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Abstract: The tunability of plasmonic resonances in gold and silver nanosphere arrays on a glass
substrate, embedded in a liquid crystal matrix, was explored. The calculations involving the finite
element method revealed that the optical properties of these arrays can be modulated by reorienting
the liquid crystal. When the liquid crystal director was reoriented between planar and homeotropic
configurations in the plane containing the incident wave polarization vector, the plasmonic resonance
wavelength shifted within an approximately 100 nm range. A reduced shift of about 40 nm was
observed when the reorientation occurred in the plane perpendicular to the polarization. Both
metal nanosphere arrays showed notable near-field amplification. Gold achieved up to 18 times
the amplification of the incident wave electric field, while silver reached 16 times but showed a
remarkable 40 times amplification at the inter-band transition resonance wavelength. This research
underscores the potential of using liquid crystal reorientation for controlling the plasmonic lattice
resonance in metal nanosphere arrays, opening up new possibilities for adaptable plasmonic devices.

Keywords: nanoparticle arrays; liquid crystals; plasmonic resonance tuning

1. Introduction

The ordered arrangement of nanoparticles into periodic arrays over large areas is an
important requirement to obtain functional interfaces for real-life applications. When plas-
monic nanostructures are arranged periodically, the electrodynamic coupling of the nanos-
tructures enhances the light–matter interaction compared to isolated nanostructures due to
localized surface plasmon resonances (LSPRs) and surface lattice resonances (SLR) [1,2].

The applications of these plasmonic nanostructure arrays are manifold. They have
been demonstrated for light-harvesting enhancement in photovoltaic applications [3–5],
utilized in photocatalytic processes [6,7], and employed in photothermal-mediated pro-
cesses [8,9]. Additionally, the pronounced near-field enhancement due to plasmonic cou-
pling in these arrays has facilitated advancements in spectroscopic techniques. This includes
improvements in surface-enhanced Raman spectroscopy [10–12] and fluorescence [13,14].
Recent reports have also shown potential in surface-enhanced infrared absorption spec-
troscopy [15,16] and in photoemission and photodetection signals [17]. The fabrication
of these nanoparticle arrays necessitates precision. Self-assembly emerges as a promising
technique, offering a straightforward and cost-effective approach to producing periodic
arrays of nanoparticles [18,19]. By leveraging the nanoparticles as foundational building
blocks, it becomes feasible to engineer arrays with functionalities tailored for specific ap-
plications [20,21]. Over recent years, there has been a growing interest in self-assembled
films of nanoparticles, both in terms of their fabrication methodologies and their emergent
applications [22,23].

One of the important features of self-assembly is the granular control it affords over
various parameters. This encompasses the packing configuration, interparticle gap, and
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the number of layers [24]. Such control is crucial for customizing the arrays for specific
applications. For instance, self-assembled plasmonic nanoparticle films, especially those
comprising gold, have shown potential for sensing applications due to their increased
sensitivity to the local dielectric environment [25,26].

A long-standing goal in plasmonics and cavity photonics has been the active modula-
tion of cavity resonances by adjusting external parameters. The surface plasmon resonance
maximum is very sensitive to the dielectric constant of the surrounding media [27–29]. The
large anisotropy of the liquid crystal (LC) refractive index is therefore ideally suited for
tuning the plasmon resonance by an electric-field-induced switching of the liquid crystal
director orientation.

The potential of LCs to actively modulate resonances in metallic nanostructures has
been previously demonstrated in various contexts, including single nanoparticles [30–33],
thin metallic films [34–36], metallic hole arrays [37,38], metasurfaces [39–47], and metallic
nanoparticle arrays [48–52]. The reported resonance shifts due to liquid crystal director re-
orientation are within a 10–100 nm range and significantly depend on the specific structure
studied. Specifically, in [32], the authors reported the tunability of individual gold nanorods
with liquid crystals of up to 30 nm, while an exceptional 100% scattering modulation for
single nanoparticles was reported in [33]. The tunability of a 2D rectangular nanohole
array by using a thermal transition of liquid crystal was demonstrated in [37], with up to a
40 nm shift in the wavelength of the plasmonic resonance. The authors in [46] reported a
75% transmission modulation of a 2D rectangular silicon nanodisc array through liquid
crystal reorientation. The spontaneous emission of a 2D rectangular silicon nanodisc array
placed on a fluorescent glass substrate was shown to be tunable within a 20 nm range
in [47]. In [48], the hexagonal nanodot array was shown to be tunable within a 10 nm
wavelength range.

