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Abstract: Global warming is an essential factor to consider when studying tidal wetlands. The Río
Piedras and Flecha de El Rompido salt marsh is one of the main wetlands in Andalusia, Spain. From
the mid-1950s to the present day, Land Use Changes (LUCs) have caused significant alterations to
the landscape. These changes, along with the effects of climatic variables and human activity, have
led to an unprecedented impact on the environment. In this study, a patented method is used to
obtain the total cubic meters of eroded soil and the average erosion prediction between 2015 and 2021
in the marshland area. Additionally, the various factors contributing to this phenomenon and the
influence of intertidal processes are discussed. The results demonstrate how the enhanced integration
of LIDAR technologies, digital elevation models, and Geographic Information Systems (GIS), in
conjunction with regression models, has proven highly useful in describing, analyzing, and predicting
the volumetric change process in the study area. In conclusion, the methodology used is helpful for
any type of coastal marshes influenced by tidal processes and climate change.

Keywords: LIDAR; eroded soil; digital elevation models; intertidal processes; land-use changes;
geographic information systems

1. Introduction

Salt marshes are ecosystems that emerge at the land–sea interfaces, usually in low-
energy tidal settings, and do tend to disappear as a result of the sedimentation process [1,2].
However, human activity has accelerated this process, leading to the loss of their surface
area. Several studies suggest that marshes may be an ecosystem that has experienced
significant alteration due to human actions [3–6]. In fact, current estimates specify that
European salt marshes have decreased by approximately 80% [4,7,8].

While both ecosystem processes and their implications for future land degradation
mitigation have been considered in various pieces of field research worldwide, it is challeng-
ing to extrapolate findings from field studies at a patch scale to other areas [9]. Although
satellite platforms can offer a solution to this problem, the use of LIght Detection and
Ranging (LIDAR) imagery has a significant advantage. This is due to LIDAR that accu-
rately captures all the physical characteristics of marshes, which are often inadequately
reflected in traditional contour mapping [4,10]. Thus, LIDAR data furnish the vital spatial
information required for examining the associations between climatic variables and soil
erosion in a comprehensive marsh-scale analysis. As is well known, LIDAR operates by
scanning its field of view using one or multiple laser beams to determine the distance of an
object from the laser single transmitter [11]. At times, a light pulse may not only reflect off
a single object. In situations such as with trees, a single light pulse can result in multiple
returns. LiDAR systems are capable of capturing data from the upper part of the canopy
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down through the canopy to the ground [12]. Thereby, removing the vegetation, a more
accurate digital elevation model (DEM) can be gathered from LIDAR data.

On a global scale, the studies undertaken by some researchers [13–15] should be high-
lighted, as they lay the foundations for the erosion problem that has occurred in salt marshes
as a result of climate change. In this regard, over the past few years, several researchers
have explored salt marshes and their dynamics in the Iberian Peninsula [1,2,16–18], even
some of them the marshlands allocated in the Gulf of Cadiz. Within the Río (River) Piedras
and Flecha de El Rompido marshland(s) (Huelva, Spain), sediment residence times in
their respective river systems are lengthy, with substantial intermediate storage of eroded
material, as is typical in many of the world’s major river systems, as observed, for example,
in Chile [19]. Moreover, the increased sediment storage can trigger significant alterations in
the physical shape of the marshland river system and its ecological well-being. This latter
aspect is critical due to the marshland river system’s importance for studying the area’s
flora and fauna. Other work employs geomatic techniques to evaluate the dynamics and
evolution of a coastal sandy system in the Cantabrian Sea, northern Spain [20].

Another consequence of the extended sediment residence times in the river system,
as per [4,7,19], is that major historical changes can influence the system’s behavior for
decades. It is also imperative for us to acquire and evaluate the response trajectory to global
historical change, with the temporal scale of analysis being highly relevant for predicting
the relationship between net sediment response and flood distribution over the years.

