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Abstract: In order to address issues such as low demodulation accuracy, large demodulation errors,
small dynamic range, and complex algorithms for the extrinsic Fabry–Perot interferometric (EFPI)
sensor, a five-step phase-shift algorithm based on a multiwavelength (MW)-averaging method is
proposed to improve demodulation speed, noise stability, dynamic range, and noise suppression.
The proposed demodulation method utilizes white-light interferometry (WLI) technology to acquire
the reflection spectra and extract the five-step phase-shift signals at Ns consecutive operating points.
The demodulation results of Ns sets of five-step phase-shift signals are averaged to obtain the
average demodulated phase and cavity length variation. Theoretical analysis demonstrates the
significant effects of the MW demodulation method on demodulation parameter errors and noise
suppression. Particularly, when the demodulation parameter θ = π/2 rad, the method exhibits
excellent stability against demodulation parameter error-induced instability. Moreover, it greatly
improves noise suppression and reduces noise fluctuations. Numerical simulations are conducted
to validate the performance of the proposed demodulation method. Compared with the traditional
single-wavelength (SW) five-step phase-shifting demodulation method, the MW demodulation
method exhibits stronger noise- and harmonic-suppression capabilities as the number of averaging
wavelengths Ns increases. The harmonic distortion of the MW demodulation method with Ns = 128
is 20 dB lower than that of the SW demodulation method, and the noise is 15 dB lower. Furthermore,
the proposed method effectively suppresses the influence of demodulation parameter errors on signal
demodulation. This proposed demodulation method has the potential for fast real-time dynamic
demodulation. It has great significance and application in the field of weak signal detection in
fiber-optic sensors with interferometer structures and has enormous advantages in noise-suppression
in complex environments.

Keywords: extrinsic Fabry–Perot interferometer (EFPI); five-step phase-shift algorithm demodulation;
multiwavelength averaging; noise characteristic; numerical simulation

1. Introduction

The fiber-optic extrinsic Fabry–Perot interferometric (EFPI) sensor [1,2] has become a
research hotspot in the field of optical fiber sensing in recent years. When external parame-
ters such as refractive index [3], temperature [4], or strain [5] change the length of the cavity
or the reflectivity of the end face, the response of the resonant cavity changes. By measuring
the spectrum, the corresponding physical quantities can be sensed. Since the introduction of
the membrane-type EFPI [6] in the 1970s, various structures based on microelectromechani-
cal systems (MEMS) [7–9] lithography and solution-etching methods have been proposed,
using a collimating capillary structure [10]. Moreover, with the recent research on photonic
crystal fibers [7,11], the structure of the resonant cavity has become more flexible and the
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performance has become even more excellent. The significant advantage of EFPI is that
the resonant cavity volume is extremely small [12], and it has a high sensitivity [13]. It can
be made into a probe-type sensor for point-to-point measurements [14], realizing sensing
of various parameters such as temperature [4], pressure [15], vibration [16], strain [17],
chemical substances [18], and magnetic fields [19]. It has been successfully applied in
large-scale building monitoring [20] and medical biology [21], as well as in industrial fields
involving high temperatures [22], high pressure [23], and corrosion resistance [24].