Notably, in [49], a 1D array of metallic nanospheres was semi-analytically studied to
show that the geometric resonance in such a structure can be significantly controlled within
100 nm. This control range can potentially be increased even further by utilizing liquid
crystals with very high birefringence due to the linear dependence of the control range on
the interparticle distance and the birefringence. In [52], up to a 24 nm control range was
achieved by studying the 2D arrays of gold cylinders for the E7 liquid crystal. While other
methods for creating tunable metasurfaces exist, such as using phase change materials or
electrical gating [53–57], LCs stand out due to their cost-effectiveness, ease of integration,
and minimal optical losses.

In this work, we investigate the potential for the dynamic tunability of self-assembled
2D gold and silver nanosphere arrays using LCs. A shift in plasmonic resonance wavelength
of up to 100 nm is observed as a result of changing the LC orientation for both gold and silver
nanospheres. Such plasmonic resonance tunability holds promise for the development of
adjustable lasers and enhanced plasmonic sensors.

2. Structure Description

In this article, dynamic control and tunability are introduced to the properties of
the metallic nanosphere arrays, as reported in [58,59], by incorporating a liquid crystal,
as depicted in Figure 1. The structure begins with a semi-infinite glass substrate with a
refractive index nglass = 1.5. Directly on top of the substrate are metallic nanospheres,
self-assembled to form a 2D hexagonal structure. We consider the cases of gold and silver
nanospheres with a diameter d = 10 nm and an inter-particle gap of g = 2 nm. The
refractive indexes of gold and silver were taken from [60].
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Figure 1. Unit cell of the structure under study (left panel) and its dimensions (right panel).

The space above the nanospheres is filled with a liquid crystal, which, for simplicity, is
considered to be semi-infinite in the z direction. The ordinary and extraordinary refractive
indices of LC were chosen to be no = 1.7 and ne = 2.2, respectively, corresponding to the
high-birefringence LC mixtures reported in [61,62].

In order to showcase the potential extent of tuning the properties of nanoparticle arrays
through liquid crystal reorientation, we performed a comparison of the transmittance,
absorbance, and reflectance spectra of such nanoparticle arrays for the three principal LC
director orientations: along the z axis (homeotropic), along the x-axis (further denoted as
‘planar x’), and along the y-axis (‘planar y’). The calculations were performed for the x- and
y-polarized normally incident plane waves. While the boundary conditions can sometimes
prevent the LC from reorienting at the substrate, full reorientation can be achieved using a
photoalignment layer [63].

3. Materials and Methods

The calculations were performed using the finite element method in COMSOL Mul-
tiphysics. The structure was represented by a unit cell, as depicted on Figure 1. The
dimensions of the unit cell were set to 12

√
3 by 12 nm in order to produce the hexagonal

arrangement of the nanospheres. The incident wave was excited using a periodic port.
The Floquet periodic boundary conditions were applied at the x- and y-boundaries of
the cell, with the Floquet vector being derived from the periodic port. The semi-infinite
span of the substrate and LC in the z direction was modelled by using cartesian perfectly
matched layers.

The reflectance and transmittance spectra were calculated by integrating the normal
Poynting component at the upper and lower boundaries, and the absorbance spectra by
integrating the resistive losses over the volume of the unit cell. The mesh was adapted to
reflect the peculiarities of the structure, such as accounting for a finer resolution needed
near the areas of near-field enhancement, the symmetry requirements for the mesh in
the perfectly matched layers for correct domain stretching, and the results were verified
to be stable with respect to mesh adjustments. The described approach was extensively
verified to produce correct results in the cases where analytical solutions are available, and
multiple sanity checks were performed on the obtained data. The validity of the numerical
results was additionally cross-checked by performing a separate calculation using the
scattered-field formulation and by matching the results reported in [58,59] without the
liquid crystal.
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4. Results
4.1. Optical Spectra for the Gold Nanoparticle Array

The periodic structure of the gold nanosphere array results in the excitation of the
plasmonic lattice resonance. Figure 2 shows the reflectance, transmittance, and absorbance
spectra for the gold nanosphere array for the x-polarized incident plane wave. A broad
resonance peak is clearly visible in the reflectance spectrum at around 710 nm in the case of
a homeotropic liquid crystal orientation, reaching a value of0.8 with a full width at half
maximum of approximately 300 nm. The transmittance spectrum shows a matching dip for
this resonance, while the absorbance varies monotonically.
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Figure 2. Reflectance (top), transmittance (middle), and absorbance (bottom) of hexagonal gold
nanosphere array for homeotropic and two planar LC orientations for x-polarized incident light.