So far, in most marsh-related studies, researchers have primarily focused on addressing
soil loss and erosion processes solely through mapping changes in vegetation cover and
vegetation abundance, or Land Use Changes (LUCs) in a general sense. Indeed, some
researchers have explored different methods capable of deriving the state of variables based
on soil reflectance characteristics or vegetation cover characteristics [9]. Furthermore, there
are studies in which LUCs were used to define dynamics in watersheds [21] or to assess
the degradation of fluvial sediment transport [22]. On the other hand, while the use of
LIDAR imagery can be considered innovative in this field of study, the ratio of published
articles is low, which could be attributed, despite LIDAR’s enormous potential, to the
difficulty in obtaining LIDAR data at any scale compared to the ease of acquiring satellite
images. Clearly, this fact facilitates the use of remote sensing, a widely adopted technique
in marshland studies.

Furthermore, quantifying erosion processes through LIDAR techniques, scientific
procedures founded on iterative processes, in conjunction with fieldwork, can provide
new insights required to predict the total volume of eroded soil not only in any wetland
but also in other regions worldwide. Nevertheless, high-resolution LIDAR data are nec-
essary when the area comprises a complex network of basins or aquifers. One potential
solution is applying emerging image processing techniques [23], presently accepted by
researchers worldwide.

In this context, the primary objective of this study would be to forecast the average
erosion in the study area (Río Piedras and Flecha de El Rompido marshland), using LIDAR
data and geographic information systems (GIS) as a novel approach. Achieving this
objective would first require predicting volumetric change processes, which serves as a
necessary secondary goal. In order to achieve both aims, it would be of great importance to
take into account the research works carried out by different researchers [1,10,18,24], since
they all emphasize coastal gulf areas (Cádiz, Spain, and Texas, USA).

2. Study Area

The marshland of Río Piedras and Flecha de El Rompido, with a total area of 2530 hectares,
is located in the southwestern part of Spain (Figure 1), specifically in the province of Huelva
(in the Autonomous Community of Andalusia).
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Figure 1. Study area.

Designated as a Natural Site on 28 July 1989 [25], this salt marsh extends along
the mouth of the Piedras River, where the contributions of materials from the riverbed,
combined with the influence of tides, have given rise to a unique landscape consisting of
a marsh system and a distinct sandy formation, approximately ten kilometers in length,
parallel to the coast, forming the so-called Flecha de El Rompido.

According to Rodríguez-Ramírez et al. [26], the Piedras River flowed into the Gulf of
Cadiz during the last glacial period, carving deep valleys in the current continental shelf.
During the subsequent sea level rise, an estuary formed, reaching its maximum extension
during the most significant regression of estuarine littoral bars around ca. 6500 calibrated
years before the present. It was later filled with sediments, nearly completely colmatat-
ing, mainly due to the progressive development of the littoral bar of El Rompido at the
river mouth.
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Furthermore, the marshland feature vegetation adapted to saline environments [26],
such as maritime esparto grass meadows, sea purslane, sea lavender, limonium, and sea
heath. In the dunes of the littoral bar, the vegetation is typical of non-consolidated sandy
soils, with sea daffodil, rush, sea thistle, and sea lily. This area is excellent for the wintering
and passage of numerous wading birds and other wetland species. In addition to providing
coastal protection against the onslaught of the Atlantic Ocean, the existing vegetation
shelters species of interest, such as the chameleon.

3. Methodology

The methodology developed in this work consists of the following steps (Figure 2).
First, digital elevation models (DEMs) of the study area are acquired for different dates
(2015, 2020 and the end of 2021 in this work). Then, a series of control points are selected,
and their elevations are determined from the DEMs. Subsequently, a genetically modified
algorithm model (by iterative processes) [23] is trained using the previously obtained
elevation data (during training, 1% (21 points) out of the total 2100 points obtained at
random were used), and changes in land use are taken into account. Next, the model
(whose goal is to develop an equation capable of predicting the erosion depth) is instructed
to estimate the output at a series of randomly selected points distributed proportionally
across the study area. In this step, the output is an estimation of depth. Afterward,
considering climatic variables and tide levels, along with the randomly selected points, the
model is requested to obtain sediment transport simulations both into the future and into
the past. Later, the model predicts the surface and volumetric changes over the temporal
series (prediction is carried out with the 2100 randomly acquired points). Finally, the model
forecasts the average erosion in the marshland.

Regarding knowledge of DEMs, it must be highlighted that is essential to help ade-
quately determine the erosion prediction as a result of climate change. In fact, DEMs are
considered critical as global geospatial data by the United Nations, the INSPIRE Directive,
and the Spanish National Cartographic System [27]. In this sense, the Spanish National
Geographic Institute (Instituto Geográfico Nacional, IGN) has employed LIDAR point clouds
from the PNOA photogrammetric flight, as well as ground control points and aerotrian-
gulation for the generation of aerial photographs, and later interpolation or correlation
techniques to obtain the digital elevation model [28].

