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Abstract: In the paper we propose a method for characterizing VUV pulse(s) in a bichromatic
ionization setup. The scheme is based on s-shell ionization by joint action of circularly polarized
fundamental harmonic and linearly polarized second one. The advantage of the proposed approach is
the existence of kinematic (geometrical) zeros of partial amplitudes which positions can be extracted
with minimal number of theoretical (spectroscopic) assumptions and therefore they may serve as
natural reference points in measuring the relative phase and amplitude of the harmonics. In the paper,
we investigate a general possible geometry setup with more detailed consideration of the edge cases
and present calculation and numerical stimulation for helium ionization as an illustrative example.

Keywords: photoionization; bichromatic field; coherent control; s-shell; variationally stable method;
helium (to ten)

1. Introduction

A two-photon absorption remains the simplest species in the zoo of non-linear pro-
cesses induced by an electromagnetic field in matter since such possibility was first sup-
posed [1]. A resonant two-photon ionization allows to reveal the temporal structure of a
light beam because it is much more sensitive to the phase, duration and coherency than
a single-photon ionization. The combination of resonant and non-resonant ionization is
even more promising because the non-resonant pathway may serve as a reference point for
resonant one giving rise an additional phase between scattering (intrinsic) and dynamical
(imposed by the field) phases.

Interference between different multi-photon pathways was used as a tool for diagnostic
of a field in a variety of different setups. Since a constant phase is crucial to the interference,
setups based on a one seeding frequency and its multiple harmonics are widely applied.
Implementation of Free-Electron-Laser (FEL) and High Harmonic Generation (HHG) [2–6]
facilities enabling generation of a phase-locked harmonics in vacuum ultra violet (VUV)
range made it possible to observe interference effects in high energy domain [7]. While
RABBITT (reconstruction of attosecond beating by interference of two-photon transitions)
scheme is widely used to characterize VUV pulse(s) with attosecond precision [8–10], the bi-
harmonic setup that has its own drawbacks and benefits was applied for the same purpose
very few times [11,12]. Here we consider the bi-chromatic ionization i.e., the processes
caused by (nω + mω) field with a different combination of n , m:

A +

{
h̄(mω) + ... + h̄(mω)

h̄(nω)

}
→ A+ + e− . (1)

Photoemission probability caused by the bichromatic ionization (1) as a function of
emission direction oscillates with the phase between harmonics. Two different setups
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may be applied for measuring: several detectors placed at different angles which allow to
reconstruct an angular distribution at fixed phase, or one detector registering the signal as
a function of phase offset allows to extract some system details such as a scattering phase
in different channels. These and similar combinations of frequencies have been applied
in optical domain to manipulate electron vortices [13], to exploit HHG with different
polarization [14–19], to create field with chirality [20–22], to realize RABBITT in strong field
multi-photon regime [23,24].

Generally, the theoretical methods developed to describe a bichromatic ionization such
as perturbation theory, strong field approximation (SFA) [25–27], and direct solution oftime-
dependent Schrödinger equation (TDSE) [28,29] may be implemented in VUV domain
too [30,31]. Nevertheless, in the VUV domain the perturbation theory is applied more often
because the Keldysh parameter is higher.

The bichromatic scheme has been actively explored for atoms [32–35],
molecules [20,36–38], and even solids [39,40], but the experiments with atoms has an
advantage because of the initial spherical symmetry. Within the dipole approximation,
if the interference occurs between transitions involving odd (even) number of photons, it
appears in the integral cross section, and if it occurs between odd and even number of pho-
tons, then it can be traced only in the differential parameters, for example, the photoelectron
angular distribution and spin polarization [41]. To this end, atomic samples provide a
valuable benchmark for understanding more complex systems. In order to violate the
spherical symmetry, an additional field may be applied [42,43].

An important feature of the beichromatic ionization is that a particular channel can
be emphasized or suppressed by adjustment photon energy to a resonance. The role of
autoionization in coherent control over photoelectron emission was discussed in [44–46].

