavior {4]. Another study was realized by Saymonds
and Yu with an elastic-plastic beam and they gave numerical results for the transient
response of the system using nine different finite element codes [9]. Then, their work
was extended to a chaotic vibration problem [10].In the present work, the dynamic
behavior of the magnetoelastic beam in a periodic magnetic field is investigated. The
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apparatus which is used to obtain the dynamics of magnetoelastic beam and the whole
experimental process are introduced in Section 2. Following section gives brief
explanation about methods used to identify the dynamics and both experimental
findings and analyses are also evaluated in this section. Finally, Section 4 mentions
main conclusions of the present work.

2. EXPERIMENTAL
The block diagram of apparatus used to explore the dynamic behavior of the

magnetoelastic beam in a periodic magnetic field is given Fig. /. The magnetoelastic
beam is positioned as
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Figure 1. Block diagram of apparatus used to obtain the vibrations of magnetoelastic
beam.

perpendicular to experiment table as indicated by eliptical shape in this figure. In the
first part of the apparatus, we obtain a driving current to provide a preferable working
condition for the electromagnet, for this aim, a Leader Lag-27 signal generator with
square wave is used. As seen in Fig. 2a, only positive pulses of square wave are passed
through the system with the help of IN400! type diode, so the electromagnet is only
driven during the half of whole period. In this sense, the electromagnet produces a
magnetic field as follows:

B=0 — 0<zs—25—
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Here, B and f represent the magnetic field strength and its frequency, respectively. In
the experiment, a coil as electromagnet with 250 loops has been used and the magnetic
field, By = 0.028T is measured constantly for every half period. This field magnitude is
not changed during the experimental process.
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Figure 2. (a) The circuit diagram of driving circuit. (b) The circuit diagram of
photoresist.

The second part of the experimental system is constructed for the detection of
the vibrations of beam. In this part, an He-Ne laser beam is used to convey the
vibrations to oscilloscope and printer in place of well-known strain-gauge technique.
This kind of recording technique has been known from dripping faucet experiments
relevant to recording the time intervals between successive drops {see in 1/]. However,
this technique is applied to the vibrations from an elastic structure for the first time.
This kind of measurement idea for vibrating structores can also be thought of an
application of Poincare section determination with respect to physical position of the
beam, because the vibrations which are at the equilibrium point are only recorded.

The photoresist unit is given in Fig. 2b. According to this circuitry, when the
laser beam has illuminated the photoresist, the current passing through the resistor
creates a potential between the coupling cable. Meanwhile, it can be considered that
measuring the motion at the equilibrium point is more useful owing to recording
vibrations with small amplitude. One can then arrange the system to take the potential
maximum at the equilibrium point of the beam. As a result of this arrangement, the
illuminating light decreases the potential difference between the cables and when the
laser beam which is illuminating the photoresist to be interrupted by the magnetoelastic
beam, then the potential difference on the photoresist increases. This is provided with
coupling the photoresist transversely. This potential is conveyed as an electrical pulse to
measurement devices.

The magnetoelastic beamn is always ensured to start its motion from stable
condition and the laser beam is cut by magnetoelastic beam at its equilibrium position
during the whole experimental process. The distance to coil from the equilibrium point
of beam has been arranged as 5 cm to enable the observation of large amplitude
vibrations and the vibration amplitude is generally measured as nearly 7.2 cm. We have
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used a 35.5 cm length ferromagnet as magnetoelastic beam with 7 mm width, 0.5 mm
thickness and 70.78 g weight.

The vibrations have been observed by a Gould DSO 4068 type oscilloscope to
ensure that all motion of system to be recorded by Pasco CDL 8010 printer,
simultaneously. The amplitudes of vibrations are obtained from printer as mV, measured
voltage on the photoresist unit. These obtained amplitudes are not only the reasonable
results of displacement but also the results of beam velocity.