In this study, we strategically positioned 21 control points across the study area
(Figure 3), each accurately georeferenced in the GIS within the ETRS89-UTM29 system
(EPSG: 25829).

In order to obtain the total cubic meters of eroded soil in the study area, and from
the IGN, LIDAR data from 2015 and 2020 were acquired to generate the respective DEMs,
with resolutions of 5 m and 2 m, respectively, since they are only accessible at these
resolutions [28]. All DEMs were supplemented with selected control points to enable the
calculation of the total volume through iterative processes [29]. Similarly, a data processing
method based on iterative processes was employed to determine the average water depth
in the study area, which was necessary to obtain data on soil erosion in the Natural Site.

According to Conradi et al. [4], an extensive literature review was undertaken to
ascertain the potential existence of a precipitation record spanning a sufficiently long time
to derive results, discussions, and conclusions relevant to this study. From this perspective,
based on [30], precipitation (daily rainfall data) and temperature (daily data) records (both
from 1991 to 2021) for all populations near the study area (Cartaya, Lepe, El Portil, and
La Antilla) were obtained. These records allowed the extraction of pertinent variables
(Figure 4) for the Río Piedras and Flecha de El Rompido salt marsh, during which the
current research was performed (from 1 January 2015 to 31 December 2021).
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Figure 2. Research workflow.

In another vein, to predict soil erosion between 2015 and 2021 through data mining, it
is essential to emphasize that this is a process of identifying relevant information extracted
from vast datasets to uncover patterns and trends. The obtained information is structured in
an understandable manner for subsequent use by modified genetic algorithms in this study.
Thus, the modified genetic algorithms used [9] operate as a parallel process, functioning
as follows. First, the extensive dataset to be categorized is stored in a central storage unit.
When the execution begins, individual sections are handled through separate mapping
tasks. Later, each mapping task initially accesses the training dataset and proceeds to
train the classifier. Subsequently, the trained classification model is used to categorize the
extensive dataset. The repeated training process for each mapping task should have a
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minimal impact on computational performance since the training dataset is relatively small
compared to the substantial dataset, which accounts for most of the processing time.
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4. Results
4.1. DEM Generation

The first step is related to DEM generation. In this case, two DEMs were gathered
from LIDAR data to provide a coherent explanation of the erosion processes that took place
(Figure 5).
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Figure 5. LIDAR elevation map comparison for the period 2015–2020. Coordinates in km. Source:
own elaboration from [28].

4.2. Land Use Changes

The Río Piedras and Flecha de El Rompido marshland has undergone a significant
transformation due to the expansion of areas dedicated to tourism activities. According
to [31], and considering Land Use Changes (LUCs) between 1956 and 2007, it is worth
noting that these marshes experienced substantial growth due to urban development
expansion in coastal areas due to increased tourism in the study area.

The evolution of agricultural practices has been varied. While arable land has remained
relatively stable regarding surface area, the extent of other land uses, such as afforestation,
decreased significantly by 70% between 1956 and 2007. Meanwhile, irrigated land has
benefited from technological advancements, leading to a substantial increase in its surface
area between 1956 and 2007.

Although there was a slight increase in the surface area of the Río Piedras and Flecha
de El Rompido salt marsh due to the expansion of aquaculture in 2010, the total area of the
Natural Site was approximately 12% smaller compared to the surface that existed in 1956.

To visualize the changes between 2015 and 2021, and concerning the average yearly
precipitation and temperature data, the closest land cover maps to the start and end dates,
2016 and 2020 (Figure 6), were compiled with a GIS for the study area.
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4.3. Prediction of Volumetric Change Processes

Based on [3,4,7], and after analyzing all available data, a progressive decrease in
surface water was detected in the study area as a result of the dry period the area is
experiencing. Subsequently, using GIS, an analysis [7] was undertaken between the DEM
of the Natural Area and the climatic characteristics of the region to obtain the prediction
of the average cubic meters of flooded surface. The result was inferred after applying a
multiple linear regression [1], which is presented below (Equation (1)):

y = 0.032 − 0.133 × SD − 1.164 × T
r = 0.973; R2 = 0.941

(1)

where “r” is the Pearson correlation coefficient, “R2” is the determination coefficient, “y”
is the prediction of the total volume of eroded soil in the Río Piedras and Flecha de El
Rompido salt marsh in hm3, “SD” is the equivalent area in km2 where the volume of eroded
soil has occurred and where there has been an increase or decrease in the elevation “T”
counted from the lowest elevation obtained through iterative processes between DEMs.