One of the obstacles for applying the bichromatic scheme to characterize a FEL ra-
diation is that it possesses a lower longitudinal coherency than the HHG facilities, and,
furthermore, there is an additional fraction of incoherent radiation. As a result, matching
of two-photon and single-photon signals aimed to maximize the interference works not as
good as wanted. As a result, some additional assumptions may be needed. For example,
in recent work [47], the photoemission from helium was set to be constant to calibrate the
photoemission from neon. Here we propose a scheme which allows to clearly distinguish
between the single-photon and multi-photon channels, between the pulse and spectroscopic
phases and measure an incoherent fraction. The scheme works like a sundial: the circularly
polarized fundamental harmonic causing two-photon transitions forms a clock-ticks and
the second harmonic causing singlephoton transitions works as a gnomon and indicates a
phase between harmonics (Figure 1). Moreover, as discussed in Section 6, the scheme is
also applicable to circularly polarized fundamental harmonic causing n-photon transitions
and linearly polarized n-order harmonic.

Because our goal is to minimize number of involved theoretical (spectroscopic) as-
sumptions, we consider ionization of s-shell neglecting a target fine-structure and we chose
helium in the ground state as illustrative target. This target has been a subject of a bunch of
investigations. The relatively general geometry, i.e., elliptically polarized radiation with ac-
counting of non-dipole terms was discussed in [48,49]. A very general setup with arbitrary
polarization and mutual directions of harmonics for any possible target was presented
by ours in [50]. Here we want to focus on the benefits which geometries with circularly
polarized fundamental and linearly polarized second (multiple) harmonics provide.

The technique of pulse generation and photocurrent detection is progressing, and in
the near future, it is reasonable to expect that an any particular geometry will be available.
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Figure 1. The proposed geometry: circularly polarized fundamental harmonic (green line), linearly
polarized in the direction {θa} second (multiple) harmonic (orange arrow), and a schematic way to
define the phase between harmonics (magenta line).

2. Theoretical Model

Supposing the infinite long pulse, we take the electric field in a form

Eω+2ω(t) = Eωeωe−iωt+E2ωe2ωe−i(2ωt+φ), (2)

where Eω and E2ω are the amplitudes of the ω and 2ω components, φ is their phase
difference, eω = e+ = −(ex + iey)/

√
2 and e2ω = cos θaez + sin θa(cos φpex + sin φpey)

are the unit vectors of their polarization, i.e., ω component is right circularly polarized and
2ω component is linearly polarized in the direction {θa, φa} in a chosen coordinate system.
In the considered geometry the phase is a doubled angle between ω electric strength and
projection of the 2ω electric strength to xy-plane at the moment when amplitude of the
second is maximal.

Following the approach described in [50], the corresponding photon statistical tensor
ρ

γ
kq is presented in a form:

ρ
γ
kq = ρ2ω,2ω

kq + ρω+ω,ω+ω
kq +

(
ρω+ω,2ω

kq + ρ2ω,ω+ω
kq

)
, (3)

where the term ρ2ω,2ω
kq is associated with the absorption of a photon with energy 2ω

ρ2ω,2ω
kq = ∑

λ,λ′=0,±1
cλcλ′(−1)1−λ′(1λ, 1− λ′ | kq) , (4)

where c0 = cos θa and c± = ∓ sin θa(cos φp ∓ i sin φp)/2, and the standard notation for
the Clebsch–Gordan coefficients is used; the term originating from the absorption of two
photons with energy ω

ρω+ω,ω+ω
kq = (22, 2− 2 | k0) , (5)

and their interference (2ω + ω)

ρω+ω,2ω
kq = ∑

λ=0,±1
cλ(−1)1−λ(22, 1− λ | kq) , ρ2ω,ω+ω

kq = ∑
λ=0,±1

c∗λ(1λ, 2− 2 | kq) . (6)

The permutation equation for the interference term is ρω+ω,2ω
kq = (−1)(1+q)ρ∗ 2ω,ω+ω

k−q .
When an experiment is aimed to characterize a pulse, it is natural to choose a sys-

tem with minimal possible number of reaction channels. One of best choices is an s-shell
ionization of noble gases. For these targets orbital moments of an emitted electron and
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a final system are equal and determined by number of absorbed photons and their po-
larization. Besides, a target supposed to be light in order to neglect the fine-structure
interaction. Therefore, we may characterize a final state with only one quantum number
i.e., photoelectron angular momentum l.

