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Abstract: Modal characteristics of resonantly-guided modes (RGMs) in microstructured
fibers were investigated through numerical simulation. The modes of interest are supported
in a class of fibers consisting of a circularly arranged periodic array of high index rods
embedded in a low index cladding. Light is confined and guided by the guided-mode
resonance (GMR) that the rod array exhibit. According to the numerical analysis we clarified
that duplicated transverse modes having the same radial mode number for TM and TE
modes were supported. Also the existence and detailed mode profiles of hybrid modes
were confirmed.
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1. Introduction

Various kinds of microstructured optical fibers (MOFs) such as photonic crystal fibers (PCFs)
have been developed and applied to a number of industrial fields including telecommunication and
sensing [1,2]. Polarization maintaining MOFs were also demonstrated [3]. Starting from all-silica
photonic crystal fibers [4,5], utilization of functional materials such as chalcogenide glasses in the
fiber structure have been successfully demonstrated in experiments [6,7]. Recent progress of fabrication
technologies made it possible to manufacture all-solid MOFs consisting of chalcogenide glass/silica [8,9]
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and silicon/silica [10,11] materials. The experimental feasibility of combining soft and hard glasses such
as hybrid silica/tellurite PCF [12] and hybrid polymer PCF filled with chalcogenide glass [13] have been
already shown. Also, efficient numerical techniques for analyzing MOFs have been reported [14]. Such
all-solid MOFs will open a door to the development of novel functional fiber components as a building
block of light sources and sensors.

In [15,16] we have reported a new class of confined modes in all-solid MOFs. The fiber consisted
of a circularly arranged array of high-index rods (Si) embedded in a low-index host material (silica).
Key mechanism of the light confinement is the guided-mode resonance (GMR) [17] that the rod array
exhibits against a cylindrical wave [18] that forms a transverse fiber mode. Thus we have called it
resonantly-guided modes (RGMs). Thanks to the wavelength selective but highly reflective property of
GMR, propagation losses of the modes were found to be also sensitive to wavelength. This means that
a MOF which supports RGMs functions as a narrow-banded wavelength filter, in which only limited
numbers of wavelength can survive after a finite length of propagation. By making use of this nature one
can use the MOF as, for example, a building block of high-sensitivity gas sensor (hollow-core type fiber).

In our previous works [15,16] we analyzed GMR characteristics of a Si rod array, dispersion relations
and losses of TM modes only.

What we have shown so far are some basic propagation characteristics of the RGMs as follows:

• RGMs lie in the radiation mode region [19] of the dispersion map of conventional circular fibers.
• Dispersion curves have a finite extent.
• Propagation loss of each mode has wavelength dependence. Each mode has a loss minimum at a

certain wavelength.

However, detailed modal characteristics and relation between the RGMs and conventional fiber modes
were not yet studied. In this paper we analyzed modal field distributions and dispersion relations
of various modes including hybrid ones. Through that we will classify the RGMs following the
conventional mode notation (TE, TM, EH, and HE). Differences between the MOF for RGMs and
conventional circular fibers are clarified from a viewpoint of possible supported modes. Results to be
shown will help us understand global characteristics of RGMs.

Here we briefly mention the guiding mechanism of conventional all-dielectric circular fibers. In
conventional fibers, light field is confined in the core by total internal reflection (TIR). Therefore the
refractive index of the core must be higher than cladding. Ray of guided modes makes relatively a small
angle with respect to the fiber axis for TIR to be maintained. On the other hand, in MOFs for RGM, light
is confined by the reflection due to GMR of the rod array. Requirement is that the index of the rods is
higher than the remaining part of the fiber. Ray of the guided mode may make a large angle with respect
to the fiber axis. The ray can hit the rods almost perpendicularly, as the GMR is well maintained for such
a large angle of incidence.

Note that the confinement mechanism of RGM is also different from ARROW (Anti-Resonant
Reflecting Optical Waveguide) modes in MOFs [20]. The point of their differences, and requirements
for a MOF to support ARROW or RGM can be summarized as follows:
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(1) For a MOF to support ARROR modes, proper refractive index distribution into the radial direction
is required. This is because ARROW modes basically rely on multiple interferences toward the
radial direction [20].

(2) Refractive index modulation into the angular direction is optional for ARROW. Thus, MOFs with
two-dimensional index distribution may support ARROW modes.

(3) RGM appears only in MOFs with two-dimensional index distribution. Specifically, a periodic
array of high index rods must be embedded in a low index background. RGMs are not supported
in azimuthally-uniform fibers.

(4) RGMs are formed by the GMR that the rod array exhibits. Only a single ring of the rod array is
sufficient to induce GMR.

Note that GMR is a different process from Fabry-Pérot interference. Light is first diffracted by the
rod array and couples to a whispering gallery mode (WGM) which travels circularly along the array. The
WGM is re-diffracted and radiated toward both inside and outside the fiber. At a resonance condition
all the diffracted waves toward inside constructively interfere. This is the reflection by GMR. Thus,
if the array is flat, theoretical peak reflectivity reaches as high as 100%. For a curved rod array, peak
reflectivity is determined by the bending loss of the WGM.