The estimated depth (Table 1) in the study area was obtained through iterative pro-
cesses using a total of 2100 randomly selected sampling points (training points) from
the DEM, which was a necessary step to identify the eroded soil in both the analyzed
salt marshes.

Furthermore, after conducting the volumetric prediction of the Río Piedras and Flecha
de El Rompido salt marsh, and based on precipitation, temperature data, and the topo-
graphic characteristics of the study area, it was confirmed that the total surface area of the
marsh, 2530 hectares, corresponded to a flooding volume of 22.14 hm3. Figure 7 displays
the trend followed by both the surface and the volume based on the previously selected
2100 random sampling points.

Moreover, a one-way analysis of variance for correlated samples was carried out for
the estimated depth variable (this analysis was undertaken considering only the values
shown in Table 1) in terms of the DEM used in the study area. These results are summarized
in Table 2.
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Table 1. Elevation data for the sample check points (training points).

Check Point DEM 2015 (m) DEM 2020 (m) End 2021
DEM Estimation (m)

1 0.000 0.000 0.000
2 0.007 0.000 0.000
3 0.014 0.011 0.016
4 0.027 0.020 0.026
5 0.039 0.033 0.037
6 0.041 0.040 0.043
7 0.050 0.050 0.054
8 0.072 0.061 0.267
9 0.655 0.363 0.570
10 0.692 0.673 0.691
11 0.724 0.708 0.730
12 0.779 0.751 0.771
13 0.788 0.783 0.787
14 0.794 0.791 0.794
15 0.800 0.797 0.805
16 0.823 0.812 0.834
17 0.881 0.852 0.926
18 1.084 0.982 1.054
19 1.102 1.093 1.103
20 1.125 1.113 1.412
21 1.969 1.547 1.845
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Table 2. Summary of the analysis of the variance (ANOVA) for the estimated depth variable (SS = sum
of squares; df = degrees of freedom; MS = mean squared; F = value of the test statistic; p = significance).

SS df MS F p

Treatment (between groups) 0.047329 2 0.023664 5.03 0.011256
Error 0.1872 40 0.0047
Block (DEMs) 15.5033 20
Total 15.737829 62

In order to properly understand Table 2, it is necessary to highlight that “Treatment
(between groups)” corresponds to the treatment carried out after the statistical comparison
between the DEMs shown in Table 1. On the other hand, “Error” is the error existing after
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the statistical treatment of the different DEMs, which in turn correspond to the different
“Blocks” taken into account (Table 1). Finally, “Total” is the sum of the values corresponding
to “Treatment (between groups)”, “Error”, and “Block (DEMs)”.

As observed in Table 2, there are significant differences (p ≤ 0.05) in the estimated
depth for the different dates considered. This fact was expected due to the unique conditions
of the Río Piedras and Flecha de El Rompido salt marsh. Likewise, it is essential to take
into account the level of anthropogenic pressure in the study area as another factor of
great importance.

With the aim of finding out the possible existence of significant differences between
the elevations obtained for the DEMs shown in Table 1, an Honestly Significant Difference
test (Tukey HSD test) was conducted (as is well known, the Tukey test allows us to discern
whether the differences in results between three or more different treatments applied
to three or more groups with the same characteristics have significantly and honestly
different average values). The test result did not show significant differences between the
elevations obtained for the DEMs of 2015 and 2020, nor for the DEMs of 2015 and 2021.
However, significant differences (p ≤ 0.05) were obtained between the elevations of the
DEMs corresponding to 2020 and 2021. This result suggests that, in terms of elevation mean
value, the 2020 DEM and the estimated DEM at the end of 2021 are significantly different.