Since beam vibrations in higher magnitudes, for instance, do not interrupt the
beam in a long time interval, as a result of this behavior, the decrease in potential
becomes smaller. Thus, these amplitudes are acceptable as the function of displacement
and velocity values of the beam.

3. ANALYSES OF EXPERIMENTAL DATA

In this section, the time series are initially introduced. During the experimental
procedure, the frequencies of the magnetic field are changed from / Hz to 10 Hz with ]
Hz frequency interval and the behavior of the beam with respect to these frequencies is
observed. In Fig. 3(a-j}, the amplitudes with respect to time are seen. The time scale is
defined as 0.366 s for the first seven plots and the scale is keept at 0.330 s for the rest of
plots.

It is clear from the time histories that vibrations exhibit considerably different
behaviors with respect to the field frequencies. The field frequencies with odd numbers
generally yield to more complex structure i.e. f = 1Hz, f = 3Hz and f = 9Hz for the field
frequencies give more complexity to magnetoelastic beam. (That will be proven later
with the help of correlation dimension and maximal Lyapunov exponent
measurements.) For the frequency values of f = 2Hz, f = 4Hz and f = 8Hz, the system
indicates less complex behavior. However, determining these differences may be more
clear by utilizing power spectrum analysis. As seen in Fig. 4(a-j), the motion contain
different frequencies with their subharmonics.

The frequency values from power spectrum indicate that fundamental
frequencies are the same as the field frequencies for only f = 4Hz, f= SHz and f =
6Hz. The behavior of system is autonomous from the excitation frequency for the other
field frequencies. The spectra also indicate a complexity except the field frequencies of
f=2Hz,f= 4Hz, f = 8Hz and f =10Hz as mentioned above. The complex structures are
especially seen for odd frequencies such as, f= IHz, f=3Hz, f=5Hz, f=7Hzandf
= 9Hz. In addition,
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Figure 3. (a-j) Vibrations of the magnetoelastic beam for various magnetic field
frequencies.

f = 6Hz causes a nonlinear motion as an even field frequency. Another remarkable thing
about spectra is that f = 6Hz and f = 7Hz frequencies for magnetic field indicate a wide
range of frequency distribution as seen in Fig. 4(f, g).

Other technique to identify the complexities of the system — correlation
dimension gives more quantitative result to identify the phase space. In this manner,
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correlation dimension requires & quantity named embedding dimension, m. Takens
stated that if any phase space has N dimension then, in general, one must reconstruct an
embedding value of 2N+ dimensions [2]. Using the values m = 5 and N = 2 for the
present case, the aim is to identify the phase space points in a neighborhood of e.
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Figure 4. (a-j) Power spectrum analyses of the vibrations.

For this process, the distances between the pairs of points, sy = |xi-x] + |yiy| are
calculated using Euclidean measure. Then, the correlation function is defined as,

Cle)=lim “A“}{E" [ number of pairs (i,j) with distance sy < e]

N—yoo

In addition to the above relation, the correlation dimension can be determined by
finding out the slope of the In C(e) versus In ¢ curve such as,

imnC(e)
D, =lim——=
o Tlm—
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Figure 5. Variation of the correlation dimension values for various field frequencies.

As seen in Fig. 5, dimension values are changeable and they support the power
spectrum analysis. For any two dimensional system, it is clear for the expected
behaviour of the dimension that Dg = I is provided for ordered regions, while J<Dg<2
is provided for nonlinear regions. In this sense, dimension values are found above 7.45
for odd frequencies and below .6/ for even frequencies. According to dimension
measurements, even frequencies except f = 0Hz have linear behavior as in power
spectrum analysis. 7

Positive Lyapunov exponents are indicators of a nonlinear, especially chaotic
motion in any system and describe that the system exhibits a sensitive dependence on
the initial conditions in the phase space [2]. Meanwhile, maximal Lyapunov exponent
characterizes the fastest rate of exponential divergence of two nearby trajectories. This
maximal exponent is given by