The signal demodulation technology of fiber-optic sensors is a crucial component of a
fiber-optic sensor system, and the performance of the demodulation system directly impacts
the precision and speed of the demodulation of the whole sensor system. The demodulation
of fiber EFPI sensor signals requires the analysis and processing of fiber interference spectra,
necessitating the design of complex demodulation methods. These methods need to take
into account the characteristics of fiber sensors and environmental noise, making the design
and implementation of demodulation schemes intricate. Furthermore, high accuracy and
demodulation stability are essential, demanding that the demodulation scheme should
accurately extract the target information from the sensor signals while exhibiting strong
suppression-capabilities against environmental noise and harmonic distortion. Accord-
ing to different demodulation concepts, the demodulation methods for EFPI sensors can
be categorized into three types: intensity demodulation, wavelength demodulation, and
phase demodulation. The underlying principle behind intensity demodulation is that, as
the cavity length shifts as a result of measured external physical factors, the interference
intensity of the EFPI sensor varies. The speed and simplicity of the demodulation process
are the advantages of intensity demodulation, but its precision and dynamic range are
constrained by the stability of the light-source. Typical intensity demodulation schemes
include the working point-control method [25], dual-wavelength method [26], dual-cavity
method [27,28], and so on. The dual-cavity approach was initially presented by Kent A.
Murphy, and the dynamic strain is demodulated by two interference signals with a suitable
phase orthogonal design [27]. To demodulate the fiber-optic EFPI sensors, a modified dual-
cavity DC compensation approach is provided, which eliminates the need for matching
between the cavities’ difference and the light’s wavelength [28]. Wavelength demodulation
is acquired from wavelength information in the reflection spectrum, and the wavelength
change is used to calculate the cavity length-change of the EFPI sensor. The major ap-
proaches are cavity length demodulation [29,30] and spectral peak tracking [31–33]. Some
EFPI sensor spectra under a defined strain are analyzed so as to train a neural network,
and the trained network is utilized to demodulate sensor strain [29]. The benefits of wave-
length demodulation include its simple method and straightforward concept. However, it
requires a large amount of spectral data if it is to be calculated, which is incompatible with
high-frequency dynamic signal measurement. The key to phase demodulation is analyzing
the phase-change of the EFPI sensor. It has a wide dynamic range, good demodulation
accuracy, and high sensitivity, and it can demodulate dynamic signals well. For example,
the phase-generated carrier (PGC) demodulation technique [16,34,35] comprises both inter-
nal and external modulation. The internal modulation technique modifies the phase of the
light-source directly, and the light-source can be modulated at high frequency. The exter-
nal modulation technique adds PZT to the sensing system, which has a relatively simple
structure and minimal device needs, but it increases the system volume and weakens the
system’s anti-interference capacity. The phase-shift demodulation approach eliminates the
impact of the DC component and fringe contrast in the interference signal; as a result, it is
straightforward, robust, and extensively used. To reduce the impact of DC components, the
three-wavelength phase-shift demodulation technique [36] employs the phase connection
between the three interference signals, and the phase compensation algorithm generates
two orthogonal signals to demodulate the tested signals being evaluated. Liu proposed a
quasi-continuous quadrature frequency modulation, which utilizes a five-step phase-shift
demodulation method and programmable frequency modulation to generate a continuous
orthogonal phase-shift signal, successfully demodulating a 100 kHz ultrasound signal [37].
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In the five-step phase-shifting algorithm based on the multiwavelength (MW) av-
eraging method, the interference spectrum of EFPI sensors is obtained by white-light
interference that is sampled at equal wavelength intervals. The spectral data is first pro-
cessed by removing the spectrum envelope and elliptical fitting. When the reflection
spectrum has N wavelengths, Ns (0 < Ns ≤ N − 4M) groups of five-step phase-shift inter-
ference signals can be obtained. The phase connection between each group of five-step
phase-shift interference signals is used to yield two orthogonal signals, and the changes
in the beginning phase are derived using an arctangent algorithm. According to the rela-
tionship between phase and cavity length, averaging Ns groups of phase-changes can be
utilized to determine the dynamic cavity length change of the EFPI sensor. Compared with
the traditional five-step phase-shifted demodulation at a single wavelength (SW), here the
five-step phase-shifted demodulation with MW demodulation can not only achieve fast
dynamic demodulation over a wide dynamic range but can also effectively reduce noise
and improve noise stability, as well as reducing the distortion influence of demodulated
parameter errors on the demodulated signal.