According to the angular momentum theory [51], the photoelectron angular distribu-
tion (PAD) may be obtained by convolution of the statistical tensor of the system with the
corresponding efficiency tensor:

W = Tr
[
ρ(l, l′)ε(l, l′)∗

]
≡∑

kq
ρkq(l, l′)εkq(l, l′)∗. (7)

Further following the approach [50], in the single-electron approximation for s-shell
ionization we cast photoelectron angular distribution in a very simple form:

W(ϑ, ϕ) =
1

4π ∑
kqnn′ ll′

(−1)l′(l0, l′0 | k0)ργ
kq(l, l′)

√
4π

k̂
Ykq(ϑ, ϕ)A(n)

l A(n′)∗
l′ , (8)

where k̂ =
√

2k + 1, Ykq(ϑ, ϕ) denotes the spherical harmonic as function of an electron

emission angle, and A(n)
l is the n-th order reduced transition amplitude for the electron

with momentum l. It should be emphasized for the reason of clearness that A(2)
l indeed is

a second order reduced transition amplitude of two dipole photon absorption. It can be
composed from two first order amplitudes by the use of Formula (A.63) from [51]. More
details are presented in Section 4.

The PAD (8) may be splitted as:

W(ϑ, ϕ) =W(ω)(ϑ, ϕ) + W(2ω)(ϑ, ϕ) + W(ω,2ω)(ϑ, ϕ) ; (9)

where the contribution of two-photon ionization by circularly polarized fundamental
harmonic:

Wω(ϑ, ϕ) =
1

4π

3
8
|A(2)

εd |
2 sin4 ϑ ; (10)

the contribution of single-photon ionization by linearly polarized second harmonic:

W2ω(ϑ, ϕ) =
1

4π
|A(1)

εp |2
(

cos θa cos(ϑ) + sin θa sin ϑ cos(φp − ϕ)
)2 ; (11)

and, finally, the interference term:

W(ω,2ω)(ϑ, ϕ) =
1

4π

√
3
2
|A(1)

εp A(2)∗
εd | sin2 ϑ×

× (cos(θa)cos(ϑ) + sin θa sin ϑ cos(φa − ϕ))cos(2ϕ− δ) . (12)

Notice that cos(θa)cos(ϑ) + sin θa sin ϑ cos(φp − ϕ) is a simple cosine of the angle between
the polarization vector of second harmonic and photoelectron emission angle. The phase
δ is defined by the scattering phase σ in the p- and d-channels and the phase between
harmonics φ: δ = σp − σd − φ.

The PADs produced by the fundamental (10) and the second (11) harmonics are axially
symmetric with respect to the propagation direction and polarization vector, correspondingly.
If the axes of symmetry coincide (θa = 0), the incoherent sum of Equations (10) and (11)
is symmetrical too, nevertheless the contribution of the interference term (12) does not
possess axial symmetry at any {θa, φa}. Two features of the interference contribution may
be deducted from (12): (a) there are two planes of zero contribution (ϕ = δ/2±π/4) which
rotate with phase shift between harmonics; (b) there is one plane of zero contribution
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(cos(θa)cos(ϑ) + sin θa sin ϑ cos(φp − ϕ) = 0) which stay steady at phase shift changing
and is determined only by the geometrical setup.

3. Discussion of the Geometry Setup

In this section we discuss two geometrical setups which allow to use the zeros
of (10)–(12) to clearly distinguish the coherent and incoherent contributions with minimal
amount of detectors and spectroscopic data. For example, in [12] at least two complex ratios
of amplitudes are supposed to be known from the theory or other additional measurements.
Here we consider the geometries which suppose to know only one phase difference.