MLE = —1— ilogz——————d(["”)

(‘fN "”%)"*" d(rk)

where d(7;) denotes the distance between two neighboring trajectories. For the
computational process, we use a well-known algorithm given by Wolf, et al. [12]. As
seen in Fig. 6, the exponents are positive except f = 2Hz, f = 4Hz, f = 8Hz, f = 10Hz
and such a result determines a chaotic structure for other frequencies. This result also
proves the complexity in the power spectra relating to the drive
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Figure 6. Variation of the maximal Lyapunov exponents for various field frequencies.
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parameter. Meanwhile, field frequencies with odd numbers have generally higher
exponents than frequency values with even numbers have. In addition, motion at f =
6Hz indicates a nonlinear character.

The last analysis is the hierarchical clustering which defines time series in a
successive merging or divisioning manner. There are several ways to identify time
sertes with getting them grouped depending on researches. Initially, it should be stated
that we need to realize this part of study because of having many time series data each
of which belongs to various frequencies. Structural behaviors of vibrations should not
be investigated sufficiently by individual analyses with respect to the frequency because
of different response of the magnetoelastic beam. This last comment is also important to
reach a generalizated idea on the system for the applied magnetic field. As a
hierarchical clustering method, average linkage method is used for grouping. Relating
to this method, groups are fused according to the average distance between pairs of
members in the respective sets in the average linkage. In this manner, the problem is to
search the distance to find the nearest objects, for instance, P and (. These objects are
merged to form the cluster. Distances between P, O and any other cluster R are
determined by

ooy = S50
PoIR T L2
o) £ Nipg )Ny

where dy; is the distance between object { in the cluster (PQ) and object j in the cluster R.
Meanwhile, Npp) and Ng are the number of items in clusters (PQ) and R, respectively
[13]. In the light of this information, cluster analysis is given by a two - dimensional
diagram commonly known as dendogram.

According to Fig. 7, the result of hierarchical cluster analysis is given as three different
clusters. It is clear that while the fluctuations relating to f = IHz, f = 3Hz, f = 5Hz, f =
7Hz and f = 8Hz are in the first group, the second group includes the vibrations related
to f=2Hz, f = 4Hz and f = 9Hz, respectively. The last group is formed by f = 6Hz and f
= JOHz vibrations. As a result of this clustering, it can be concluded
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Figure 7. The dendogram graphic of vibrations: External field frequencies are in alphabetical order.
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that the fluctuations of frequency values with odd numbers are in the same group except
that of f = 9Hz. Even values for magnetic field frequencies are in two groups except the
frequency value for f = 8Hz. This result states that characteristics of these vibrations are
similar to other members being in their own group, structurally. Thus, the complex
structures stemmed from the field frequency may be determined using dendogram.

4. CONCLUSIONS

The dynamics of magnetoelastic beam being in a periodic magnetic field is
studied.For this aim, we have utilized a laser beam which provides to identify the
vibrations as a function of displacement and velocity of the beam. As a result of
analyses, power spectrum give complex structures for odd excitation frequencies.
During the analysis procedure, this comment on odd frequencies has been also proved
by other analyses. While the correlation dimension values are changeable with the drive
parameter, it is proven that even field frequencies except f =6Hz have a linear character.
Maximal Lyapunov exponents confirm the nonlinearity, especially chaoticity for the
vibrations with all odd. frequencies and f = 6Hz. It has also been clarified that
fundamental frequencies of vibrations are different from some excitation frequencies in
the investigated frequency range. Related to the last analysis, dendogram indicates that
these vibrations may be divided into three groups with respect to the average distance
between pairs of fluctuations. This result can be considered as an indication of structural
similarity of time series relating to excitation frequencies. Analyses on magnetoelastic
beam generally state the same result that odd frequencies have similar structures and
degrees of complexity.
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