2. Principle

Figure 1a illustrates the five-step phase-shift demodulation system with the MW
demodulation method. Amplified spontaneous emission (ASE) acts as the light-source in
this system. The signals emitted by ASE are directed through an isolator and circulator,
and then pass through the EFPI sensor. The sensor reflects the signals, which again travel
through the circulator before being received by the photodetector (PD). Finally, the signal
is demodulated in real-time by a personal computer (PC).
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Figure 1. The working principle of the five-step phase-shift demodulation with MW averaging.
(a) Schematic diagram of the five-step phase-shift demodulation with MW averaging. (b) Raw
spectrum. The orange line and the yellow line represent the upper and lower envelopes of the
spectrum, respectively. (c) Eliminate spectral envelope. (d) Zoom-in view of the eliminate spectral
envelope in red circle. The upward arrow represents the extracted the five-step phase-shift signals.
The rightward arrow indicates the direction for extracting the next set of five-step phase-shift signals.

The reflectivity of the two reflective surfaces of the EFPI sensor is minimal, so the
interference of the sensor can be approximated to the dual-beam interference. Via sampling
at equal intervals of the wavelength, with a wavelength interval ∆λ, and a sampling length
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N, the collected interference spectrum of the EFPI sensor is depicted in Figure 1b. The
intensity of this spectrum can be expressed as follows

I = A + B cos
(

4πL
λ

)
, (1)

where A is the direct current (DC) of the interference signal, B is the alternating current
(AC) of the interference signal, and L is the cavity length.

The spectrum is modified by the minimax method, and Figure 1c shows the correcting
reflection spectrum I′ = cos(4πL/λ). The intensity of λk−2M, λk−M, λk, λk+M, and λk+2M
as a group of five-step phase-shift signals is extracted from I′ (k = 2M + 1, 2M + 2, . . .. . .,
N − 2M − 1). M is the wavelength interval (0 < M ≤ N/5), and λk is the working point of
the five-step phase-shift method. The five-step phase-shift signals could be written as

I′k1 = cos(ϕk − 2θk)

I′k2 = cos(ϕk − θk)

I′k3 = cos(ϕk)

I′k4 = cos(ϕk + θk)

I′k5 = cos(ϕk + 2θk)

, (2)

where ϕk = 4πL/λk, θk = −4πL·M∆λ/λk
2. Ns groups of five-step phase-shift signals can be

extracted from I′ with N wavelengths(0 < Ns ≤ N − 4M), as shown in Figure 1d.
To generate two orthogonal signals, the phase connection between each group of

five-step phase-shift interference signals is utilized. The arctangent algorithm is used to
obtain the demodulation phase, expressed as

ϕk = arctan
(

SRk
CRk

)
, (3)

where SRk = (I′k2 v I′k4)/2sinθk and CRk = (2I′k3 − I′k1 − I′k5)/4sin2θk. The demodulated
parameter θk is obtained through ellipse fitting of correcting reflection spectrum I′. More-
over, ϕk = 4πL/λk is used to determine the change in cavity length at λk, which can be
described as

dLk =
dϕkλk

4π
, (4)

The dynamic cavity length variation can be obtained by averaging the demodulation
results at MW demodulation, and it can be rewritten as

dL = dLk, (5)

In the measurements, the result of SW demodulation indicates cosine variation with
different working point positions. MW demodulation averages the results of multiple
working points, avoiding the impact of the working point shift on the demodulation results.

3. Demodulated Phase Error Analysis

The light signal is emitted from the ASE through an optical circuit, then reflected by
EFPI sensors, and collected using PD and A/D conversion. In addition to the external
target-sensing information, the demodulated signal also contains noise that is induced
by both the fluctuation of the light-source (multiplicative noise) and the back-end signal
processing circuit (additive noise). Light intensity fluctuation can also cause an error
in the demodulated parameter θ, which is defined as the difference between the actual
demodulated parameter and its true value, denoted as ∆θ. By examining Equation (3), it
becomes apparent that any error ∆θ in the demodulated parameter θ will cause a disruption
in the demodulation phase ϕk, leading to a distortion in the ultimate outcome. Furthermore,
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both Equations (4) and (5) demonstrate that the final demodulation phase is dependent
on the intensity and demodulated parameter θ. Consequently, the impact of the following
three parameters (namely demodulated parameter error, multiplicative noise, and additive
noise) on the demodulation phase are analyzed.