Let’s consider two edge cases: (A) polarization of the second harmonic is along
to propagation of fundamental one (θa = 0) (Figure 2a–c) and (B) polarization of the
second harmonic is coplanar the plane of polarization of fundamental (θa = π/2, ϕa = 0)
(Figure 2d–f).

(a) (b) (c) 

x y 

z 

x y 

z 

D1 

D3 
D2 

D3 D3

(d) (e) (f) 

x y 

z 

x y 

z 

D1 
D3 

D2 

D2 

Figure 2. (a,d) Pattern of PAD caused by the incoherent one-photon (orange) and two-photon
(green) ionization of a s-shell; (b,e) the contribution of the interference term, red color marks positive
contribution, blue color—negative one; (c,f) the resulting PAD at bichromatic ionization. D1, D2
and D3 mark the suggested placement of the detectors (see text). (a–c) correspond to the geometry
(A): linear polarization of 2ω is along to propagation direction of ω; (d–f) to the geometry (B): linear
polarization of 2ω is in the plane of polarization ω. The lines mark section of a presented contribution
to PAD with corresponding coordinate plane.

In case (A) the incoherent sum of Equations (10) and (11) possesses an axial symme-
try. Moreover, the photoelectron signal along the z-axis (detector D2) may be produced
only by one-photon absorption and any signal in the xy-plane (detector D1) is due to
the two-photon absorption. Therefore, two time-of-flight (ToF) detectors allow to elim-
inate both incoherent contributions (Figure 2b). Now let’s consider the plane formed
by magic angle (cos ϑ = 1/

√
3) where the expected interference is maximal. Because of

the interference the signal of detector D3 oscillates with φ around the averaged value
4/9signal(D1) + 1/3signal(D2). If one wants to extract the phase offset φ, three detectors
are needed. The best way to place detectors is to position them separated by ∆ ϕ = π/3,
but, generally, three ToFs are enough at any position, except ϕ1 = ϕ2 + π where the emis-
sion signals are expected to be equal. If, as it happens in modern experiment [11,12,47],
the phase offset φ is changed, then one needs only one ToF detector at ϑ = arccos 1/

√
3,

and PAD can be completely reconstructed from an oscillation of signal with φ.
Two important features should be emphasized. First, if oscillation amplitude on de-

tector D3 is lower than 4
3

√
signal(D1)signal(D2)/3, then coherence is partly lost. Second,
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there could be a fluctuation of harmonic intensities with phase offset (or energy) in an
experiment. This fluctuation may be eliminated by appropriate scaling signals of 1st and
2nd detectors. Usually, another medium serves as a such monitor. For example, in recent
paper [47] conjugate measurement of two gases, i.e., He and Ne, was applied to overcome
this obstacle.

It is worth to be noted that the projection of the interference contribution Equation (12)
onto any plane parallel to the z-axis is not eliminated that allows to use velocity map
imaging (VMI) detectors. Positioning a VMI detector parallel to the xy-plane is hardly
relevant because suggests that the fundamental harmonic irradiates it, but anyway the
projection of the interference to this plane is zero i.e., interference contributions eliminate
each other.

In case (B) the incoherent sum of Equations (10) and (11) possesses three symmetry
planes (Figure 2d–f) formed by polarization of ω (xy-plane), polarization of 2ω and prop-
agation of ω (xz-plane) and plane perpendicular to polarization of 2ω (yz-plane). Both
probabilities of the one- and two-photon ionization as well as their interference (12) are
maximal in the xy-plane, therefore positioning of ToFs is this plane is the most efficient.
One ToF (D1) placed along the y-axis detects only the two-photon ionization by ω, average
signal of two ToFs placed with δφ = π gives a probability of the one-photon ionization.
As in case (A), there are two possibilities: three ToFs which allow to completely reconstruct
the whole PAD or one ToF accompanying with changing phase offset φ.

The interference term possesses six zeros: two of them are defined by the polarization
vector of 2ω and four rotate with the phase offset between harmonics. Generally, a projec-
tion of PAD to a plane does not cancel the interference that allows to apply VMI detectors.