When the liquid crystal director is reoriented, which could be achieved in multiple
ways, for example, by applying an in-plane electric field, through photo-orientation [64,65],
or using a magnetic field, the refractive index tensor changes near the areas where the
resonance is localized, therefore shifting its wavelength. Since the incident light polarization
is along the x-direction, the electric field taking part in the lattice resonance consists mostly
of its x-component. This makes the resonance sensitive to the reorientation of the director
in the x–z plane, which maximizes the change in the respective refractive index component.

The reorientation of the liquid crystal director in the x–,z plane results in a shift of
the resonance wavelength toward larger values by approximately 100 nm. This shift is
manifested as the shifts of the respective peaks of the reflectance and transmittance spectra.
The overall shape of the reflectance and transmittance spectra remain intact, and the peak
reflectance value remains constant at a level of 0.8. The absorbance spectrum remains
qualitatively unchanged during the reorientation of the director of the liquid crystal, with
only a slight gradual increase by less than 0.1 in the long-wave region.

When the director is being reoriented in the y–z plane, the effect of the reorientation
on the plasmonic resonance remains, although it is substantially weaker. The overall shift
of the transmission and reflection resonance peaks is reduced to approximately 40 nm. That
is, the effect of liquid crystal director reorientation in the y–z plane is around 2.5 times
weaker compared to that in the x–z plane. The absorption spectrum remains qualitatively
unchanged, similarly to the case of director reorientation in the x–z plane, and is nearly
identical to the absorbance spectrum for the case of homeotropic liquid crystal orientation.

The existence of the effect of liquid crystal director reorientation in the y–z plane on
the plasmonic resonance in the case of x-polarized incident light can be explained by the
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involvement of multiple electric field components in the resonance, making it sensitive to
all components of the refractive index tensor. This becomes apparent upon examination of
the electric field distribution at the resonance frequency. Figure 3 shows the distribution of
the electric field norm in the plane z = R at the resonance wavelength of 700 nm for the
case of homeotropic liquid crystal orientation. The color represents the electric field norm
relative to that of the incident wave, and the arrows show the direction of the electric field
vector between the nanospheres. The electric field is almost completely concentrated in the
areas where the nanospheres are the closest to each other. It should be noted that despite
the structure being symmetric with respect to the rotations by an angle of 60 degrees, the
electric field norm distribution is lacking the maxima where the nanospheres contact in the
y-direction. This is due to the fact that the initial wave polarization is along the x-direction,
and due to the reflection symmetry in the y-direction, such maxima cannot occur. The lines
of the electric field show that the electric field in the distribution maxima has both x- and
y-components, meaning that such structure introduces an y-component of the electric field,
making it sensitive to the director reorientation in the y–z plane.
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Figure 3. Electric field norm distribution corresponding to the 710 nm plasmonic resonance for
homeotropic liquid crystal director orientation and x-polarization.

Figure 4 shows the reflectance, transmittance, and absorbance spectra for the case
of y-polarized incident wave. The overall shape of the reflectance, transmittance, and
absorbance spectra is very similar to the case of an x-polarized incident wave described
above. The major difference is that for the y-polarized incident light, the liquid crystal
director reorientation in the x–z plane becomes the most efficient for shifting the resonance
wavelength. The magnitude of the resonance wavelength shift is similar to the case of
x-polarized incident light, being around 40 nm for the liquid crystal director reorientation
in the x–z plane and approximately 100 nm for that in the y–z plane.