3.1. Demodulated Parameter Error

According to Equation (3), the demodulated parameter θ determines the accuracy of
the demodulated phase. When the demodulated parameter θ includes an error ∆θ, the
phase error of SW demodulation is solved from Equation (3)

δϕ =
1
2

sin 2ϕ

(
−∆θ2

2
+

∆θ

tan θ

)
, (6)

An average effect is produced after MW demodulation, which suppresses the demod-
ulation phase error. The phase error of MW demodulation is written as

∆ϕ =
1
2

N−4M
∑
k

sin 2ϕk

N − 4M

(
−∆θ2

2
+

∆θ

tan θ

)
, (7)

As indicated in Equation (7), the demodulated parameter θ and the demodulated
parameter error ∆θ do not change after MW averaging, in comparison to SW demodulation.
However, the demodulated phase ϕ yields an average value. The three factors, including
the demodulated parameter θ, the demodulated parameter error ∆θ, and the demodulated
phase ϕ, together determine the demodulated phase error δϕ. To demonstrate the effect
of these three factors on the demodulation phase, a numerical simulation is conducted
utilizing Equations (6) and (7), and the results are presented in Figure 2.
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Comparing Figure 2a,c reveals that the demodulated phase error δϕ of the SW demod-
ulation method is sinusoidal with a period of π rad as the demodulated phase ϕ changes.
On the other hand, the demodulated phase error remains constant with the change of
demodulated phase ϕ after the MW demodulation method. In both SW and MW demod-
ulation methods, the phase error steadily increases as the demodulated parameter error
∆θ increases. Comparing Figure 2b,d shows that the demodulated phase error δϕ of both
SW and MW demodulation methods tends to decrease initially and then increase with the
increase of demodulated parameter θ. However, the MW demodulation method is more
effective in reducing the demodulated phase error caused by the demodulated parameter
error ∆θ, which is 19 orders of magnitude lower than that of the SW demodulation method.
Therefore, setting an optimized wavelength interval M, and configuring the demodulated
parameter θ as π/2 rad, is an effective approach to reducing the phase error caused by the
demodulated parameter error ∆θ.

3.2. Multiplicative Noise

Multiplicative noise is typically attributed to fluctuations in the light-source, and it
coexists with the signal in a multiplied form. In order to simplify the analysis, this paper
adopts an approach that assumes uncorrelated multiplicative noise.

Without considering the demodulated parameter error, and assuming the uncorrelated
multiplicative noise coefficient is nk−i (i = 1~5), Equation (2) can be written as

I′ki = Iki + δIki, (8)

where Iki = Ak + Bkcos(ϕk ± mθk), δIki = nk−i Iki, m = 0, 1, 2.
Assuming that the DC and AC of the interference signal are Ak = A and Bk = B, the

phase error of SW demodulation can be derived from Equation (3) as

δϕ ≈ cos ϕ
nk−2 I2 − nk−4 I4

2B sin θ
− sin ϕ

2nk−3 I3 − nk−1 I1 − nk−5 I5

4B sin2 θ
, (9)

Calculating the noise-power spectrum and assuming that the uncorrelated multi-
plicative noise-power coefficient is Sω(nk−i) = Sω(nk) (i = 1~5), then Equation (9) can be
written as

Sω(δϕ) = Sω(nk)

[
cos2 ϕ

I2
2 + I4

2

4B2 sin2 θ
+ sin2 ϕ

4I3
2 + I1

2 + I5
2

16B2 sin4 θ

]
, (10)