2. Numerical Analysis

Sample structure of a MOF supporting RGMs is shown in Figure 1. High index rods (assumed Si,
n = 3.48, diameter = Λ/2) are regularly arranged in a low index cladding (assumed SiO2, n = 1.44) with
10 degrees of azimuthal pitch. Total number of rods is thus 36. The distance between adjacent rods is
denoted by Λ. Assuming operation wavelength of λ = 1.55 µm, Si rod diameter is about 500 nm and Λ

becomes about 1 µm. These features are still several times smaller than experimentally demonstrated Si
MOF [10,11]. As the dimensions scale with wavelength, applications using longer signal wavelengths
will be preferred from the viewpoint of fabrication. Note that by utilizing higher order GMR, the rod
diameter could be increased.

Figure 1. Refractive index profile of a sample fiber structure. Λ denotes the period of the
solid rods.
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In order to utilize the fiber as, for example, a building block of a gas sensor, the fiber has to have a
hollow section. This can be achieved by forming a center hole in the presented MOF structure. Even
though we made a large hollow core, it will not change the basic waveguiding property of the RGM. This
is because the resonant reflection occurs in the vicinity of the periodic Si rod part. The center uniform
index region acts only as a propagation space for cylindrical waves.

We calculated dispersion relations and mode field profiles using compact two-dimensional
Finite-Difference Time-Domain (FDTD) method for cylindrical coordinate system [21]. Detail of
the analytical space was described in Ref. [16]. In order to exclude spurious solutions, we need
to calculate in a cylindrical coordinate system. In such a case, the computational domain becomes
a unit sector, including only one angular period. Both sides of the sector are connected by Bloch
boundary conditions [22]. Besides, out-of-plane propagation constant should be specified. To meet
these requirements with smaller code-developing efforts, we decided to use FDTD-based program. Note
that other numerical methods such as FEM can also deal with the current structure.

First, temporal field evolution was simulated for a specific source, which emits a gaussian-enveloped
sinusoidal wave. We placed a dipole source of Ez or Hz at the center of the fiber for TM and TE modes
calculations, respectively. On the other hand, we putted Eθ and Hθ on an arc just 0.03Λ away from the
center, for EH and HE modes calculations. Time signal was monitored on an arc 1Λ away from the
Si rods. The signal was then converted to a power spectrum by FFT. This calculation was repeated for
various propagation constant (β).

3. Results and Discussion

We repeated calculation of the spectra for various propagation constant (β) as described in the last part
of the previous section, and assembled them to a two-dimensional matrix (β versus normalized optical
frequency). A pseudo-color plot of the matrix for TM and TE modes are shown in Figure 2. Bright
lines indicate the confined (or long lifetime) modes. As can be seen from the figure, a discrete set of
long-lifetime modes are supported. This is one of the most prominent characteristics of the RGM, and
leads to the narrow-banded wavelength selective guiding function.

In Figure 2, white broken lines running from the bottom to the right middle represent the light lines
of the silica cladding. As we explained in [16], in the presented fiber the light tends to hit the rod array
with relatively large incident angle for GMR to occur. This is the reason why confined modes appeared
far above the light lines. Comparing Figure 2a,b, we notice that more number of modes appeared for
TM modes (around wavenumber ∼ 0.6). This is natural from the basic nature of GMR: the major E-field
component of TM modes (Ez) lies parallel to the rods, feeling larger index modulation than the other
(Eθ). As a result of that, the bandwidth of GMR becomes wider for TM modes. According to our
previous study, calculated losses of the TM modes of this type of structure were the order of 0.3 dB/cm
for the operation wavelength of ∼1.6 µm [16]. The major factor affecting the bending characteristics
of these modes, and the critical bend diameter are both not clear at this time. All that we can say at
present is, if the effective index distribution of the fiber is modified due to bending, the GMR resonance
wavelengths of the inner and outer part of the curvature begin to diverge. If the divergence was smaller
than the GMR bandwidth (Lorentzian function), ordinary radiation loss as conventional fibers would



Photonics 2014, 1 436

dominate. In contrast, if the bending is too acute, imperfect GMR reflection of the rods will become the
main leakage path. The bandwidth of GMR depends on the index contrast of the rod/background, and
was estimated as the order of 10 nm according to our previous study [16].

Figure 2. Dispersion relation of the sample fiber. (a) TM modes; (b) TE modes. White
broken lines indicate the light lines of the cladding (n = 1.44).
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Note that if we increase the diameter of the Si rods while keeping their pitch constant, the average
index of the rod ring increases. This leads to the decrease of resonance wavelength of GMR. Therefore,
dispersion curves tend to move downwards in this dispersion map.