Figure 5 shows the electric field norm distribution for a homeotropic liquid crystal
director orientation with the incident light polarized along the y-axis. The distribution is
qualitatively different from the case of x-polarization (Figure 3), where some resonances
were missing due to symmetry. In the case of the y-polarized incident wave, the electric field
norm has maxima in all the proximity areas, and the maximums between the nanospheres
in the y-directions are dominant in this case. The existence of angled maxima makes the
structure sensitive to the director reorientation in the x–z plane, both qualitatively and
quantitatively, similar to the mechanism in the case of an x-polarized incident wave. In
summary, introducing the liquid crystal to the structure with a nanoparticle array does
allow for a gradual control of the plasmonic resonance wavelength without distorting
the transmittance, reflectance and absorbance profile shapes, and such control persists
irrespective of the incident wave polarization and the director reorientation plane.
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4.2. Optical Spectra for the Silver Nanoparticle Array

Silver nanoparticle arrays can manifest similar plasmonic resonances to gold nanopar-
ticle arrays. However, silver has inter-band transitions that are in the visible range [66],
resulting in complex features appearing in reflectance, transmittance, and absorbance. The
calculation of these spectra for the silver nanospheres in the case of an x-polarized incident
wave is presented in Figure 6.

The shape of the reflectance, transmittance, and absorbance spectra can be attributed
to two separate effects. In the 500–800 nm area, the gradual reflectance peak has the same
origin as the resonance in the gold nanoparticle array described in the previous section. It
can be characterized by a smooth and gradual reflectance peak, the matching transmittance
dip, and monotonic absorbance profile. The electric field norm distribution is similar to the
corresponding case of gold nanospheres, with the electric field being localized in the gaps
between the nanospheres (Figure 7).
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Figure 7. Electric field norm distribution corresponding to the 625 nm plasmonic resonance for the
case of homeotropically aligned liquid crystal director orientation and x-polarization.

The other effect taking place is to be attributed to the inter-band transitions and is
manifested as well-pronounced absorbance peaks below 500 nm, with corresponding
reflectance and transmittance dips. It can also be noted that the reflectance dips are slightly
shifted toward higher wavelength than the corresponding transmittance dips. The electric
field distribution for the peak of 425 nm is shown in Figure 8 and is qualitatively different,
with the electric field maxima being near the surface of the nanospheres and partially
penetrating inside the nanoparticles.

When the liquid crystal director is reoriented from the homeotropic to the planar state
in the x–z plane, both resonances are shifted toward higher wavelengths. The plasmonic
band resonance shifts by approximately 100 nm, while the resonance associated with the
inter-band transitions is shifted much less, by about 30 nm. Similar to the case of gold
nanospheres, the reorientation of the liquid crystal director in the y–z plane corresponds to
an approximately 2.5-times-weaker effect for the x-polarized incident wave.
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sponding to the inter-band transitions in the case of homeotropically aligned liquid crystal director
orientation and x-polarization.

The case of a y-polarized incident wave is generally in line with the pattern observed
for gold nanospheres: changing the polarization has only a little effect on the general shape
of the reflectance, transmittance, and absorbance spectra, making the director reorientation
in the y–z plane more efficient for resonance wavelength control (Figures 9 and 10). It is
worth noting that, contrary to the case with an x-polarized incident wave, the reorientation
of the liquid crystal director results in a significant intensity redistribution between the
peaks related to the inter-band transitions, resulting in two distinct peaks at 450 and 510 nm,
respectively.
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5. Discussion

The obtained plasmonic resonance tuning range for both the silver and gold nanopar-
ticle arrays reaches a value of ∆λ ≈ 100 nm, which is a relatively high tunability for such
structures. While the localized surface plasmon resonances are quite broad, the tuning
range reaches more than one third of its full width at half maximum. Intensity-wise, the
available control reaches 20–30% in the transmittance and reflectance, and it should be
noted that increasing the birefringence of the liquid crystal will likely increase this range
even more, especially considering the recent reports of liquid crystals with an extremely
high birefringence of up to ∆n = 0.8 [61,62].

While the current work focuses on numeric simulations, it can be quite convenient to
have some analytic expressions to estimate the tunability range for such structures. The
latter can be achieved by using the framework developed in [67], specifically through
equation from the mentioned work. This equation allows the sensitivity, S = δλ/δn, of
the resonance peak wavelength to the changes in the refractive index to be estimated as a
function of the geometric factor, Γ, the liquid crystal mean refractive index, nLC, the peak
wavelength, λ, and the ε∞ parameter from the Drude model fit of the dielectric function
of the metal nanoparticles. For the liquid crystal used in the calculations, we take the
average refractive index of the liquid crystal to be equal to nLC = 1.95, while for spherical
nanoparticles, Γ takes a value of one third. The ε∞ parameter allows us to conveniently
take into account the difference between silver and gold nanoparticles. For gold, the Drude
model fit for the visible range leads to ε∞ values around 11 [68], while for silver, this value
is around 5 [69]. The substitution of these values leads to S ≈ 160 nm/RIU for the 750 nm
resonance for gold, and around 200 nm/RIU for the 650 nm silver resonance, where RIU
stands for refractive index units. Substituting the birefringence of the liquid crystal of
∆n = 0.5, we obtain ∆λ ≈ 80 nm and ∆λ ≈ 100 nm for gold and silver, respectively, which
turns out to be a very reasonable estimate. Therefore, the approach presented in [67] is
likely applicable for providing quick estimates on how the tunability would change when
using a liquid crystal with slightly different dielectric properties.