The noise-power spectrum of MW demodulation is written as

Sω(δϕ) =
1

N − 4M
Sω(nk)

[
N−4M

∑
k

cos2 ϕ
I2

2 + I4
2

4B2 sin2 θ
+

N−4M

∑
k

sin2 ϕ
4I3

2 + I1
2 + I5

2

16B2 sin4 θ

]
, (11)

As depicted in Equations (10) and (11), the noise-power spectrum resulting from
uncorrelated multiplicative noise is influenced by the DC and AC components of the
interference signal, the demodulated phase ϕ, and the demodulated parameter θ. For the
sake of simplicity in analysis, assume that A = 0, B = 1, and Sω(nk) = 0.2. The numerical
simulation results are presented in Figure 3.

Figure 3 reveals that, as the demodulated parameter θ approaches π/2 rad, the fluctu-
ations in the noise-power spectrum caused by the demodulated phase changes gradually
diminish for both SW demodulation and MW demodulation methods. In comparison with
the SW demodulation method, the noise-power spectrum of uncorrelated multiplicative
noise experiences a reduction of approximately 45 dB.
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3.3. Additive Noise

Additive noise encompasses various types such as thermal noise and shot noise. It
is characterized by its additive relationship with the signal, persisting irrespective of the
presence of the signal. In order to streamline the analysis, the theoretical analysis of additive
noise-suppression in this article primarily focuses on the impact of circuit noise within
uncorrelated additive noise on the amplitude of light intensity.

Without considering the demodulated parameter error, and assuming the uncorrelated
multiplicative noise coefficient is nk−i (i = 1~5), Equation (2) can be written as

I′ki = Iki + nd−i, (12)

where Iki = Ak + Bkcos(ϕk ± mθk), m = 0, 1, 2.
Assuming that the DC and AC of the interference signal are Ak = A and Bk = B, the

demodulated phase error δϕ of SW demodulation is obtained by Equation (3)

δϕ ≈ cos ϕ

2B sin θ
(nd−2 − nd−4)−

sin ϕ

4B sin2 θ
(2nd−3 − nd−1 − nd−5), (13)

Calculating the noise-power spectrum and assuming that the uncorrelated additive
noise-power coefficient is Sω(nd−i) = Sω(nd) (i = 1~5), Equation (13) can be written as

Sω(δϕ) =
1

B2 Sω(nd)

(
cos2 ϕ

2 sin2 θ
+

3 sin2 ϕ

8 sin4 θ

)
, (14)

The noise-power spectrum of MW demodulation is written as

Sω(δϕ) =
1

B2 Sω(nd)
1

N − 4


N−4M

∑
k

cos2 ϕk

2 sin2 θ
+

3
N−4M

∑
k

sin2 ϕk

8 sin4 θ

, (15)

As shown in Equations (14) and (15), the noise-power spectrum caused by uncorrelated
additive noise is related to the effects of AC, the demodulated phase ϕ, and the demodulated
parameter θ. To simplify the analysis, assume that B = 1 and Sω(nd) = 0.2. The numerical
simulation is shown in Figures 4 and 5.
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Figure 4 illustrates that the noise-power spectrum of uncorrelated additive noise
reaches its lowest point at the demodulated parameter θ = π/2 rad, and increases as θ
deviates from π/2 rad. Similarly, Figure 5 demonstrates that the noise-power spectrum of
uncorrelated noise gradually decreases as θ equals or approaches π/2 rad. When comparing
Figure 5a with Figure 5b, it is observed that the noise level of MW demodulation decreases
by approximately 40 dB and remains unaffected by changes in the demodulated phase ϕ.
MW demodulation proves to be effective in mitigating the impact of uncorrelated additive
noise on signal demodulation.