4. Spectroscopy

In the limit of an infinitely long pulse the reduced transition amplitudes can be cast
from the radial dipole matrix elements [52,53] as:

A(1)
εp = 2E2ωei(σp−φ)

{ ∫
ψεprψ1sdr in length gauge

−
∫

ψεp(
d
dr −

1
r )ψ1sdr in velocity gauge

, (13)

A(2)
εs,εd = 2(10, 10 | l0)E2

ωeiσs,d ∑
n

∫
ψlrψnpdr

∫
ψnprψ1sdr

ε1s − εsp + ω
, (14)

where ψnl/εl are the bound/free radial wave functions and σεl are phase shifts including
both scattering and Coulomb phase; the factor “2” appears to consider filled s-shell, like
the helium ground state. The summation in Equation (14) spans over all discrete and
continuum states (‘s = n, ε’) and can be done using variational approach described in [54,55].
Previously we successfully implemented and verified this method for H atom and He+ ion
in [56].

Let us briefly describe the method. According to it, the sum over n is separated as:∫
ψεs,εdνdr +

∫
µrψ1sdr +

∫
µ(ε1s + ω− h(sp))νdr , (15)

where µ and ν are the functions of special form that can be expressed as a finite sum of M
Slater orbitals Φ(m) = Nmrme−r:

µ =
M

∑
m=1

amΦ(m) , ν =
M

∑
m=1

bmΦ(m) (16)

with Nm being the normalization constant and coefficients am and bm obtained by solution
of a system of 2M linear algebraic equations:

M

∑
m=0

Tnmam = cn ,
M

∑
m=0

bnTnm = dn , (17)
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where

Tnm =
∫

Φ(n)(ε1s + ω− h(p))Φ(m)dr , (18)

h(p) = −1
2

d2

dr2 −
V(r)

r
+

1
r2 , (19)

cn =
∫

Φ(n)rψ1sdr , dm =
∫

Φ(m)rψεs,εddr . (20)

The single-electron wave functions were obtained by the RADIAL code [57] with
MCHF [58] 2p-wave central potential V(r). With such a potential the phase difference
between s- a d-waves is in agreement with the measurements [59], while the accuracy
of ground state is far from ideal: calculated ionization potential is −0.819 a.u. versus
experimental −0.904 a.u.

In Figure 3, partial cross sections:

σεp =
4π2ω

3c
|A(1)

εp |2 (21)

σ
(2)
εs,εd =

2πω2

15F2
0 τ0

N|A(2)
εs,εd|

2 with N = 5 for s-wave
and N = 2 for d-wave

, (22)

for one-photon (21) with 4π2ω
3c = 2.69 Mb (panel a) and two-photon (22) [52] with

F0 = 3.22 × 1034 cm−2s−1 being an atomic unit of flux and τ0 = 2.42 × 10−17 s being
an atomic unit of time ionization (panel b) are presented. The one-photon ionization
cross section is compared with available experimental data [60]. We are not aware of any
experiments on measuring sole two-photon ionization cross sections, but our results are
in consistency with results obtained by other theoretical approaches [61–64]. Note that
the ratio of amplitudes dd/ds (−

√
5A(2)

0 /
√

4A(2)
2 ) does not match the experimental results

from ‘ω + 2ω’ measurements [12]: it seems that in real helium first minimum of ds partial
wave lies closer to the results obtained in [61] by a sophisticated B-spline R-matrix method.

(a) (b)

Figure 3. (a) One-photon cross section in length (solid line) and velocity (dashed) forms in comparison
with experimental data [60] (dots); (b) Partial two-photon cross sections into s-wave (blue line) and
d-wave (red) for linearly polarized radiation.

The analysis shown that M = 40 is enough to reveal the lowest four resonances, while
M = 60 reproduces lowest six resonances. Their energies along with the experimental
values are presented in Table 1.

An additional verification of our model can be retrieved from the analysis of the
angular anisotropy parameters βn for linearly polarized pulses. The β2 of the one-photon
ionization from s-shell is geometrical and equals 2, the β2,4 of the two-photon ionization are
calculated for a short pulses in [64], and, in general, are in consistency with our results.
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Table 1. Calculated by the variationally stable method and experimental resonance energies.