Next, we tried to identify mode numbers. Figure 3 shows the distribution of Hθ of TM modes in
Figure 2a. All the fields were found to be concentric Bessel-functions in the center region. At the
same time we also notice that, due to the GMR phenomena the field exhibited complicated distribution
in the vicinity of the Si rods. Counting the number of peaks or nulls across the rods is therefore not
straightforward. On the other hand, if we look at the field profiles on a cross section between the center
of the fiber and the midpoint of adjacent rods (shown by a white radial line in Figure 3a), fields are always
smoothly varying, because the refractive index is uniform. An example field profile on the cross section
is shown in Figure 3f. As can be seen, we can easily count the number of peaks. Hereafter we define the
radial mode number as the number of peaks of such profile. In Figures 2 and 3a–e thus-defined mode
numbers were indicated. Figure 4 shows an example field profile of TE modes (Eθ, Hz, Hr). Similar to
TM, number of intensity peaks of Eθ was countable and used as a mode number.

Interesting point is that there are apparently multiple modes which have the same radial mode
numbers: TM0,10a and TM0,10b in Figure 3. To investigate this we plotted a magnified view of amplitude
profiles near the rods in Figure 5. Here, Figure 5a,b correspond to TM0,10a and TM0,10b, respectively.
Figure 5c denotes the relation between the rod and the field components. One may notice that the
distribution looked almost the same for Ez and Hr, while obvious difference can be seen for Hz and Er.
This implies that different kind of leaky modes (modes localized in the vicinity of rods and propagating
into ±θ direction) are involved for the GMR to occur. We can interpret the origin of this “apparent
duplicated mode number” as follows: the rod array acts as a reflective wall due to GMR. Roughly
speaking, the radial mode number can be defined as a number of intensity peaks between the center of
the fiber and the wall. However, there may appear multiple wavelengths where different kinds of GMR



Photonics 2014, 1 437

occur. As a result, multiple modes having the same radial mode number but different feature near the
rods appear.

Figure 3. Field profiles of the TM modes. (a) TM0,10a; (b) TM0,10b; (c) TM0,9; (d) TM0,8;
(e) TM0,7; (f) |Hθ| profile on a radial cross section of TM0,10a. The cross section is also
indicated by a white line in (a). The radial mode number was defined as that of the peaks
of |Hθ|.
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Figure 4. Field profiles of the TE modes. (a) TE0,7; (b) TE0,8. See Figure 2b for
corresponding points.

Fig. 4.

(a) (b)
TE0,7 TE0,8 0

1

|E θ
|  

[a.
u.]

We also calculated hybrid modes that have non-zero azimuthal mode number (m). Dispersion
relations of m = 1 ( EH1,n and HE1,n ) and m = 2 ( EH2,n and HE2,n ) modes are displayed in
Figure 6a,b, respectively. In both figures there are mainly two frequency bands where confined modes
exist: Λ/λ0 ∼ 0.45 and Λ/λ0 ∼ 0.6. These ranges almost correspond to those of TM and TE modes
shown in Figure 2. Constituent rays of hybrid modes with small azimuthal mode number have only a
small azimuthal wavenumber: they hit the periodic rod array with almost the same angle as TM and
TE modes. Thus the frequency bands of high reflectivity due to GMR become similar to TM and TE
situations. This will be an explanation for the possible frequency bands for the hybrid modes. Field
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profiles of some of the EH and HE modes were also calculated. Results are displayed in Figure 7.
We confirmed that around the center part of the fiber, E- and H-fields behaved as the same manner as
conventional circular fibers: i.e., Ez and Hz distributed with π/2 [rad] spatial phase difference to each
other. The rod array also represented 2π (m = 1) or 4π (m = 2) phase distribution over an entire rod
circle along the azimuthal direction. This indicates that temporal or spatial phase difference between
adjacent rods was not exactly 2π, leading to a small degradation of reflectivity as a GMR wall [23].

Figure 5. Detailed field distributions of (a) TM0,10a and (b) TM0,10b. Locations on the
dispersion curves are indicated in Figure 2a. (c) Relations between the rods and the field
components.
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Figure 7. Mode field profiles of EH and HE modes. (a) EH1,7; (b) HE1,9; and (c) EH2,7. For
detailed location on the dispersion relation, see Figure 6.
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4. Conclusions

In summary, we showed through numerical simulation that in Si/SiO2 MOF with single Si rod array,
a pair of RGMs having the same radial order number can exist simultaneously. EH and HE modes are
also supported but they essentially suffer from leakage loss due to the performance degradation of GMR
walls due to oblique light incidence. These are the major differences between the RGM and conventional
guided modes in circular fibers. In the latter fiber total internal reflection at core/clad boundary is not so
sensitive to the incident angle. Difference of this reflection mechanism is the origin of the unique guiding
properties of RGMs. We also showed that the dispersion relations of the resonantly-guided modes existed
in discrete wavelengths. This nature—that a particular class of MOF functions as a fiber-type wavelength
selective filter itself—will be promising for the application to sensing elements, which can detect change
of refractive index or absorption through the change of transmitted wavelength channel.
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