4. Simulation

Without doubt, both dynamic range and noise characteristics are crucial factors in
evaluating a demodulation method. It is important to focus on the harmonic-suppression
capability of MW demodulation during signal demodulation within the dynamic range.
Additionally, the noise spectrum level and noise stability under different parameter con-
ditions such as the number of averaging wavelength Ns, the demodulated parameter θ,
and the signal-to-noise ratio (SNR) should be considered. As depicted in Equation (3),
it is evident that the demodulated parameter θ significantly impacts the accuracy of the
demodulation method. The capability of the proposed demodulation method to suppress
the impact caused by the demodulated parameter error ∆θ should also serve as a criterion
for assessing demodulation performance. Efficient elimination of the demodulated param-
eter error ∆θ leads to more precise demodulation results. To investigate the effect of the
demodulated phase error δϕ induced by the above parameters, numerical simulations are
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conducted to analyze the influence of the dynamic range, demodulated parameter θ, and
noise characteristics on the proposed interrogation method.

4.1. Dynamic Range

According to Equation (3), the dynamic range of the proposed method is determined
by the arctangent algorithm. The dynamic range ∆Lmax can be expressed as{

ϕmax =
fp

2 fs

ϕ = 4π∆L
λ

⇒ ∆Lmax =
fp

2 fs
· λ

4π
, (16)

where ϕmax is the maximum signal phase that the demodulation method can resolve
efficiently, the corresponding maximum demodulated cavity length variation is ∆Lmax,
the system sampling frequency is fp, and the signal frequency is fs. It can be seen in
Equation (16), that the dynamic range of the demodulation method is proportional to
1/2 fs, and the numerical simulation of Equation (16) is calculated as shown in Figure 6.
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Figure 6 demonstrates that the maximum cavity length variation ∆Lmax decreases as
the signal frequency increases, assuming constant sampling and incident light wavelength.
When the cavity length changes beyond the dynamic range, it can result in distortion or even
failure of signal demodulation. Hence, it is crucial to analyze the demodulation method’s
dynamic range for practical measurements and applications. Distortion of the resolved
signal is not solely caused by the dynamic range but can also be induced by harmonic
signals stemming from the nonlinearity of the sensing system. The influence of harmonic
signals on the fundamental signal is a customized way of assessing the demodulation
method’s quality. The total harmonic distortion (THD) is defined as the ratio of the sum of
all harmonic signals to the fundamental signal.

Numerical simulations of THD in five-step phase-shift demodulation with SW de-
modulation and MW demodulation methods are presented in Figure 7. For the purpose
of comparing the results, the number of averaging wavelengths in MW demodulation
is simplified as 16, 32, 64, and 128 wavelengths. Considering the current measurement
conditions to avoid the influence of the 50 Hz power signal, the simulation parameters
are set as a sampling frequency 5 kHz, signal frequency 63 Hz to be measured, as well
as an M = 1 wavelength interval. In addition, the wavelength range of the light-source is
set to 1506–1592 nm, the sampling length is set to N = 512, and the signal-to-noise ratio is
80 dB. To avoid the distortion caused by signal demodulation beyond the dynamic range,
simulation should be conducted within the dynamic range. According to Equation (16), the
maximum phase amplitude that can be achieved in the proposed demodulation method is
ϕmax = 39.7 rad; the changes in THD with the phase-amplitude of the signal are shown in
Figure 7.
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As shown in Figure 7, it is apparent that the THD of both the SW demodulation method
and MW demodulation method gradually decreases with the increase of signal phase-
amplitude. When the signal phase-amplitude is close to the maximum phase-amplitude,
the THD of MW demodulation gradually approaches the noise spectrum level, and the THD
of different MW demodulations gradually approaches the noise spectrum level. Compared
to SW demodulation, the THD of MW demodulation is much lower. For example, the
THD of 128 wavelengths demodulation is 20 dB lower than that of SW demodulation.
As shown in Figures 2, 3 and 5, it can be seen that the results of the SW demodulation
method under different working points are averaged by the MW demodulation method,
avoiding the impact of the working point fluctuations and effectively reducing noise levels.
With the increase of averaging wavelength number, the average processing of the MW
demodulation method plays a significant role in contributing to the gradually decreased
THD. Furthermore, the proposed demodulation method shows the advantages of signal
demodulation in complex environments, such as its ability to efficiently suppress harmonics
and the detection of weak signals.