Resonance Theory Experiment [65]

1s2p 1P 21.14 21.22
1s3p 1P 23.06 23.09
1s4p 1P 23.73 23.74
1s5p 1P 24.04 24.05
1s6p 1P 24.21 24.21
1s7p 1P 24.34 24.31

5. Results and Discussion

In this section we present and discuss an application of the developed approach to
the ionization of helium ground state by the bichromatic field with fundamental harmonic
20.0 ≤ ω ≤ 24.5 eV in order to trace the system behavior in the region of lowest excited
states. In order to keep the discussion compact and avoid consideration of pulse duration
and envelope effects which have been analyzed earlier [30,31], we consider an infinitely
long pulse that can be characterized by two parameters: the ratio of fundamental and
second harmonic electric strengths η = E2ω/Eω and their relative phase φ.

Lets introduce a generalized parameter A which determines the efficiency of
the interference:

A =

√
3
2 |A

(1)
εp A(2)∗

εd |

|A(1)
εp |2 + 3

8 |A
(2)
εd |2

. (23)

Note that a connection of the interference efficiency (23) with an asymmetry in any par-
ticular direction {θ, ϕ} induced by the interference is not straightforward and curved by
Equations (10)–(12).

In Figure 4a we present the asymmetry efficiency (23) as a function of fundamental
energy ω and the ratio of electric fields η. The interference between the one- and two-
photon pathways is more pronounced when corresponding ionization probabilities are
close. It is clearly seen that at resonance energies (see Table 1) a very high intensity of
second harmonic is needed, whereas at minima of two-photon amplitude (Figure 3) the
needed electrical strength drops by three orders of magnitude. However, this is true only
for a infinity long pulses, and the real needed ratio in experiment is expected to be of one o
two order of magnitudes lower at resonances and higher at minimas. The saw of maxima
and minima contracts with energy becoming practically unresolved.

From Equation (12) one can see that a phase φ providing the maximal asymmetry is
defined by the phase difference in p- and d-channels, presented in Figure 4b. The scattering
phases in helium are quite smooth in the region under consideration, and according to
the basement of quantum mechanics, the two-photon amplitude exhibits a jump by π at
resonances and at zeros.

In Figures 5a and 6a we present PADs at different phases between harmonics, for the
geometries (A) and (B), correspondingly, accompanied with simulated detectors signals
(Figures 5b and 6b).
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(a)

(b)

Figure 4. (a) The interference efficiency (23) as a function of fundamental energy and the harmonic
strength ratio η = E2ω/Eω ; (b) The phase difference between p and d partial waves.

In Figure 5a PAD for the geometry (A) is sectioned with the xz-plane. While 3D
PAD possesses two orthogonal planes of symmetry formed by ϕ = (σp − σd − φ)/2 and
ϕ = (σp − σd − φ)/2 + π/2, the section of this PAD with any plane containing z-axis is
symmetrical with respect of it. For 3D PAD the symmetry with respect the xy-plane never
takes place, but for the section it occurs at a condition δ = δp − δd − φ = π/2 which
occasionally (see Figure 4b) happens at φ ≈ π/2 (violet line in Figure 5a).

(a) (b)

Figure 5. The photoemission signal at different phase shifts between the harmonics φ for the geometry
(A) at ω = 21.55 eV, η = 1. (a) PAD section with the xz-plane; (b) Signals of detector D1 (green
line), D2 (orange line) and D3 (magenta line) assuming that there is a 25% strength fluctuation of the
second harmonic with the phase φ.