4.4. Prediction of Average Erosion in the Río Piedras and Flecha de El Rompido Salt Marsh

The sediment transport was obtained using the method patented by [23]. The results
are depicted in Figure 8, where the sediment transport is simulated between 2015 and 2021
based on the sediment characteristics, precipitation, and temperature in the marsh. The
reason for the division carried out in Figure 8 (2015–2018 and 2018–2021) is that between
2015 and 2021, a total of seven years are covered, with 2018 being the central year. Due
to this fact, the division 2015–2018 and 2018–2021 was considered. Specifying that these
results rely on an algorithm that depends on the existing surface shape factor in the study
area is crucial.
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Finally, it is important to remark that the dynamics of the erosion process divide
these marshes into two zones. Firstly, the southern zone has an average total erosion of
0.013 m, with industrial activities being responsible for the increase in erosion [4]. Secondly,
the northern zone (with a significant influence from the municipality of Cartaya) has an
average total erosion of 0.018 m. It is evident that the growing industrial activity in recent
years has led to an increasing vulnerability in the area.

5. Discussion

According to [31], one of the main causes of the rise in tidal levels in the study area, as
well as their speed and drag force, is wind speed (ranging from 8 to 22 km/h). This fact
is highly significant, as in the present study, it was observed that the maximum levels of
sediment transport show a direct correlation with wind speed (always blowing towards
the Iberian Peninsula). A portion of the changes in land cover occurring in the study area
depends on this effect.

Regarding sediment transport, a relevant factor to consider is the construction of
the Juan Carlos I dam, which disrupts the natural sediment flow in the study area and
causes marine currents to carry sediments toward the Isla Cristina marshes [10], resulting
in overfilling in this Natural Area. Additionally, the natural barrier effect of the Flecha de
El Rompido contributes to this. Analogous works regarding anthropogenic actions have
been conducted in northern Spain, such as that conducted by de SanJosé et al. [20].

Concerning sediment transport between 2017 and 2018, it must be noted that wind
speed is the main cause. On a different note, the construction works of the Real de la
Almadraba de Nueva Umbría are the primary cause of increased sediment transport
between late 2020 and late 2021.

Furthermore, even though the tidal predictions made by the Spanish Navy Hydro-
graphic Institute for the ports are calculated with a precision of 1 cm in height and 1 min
in time, refs. [10,31] have demonstrated significant differences between the theoretical
predictions and the actual data recorded by the tide gauge of the Port Authority of Huelva.
This makes Equation (1) an important prediction tool, particularly due to its independence
from tidal predictions and its high probability of success in reality.

While this is the first time predictive models have been obtained for the entire study
area, it is relevant to note that they could be used in other marshes independent of the
southern Iberian Peninsula, with adjustments based on the predominant climate variables
in each region.

6. Conclusions

The Río Piedras and Flecha de El Rompido salt marshes experience an annual filling
process during the months of higher rainfall and a focused water loss during the summer
period. Comparing the volume of water between 2015 and 2021, a slight decrease in the
1.76% in the annual water volume entering the marsh was observed, which is related to
global warming in the study area.

The results obtained in this study align with those carried out by [4,7,10,18,31] in
various wetlands. Hence, it can be deduced that the methodology patented by [23] has
been validated, making it entirely safe and reliable.

Although the use of LIDAR data to acquire and simulate sediment transport in marshes
is currently underutilized, this research demonstrated that the combined approach of
LIDAR (DEM) and GIS was highly successful in visualizing erosive level differences in the
study area during the analysis period (2015–2021). It is important to emphasize that an
improvement in LIDAR data resolution, as well as increased and better global access to
such data, will likely lead to a greater utilization of LIDAR in erosion-related research.

The results show that LIDAR data can be used to visualize water level variations
resulting from changes in climate variables. This may be essential for raising public
awareness about socioecological issues caused by global warming. In addition, it should
be noted that this research work is of great importance, since it allows for predicting the
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future erosion trend and, therefore, carrying out both area recovery policies and protection
plans focused on the renewal of the marsh through tidal flow.

As a future development, a comparison of existing erosive transport, using the method-
ology outlined in Ramírez-Juidias et al. [23], is planned for the various marshes in the South
of the Iberian Peninsula. Furthermore, another study to conduct could be the comparison
between the southern Iberian Peninsula salt marshes with those found at the same latitude.
It is relevant to point out that Florida State, USA, presents similar climatic conditions to the
southern Iberian Peninsula.
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