4.2. Demodulated Parameter Error

The demodulated parameter θ in the proposed method is calculated by ellipse fitting,
and its theoretical value can be expressed as θ = −4πL·M∆λ/λ2. When the demodulated
parameter θ has an error ∆θ, it will affect the accuracy of the demodulated phase ϕ and
could lead to distortion of the signal. Let us analyze the impact of the demodulated
parameter error ∆θ on signal demodulation distortion, as well as the impact of the different
demodulated parameter θ on harmonic suppression. The simulation parameters are chosen
as: demodulated parameter error ∆θ = 0◦, 1◦, 2◦, 3◦, 4◦, 5◦, and 6◦, ∆L = 100 nm, the number
of averaging wavelengths is 64, wavelength interval M = 1, 3, 5, 7 and 9 (corresponding
theoretical demodulated parameter θ = 0.3151, 0.9451, 1.5750, 2.2043 and 2.8329 rad). The
numerical simulation is resolved as shown in Figure 8.

Figure 8 demonstrates how the MW demodulation method can effectively mitigate
the distortion caused by the demodulated parameter error ∆θ compared to the SW demod-
ulation method. Compared with the SW demodulation method, the THD of the MW de-
modulation method is lower by 20~30 dB in similar conditions. The THD has a relationship
with wavelength interval M that THD can reach a minimum when M = 5 (θ = 1.5750 rad).
Therefore, as the demodulated parameter θ is close to π/2 rad, the harmonic distortion is
substantially decreased and suppressed. As the demodulated parameter error ∆θ increases,
the THD of SW demodulation and MW demodulation methods gradually increases. How-
ever, the THD does not change with the demodulated parameter error ∆θ when M = 5. It
is consistent with the theoretical result in Figure 2, where the phase error is 0 at θ = π/2
rad and it is independent of the amplitude of the demodulated parameter error. Except for
the curve with a wavelength interval of M = 5, the results of other curves in Figure 8 differ
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from their expected trends when ∆θ = 0◦. This is because when ∆θ 6= 0◦, the proposed
demodulation method is mainly affected by the demodulated parameter error. When
∆θ = 0◦, the impact of other parameters such as the number of averaging wavelengths and
the wavelength interval M on the demodulation results becomes apparent.
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4.3. Noise Characteristics

The analysis in this paper covers three main aspects regarding noise characteristics.
Firstly, it examines the demodulation noise level at different SNRs. In particular, it inves-
tigates the challenges of accurately measuring weak signals for sensing purposes under
low-SNR conditions. It is crucial to analyze these noise characteristics to offer practical
guidance. Secondly, the relationship between the fluctuation of demodulation noise level
in the SW demodulation method and the wavelength interval M is investigated. The
selection of the working point and wavelength interval M substantially impacts the results
obtained through the SW demodulation method. Lastly, the relationship between the
demodulation noise level in the MW demodulation method and the number of averaged
wavelengths, along with the wavelength interval M, is explored. Unlike the SW demodula-
tion method, the MW demodulation method overcomes the influence of the working point
on the demodulation results by implementing an averaging procedure. By conducting a
comprehensive analysis of the noise characteristics in both SW and MW demodulation
methods, it is possible to effectively suppress noise and harmonic distortion in practical
applications. The MW demodulation method employs five-step phase-shift signals with
multiple wavelengths. For instance, the case of 64-wavelengths demodulation includes
64 groups of five-step phase-shift signals. Figures 9 and 10 illustrate the results of different
SW and MW demodulation methods, respectively.
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With the change in working point, the noise spectrum level of the SW demodulation
method displays periodic fluctuation, as shown in Figure 9. In practical applications,
determining the cavity length of the EFPI sensor is necessary to ensure that the working
point operates at an optimal demodulation position. However, this can impede the fast
demodulation of the sensing signal. Both Figures 9 and 10 demonstrate that the noise
spectrum level of both SW and MW demodulation methods decreases to 10 dB when the
SNR changes from 50 dB to 60 dB. Compared to the SW demodulation method, the MW
demodulation method exhibits a noise spectrum level approximately 20 dB to 25 dB lower
at the same SNR, making it more advantageous for detecting weak signals in complex
environmental conditions.