It is notable that such a broad control range was obtained for the localized surface
plasmon resonances, which are known to often have a relatively limited tunability. For
comparison, the extended surface plasmonic resonances (surface plasmon polaritons) can
have a tunability higher by several orders of magnitude [70], which makes introducing the
coupling of the localized resonances in studied structures with the extended surface plas-
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mon resonances [71] a promising avenue for further research. It is also worth mentioning
the role of the 2 nm gap between the nanoparticles considered in the presented simulations.
The presence of such a gap leads to the nanospheres being disconnected so that there is
no electrical current flowing between the nanoparticles. Contact between the nanospheres
would lead to the whole array acting as a single conductor, which would conversely reflect
in the modes excited. The presence of such a gap between the nanoparticles and its influence
on the plasmonic resonances were studied in detail in [72,73]. These works have shown
that the exact size of the gap has a significant and non-linear impact on the interaction of
such nanoparticles with the incident wave. Therefore, changing the inter-particle gap leads
to significant changes in the electric field amplification, as well as the nanoparticle size and
other structural details for the optimal excitation of the plasmonic resonance.

While we consider a complete director reorientation throughout the entire liquid
crystal, the boundary conditions can often prevent such a complete reorientation. If the
liquid crystal is not fully reoriented near the nanoparticles, the impact of such reorienta-
tion on the plasmonic resonances would significantly diminish, since the resonance peak
wavelength is most sensitive to the dielectric function in the areas with the highest electric
field amplification. Without any special treatment, the experimentally observed control
range would likely be significantly reduced. However, covering the nanoparticles with
an alignment layer and using photo-orientation techniques [63–65] were shown to help
enforce the desired orientation at the boundaries.

The tunable nature of plasmonic resonances in metal nanoparticle arrays, facilitated
by liquid crystal reorientation, opens up a range of prospective applications. The foremost
is tunable sensing: the ability to modify the resonant frequency based on environmental
factors could lead to more adaptable sensors. This tunability also hints at potential inno-
vations in optoelectronic devices, where precise control over resonance can enable more
efficient modulators or switches. Overall, the essence of the presented design’s value lies in
its adaptability, offering flexible and precise control over light–matter interactions.

6. Conclusions

The tunability of plasmonic resonances in closely packed gold and silver nanosphere
arrays embedded in a liquid crystal matrix was studied. The optical properties were
shown to be controllable by reorienting the liquid crystal, leading to a shift in the plasmon
frequency and thus affecting the transmittance, reflectance, and absorbance spectra.

The reorientation of the liquid crystal director between planar and homeotropic con-
figurations in the plane containing the incident wave polarization vector was shown to be
most effective for controlling the plasmonic resonance wavelength, allowing for shifting
it within an approximately 100 nm range, signifying the potential for dynamic tunability
in LSPR-based devices. The reorientation of the director in the plane perpendicular to the
incident wave polarization also impacted the resonance wavelength in a reduced range of
approximately 40 nm.

Silver nanosphere arrays have shown more complex transmittance, reflectance, and
absorbance spectra due to the peaks related to the inter-band transitions in the 400–500 nm
wavelength range. A liquid crystal director reorientation from the homeotropic to the
planar states increased the wavelength of such peaks, although to a lower extent, and in the
case of y-polarized incident light, led to a significant redistribution of the peak intensities.

Both the silver and gold nanosphere arrays demonstrated significant near-field ampli-
fication. Gold nanospheres had a slightly stronger amplification of up to around 18 times
the incident wave electric field, compared to a 16-times amplification for silver. However,
the silver nanospheres had a significantly higher amplification of up to 40 times at the
wavelength corresponding to the inter-band transition resonance.

Overall, our results highlight the possibility of using liquid crystal reorientation to
control LSPRs in metal nanosphere arrays, contributing to the development of tunable and
reconfigurable plasmonic devices.
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