In Figure 6a PAD for the geometry (B) is sectioned with the xy-plane which is a plane
of symmetry. All of the curves cross the same two points at the y-axis, indicating two zeros
of Equation (12) independent of phase φ. Obviously, incoherent sum of (10) and (11) does
not depend on the phase. The sum of probabilities to be emitted along and opposite to
x-axis does not depend on the phase. Additional symmetry planes of PAD (xz and yz) arise
when δ = nπ/2, n ∈ Z and in the considered system it is occasionally close to φ = 0, π/2
(red and violet lines in Figure 6a).
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(a) (b)

Figure 6. The photoemission signal at different phase shifts between the harmonics φ for the
geometry (B) at ω = 21.55 eV, η = 1. (a) PAD section with the xy-plane; (b) Signals of detector D1
(green line), D2 (orange lines, dotted and dashed for the two detectors separated by π and solid line
for their average) and D3 (magenta line) assuming that there is a 25% strength fluctuation of the
second harmonic with the phase φ.

In Figures 5b and 6b we present simulated photoemission signal at detectors D1, D2
and D3 as a function of phase φ assuming that the second harmonic emission suffers of a
25% fluctuation. For geometry (A) Figure 5b the detector D3 is placed φ = 0, for geometry
(B) D3 is placed φ = π/4. One can see that even if there is a harmonic strength fluctuation,
the detector D2 allows directly estimate it, and exclude this fluctuation from the interference
part. An important finding never mentioned in connection with a bichromatic coherent
control setup is that in the region where the interference is destructive, the fluctuations
of the incoherent and coherent contributions cancel each other, while if interference is
constrictive, they are summed. If in an experiment there are very few points for oscillation
(like we had in [47]), then upper part of oscillation can be completely distorted and should
be treated as less reliable.

6. Complementary

In this section we present a possible extension of the above discussion. Equations (10)–(12)
are easily generalized to the case of linearly polarized n-th harmonic nω (n must be even)
accompanied with circularly polarized fundamental harmonic of frequency ω:

Wω(ϑ, ϕ) =
1

4π
|A(n)

εn |2 ·
(2n− 1)!!

2nn!
sin2n ϑ ; (24)

the contribution of single-photon ionization by linearly polarized n-th harmonic:

Wnω(ϑ, ϕ) =
1

4π
|A(1)

εp |2
(

cos θa cos(ϑ) + sin θa sin ϑ cos(φp − ϕ)
)2 ; (25)

and, finally, the interference term:

W(ω,nω)(ϑ, ϕ) =
1

4π
|A(1)

εp A(n)∗
εn |

√
(2n− 1)!!

2(n/2−1)
√

n!
sinn ϑ cos(nϕ− δ)

(cos(θa)cos(ϑ) + sin θa sin ϑ cos(φp − ϕ)) . (26)

The condition that n is even means that the interference of n-photon and one-photon
amplitudes manifests in angular dependency only (26), what differs from the case ω = 3ω
considered in [66]. The general discussion remains the same with two differences: (1) for
the geometry (A) there is n symmetry planes containing z-axis and separated by the angle
2π/n instead of two orthogonal planes (see Section 2); (2) for the geometry (B) there are
two zeros of the interference which are steady and 2(n− 1) zeros which rotates at phase
changing. The cases either n is even or n odd (considered for example in [66]) differ due to
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fact that the electrons ionized by the absorption of odd and even number of photons have
opposite parities. Therefore, in the case of an even n, the interference term (25) has an odd
rank of an angular dependency, and in the case of an odd n, it is of an even rank. Therefore
in the second case the meaning of “asymmetry” (23) is more difficult to interpret.

7. Conclusions

In the paper we consider those exclusive geometries, i.e., polarization and mutual
orientation of harmonics, which allow to access the phase offset between them with min-
imal number of the theoretical (spectroscopic) assumptions. In an ideal case only one
parameter, namely a phase between two ionization channels, is needed. These geome-
tries allow to (a) access the phase between harmonics, (b) directly without any theoretical
assumption get the contributions of the single- and two-photon ionization, (c) estimate
degree of coherency between the harmonics, and (d) exclude an occasional fluctuation of
the harmonic intensities.

Additionally, we found that in the bichromatic coherent control setup a lower part of
oscillation is more stable in case of a fluctuation than an upper part, and should be treated
at fitting as more reliable.

We believe that the presented research can pave the way to future experiments.
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