According to the expression θ = −4πL·M∆λ/λ2, the SW demodulation and MW
demodulation are correlated with the wavelength interval M. The previous analysis has
summarized the relationship between the noise spectral level of the method, the operating
point and SNR, and has given the characteristics of the noise spectral level under different
wavelength intervals. The relationship between the fluctuation of the SW demodulation
noise spectrum and wavelength interval M is further analyzed. The simulation parameters
are wavelength interval M = 1, 3, 5, 7, and 9.

As shown in Figure 11, as the demodulated parameter θ approaches π/2 rad (M = 5),
the noise spectrum level of SW demodulation is lower, and the stability of the noise level
behaves much better. By contrast, when the demodulated parameter θ moves away from
π/2 rad (M < 5 or M > 5), the periodic variation of SW noise fluctuation is much higher;
with the change in wavelength number, there is remarkable periodic fluctuation.
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The MW demodulation greatly eliminates the impact of the working point on the
demodulation results. The impact of wavelength interval M and the number of averaging
wavelengths on MW demodulation still needs further analysis; the noise spectrum level
of MW demodulation with different wavelength intervals M and different numbers of
averaging wavelengths is shown in Figure 12. With the increase of averaging wavelengths
number, the noise spectrum level gradually decreases. For example, when wavelength
interval M = 1, as the number of averaged wavelengths increases from 1 to 128, the noise
spectral level decreases by about 30 dB. With the demodulated parameter θ approaching
π/2 rad (M = 5), the noise spectrum level of MW demodulation is lower. As shown
in Figure 4, it can be seen that, as the demodulated parameter θ approaches π/2 rad,
the corresponding noise-power spectrum decreases slowly. This is consistent with the
conclusion in Figure 12 that the noise spectrum level in the cases of M = 3 and M = 7 is
similar to the noise spectrum level of M = 5. This is consistent with the theoretical analysis
results. In particular, when the averaging wavelength number is small, the difference in
noise spectrum level between different wavelength intervals is more obvious.
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5. Conclusions

In summary, this manuscript presents a five-step phase-shift technique based on
MW-averaging for fast real-time dynamic demodulation of the EFPI sensor. The princi-
ple of the five-step phase-shift technique based on MW-averaging is analyzed, and the
impact of reducing the demodulated parameter error ∆θ on signal-demodulation and noise-
suppression is derived from three aspects, including the demodulated parameter error
∆θ, multiplicative noise, and additive noise. It is demonstrated that MW demodulation
outperforms SW demodulation in reducing the impact of the demodulated parameter error
∆θ on signal-demodulation and noise-suppression. The proposed demodulation method
shows promise for fast real-time dynamic demodulation, making it suitable for various
applications in the field of weak signal detection using fiber-optic sensors with interferome-
ter structures. Additionally, the MW demodulation method exhibits stronger noise- and
harmonic-suppression capabilities as the number of averaging wavelengths Ns increases.
This suggests that the demodulation method can be further optimized and extended by ex-
ploring the use of more wavelengths for averaging, potentially enhancing its performance
in noise reduction and signal stability. Overall, the proposed method offers improved
demodulation speed, noise stability, dynamic range, and noise-suppression, making it a
promising technique for various sensing applications. It has the potential to revolutionize
the field of EFPI sensors and to contribute to advancements in weak signal-detection and
noise-reduction in complex environments.
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