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Abstract: In order to improve the signal-to-noise ratio (SNR) of vibration sensing in the phase-
sensitive optical time-domain reflectometer (ϕ-OTDR) system, a fiber sensing signal processing
method based on the FFDNet convolutional neural network is proposed in this paper. In the network,
the concept of residual learning is introduced, which involves constructing a residual mapping and
utilizing multi-layer convolutional neural networks to learn the noise distribution present in the
original image. The denoised result can be obtained by subtracting the learned noise from the original
image. We have built a ϕ-OTDR system based on coherent detection, using three PZTs as simulated
vibration sources and a series of experiments at 200 Hz, with each experiment simulating a single
vibration event or multiple vibration events by setting different intensities. The experimental results
demonstrate that the FFDNet based fiber optic sensing signal processing method enhances the SNR
to 37.84 dB, 37.11 dB, and 37.31 dB, respectively, while preserving vibration signal details more
effectively than wavelet denoising and Gaussian filtering techniques. The trained FFDNet model
has great potential for improving the performance of the ϕ-OTDR system and has some practical
application value.

Keywords: CNN image denoising; ϕ-OTDR; multi-vibration event location; distributed fiber optic
vibration sensing; signal processing

1. Introduction

Distributed optical fiber sensor (DOFS) is a sensing technology that uses optical fiber
as the sensing unit and sensitive medium. Distributed fiber optic sensing is characterized
by high corrosion resistance, flexible and variable structure, high sensitivity, and distributed
measurement, which can monitor physical quantities such as temperature, strain, and vibra-
tion [1–3]. Among them,ϕ-OTDR is an important branch of distributed optical fiber sensing
technology. It can be potentially applied to peripheral intrusion detection [4], pipeline
structure health monitoring [5–7], and communication or power cable monitoring [8] due to
its long monitoring distance, wide frequency response range, high sensitivity, and multiple
intrusion monitoring. Therefore, high-performance and highly robust vibration positioning
is essential for ϕ-OTDR. Typically, ϕ-OTDR systems measure anomalous vibration events
on sensing fiber by detecting amplitude changes in the Rayleigh backscattered signals
(RBS) based on modulated optical pulses [9–11]. In this process, light propagation within
the system can introduce various types of noise, such as coherent fading noise [12] and
polarization fading noise [13], which can be denoised by optimizing the hardware com-
ponents. However, due to the high sensitivity of Rayleigh backscattered light, it is also
susceptible to external environmental noise [14]. These can seriously affect the system’s
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ability to detect external vibration events, limiting application scenarios requiring high
SNR, such as seismic detection [15] and marine acoustic detection [16]. Therefore, noise
removal has become a key step in improving the performance of ϕ-OTDR.

Currently, researchers have proposed several noise removal methods to improve the
performance of ϕ-OTDR systems. These methods can be categorized into two main groups:
one aims to enhance system performance by optimizing hardware components to minimize
the impact of optical fading noise; the other is to remove random noise interference by
processing the location information with the appropriate algorithms [17]. Zhang et al.
proposed to use of three acoustic-optic modulators (AOMs) for the ϕ-OTDR system to
generate three different frequencies of detection pulses, only increasing the number of
AOMs without changing the conventional ϕ-OTDR structure, effectively suppressed the
coherent fading and obtained a distortion-free output signal of over 98.85% [18]. Yu et al.
proposed a ϕ-OTDR system combining a polarization controller with a Mach-Zehnder
interferometer (MZI), and the SNR of the system was improved by 15 dB compared with
the original structure [19]. However, changing the system structure is quite effective for
the deterministic noise existing in the system, but for the background noise with strong
randomness, changing the system structure alone cannot effectively remove it. In order
to solve this problem, a variety of ϕ-OTDR denoising technologies have been proposed
from the algorithm. A wide variety of denoising algorithms are usually divided into the
transform domain denoising method and the spatial domain denoising method. Transform
domain denoising methods filter out noise at different frequencies by transforming it into
the frequency domain, such as moving average [20], continuous wavelet transform [21,22],
and empirical mode decomposition [23]. Qin et al. proposed a wavelet transform based
noise reduction method for fiber-optic sensing signals, where distributed vibration mea-
surements of 20 Hz and 8 kHz events could be detected with 5 ns optical pulses at a sensing
length of 1 km. With the rapid development of image denoising, spatial domain denoising
methods have also been applied to improve the SNR of ϕ-OTDR systems, such as Gaussian
filtering [24] and adaptive bilateral filtering [25]. He et al. applied the adaptive 2-D bilateral
filtering algorithm to denoise fiber sensing signals and successfully improved the SNR by
14 dB in the 27.6 km sensing fiber. The conventional signal denoising methods mentioned
above can remove the noise of the signal to a certain extent, but they cannot analyze the
complex background noise [26], and the denoised effect is not ideal for data with low SNR
and containing multiple vibration signals.

In this paper, a deep learning network based denoising method is proposed to im-
prove the SNR of position information in view of background noise interfering with the
positioning accuracy of the ϕ-OTDR system. The training data set of the denoising net-
work is created using computer simulation methods. First, the artificial training set is
fed into the CNN model for training and testing, and the noise distribution of the origi-
nal Rayleigh backscattered signals is learned through a multilayer convolutional neural
network. In addition, the network introduces downsampling and upsampling operations
and performs convolution on the downsampled sub-images, which greatly accelerates the
training speed of the network. Compared to the results of traditional denoising methods
such as wavelet denoising and Gaussian filtering, the experimental results show that the
proposed denoising scheme is more effective. The SNRs are improved to 37.84 dB, 37.11 dB,
and 37.31 dB in a series of experiments for single vibration events and multiple vibration
events, respectively, and the scheme is able to retain the vibration signal details well. Com-
pared with the traditional denoising scheme the localization accuracy of the system was
also improved.

2. Sensing Principles and FFDNet Network Structure
2.1. Sensing Principle of the ϕ-OTDR System

Conventional OTDR technology obtains the variation of fiber loss along the fiber path
by the variation of Rayleigh backscattered signals intensity. During the fiber fabrication
process, the silicon molecules move randomly in the molten state, resulting in an uneven
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refractive index distribution, which leads to optical scattering phenomena. The wavelength
of Rayleigh scattered light is the same as the incident light, and the part propagating
backward along the fiber is called Rayleigh backscattered light [27]. ϕ-OTDR is essentially
the same in principle as conventional OTDR, the difference being that a narrow linewidth
laser is required to select the light source to ensure good coherence of the pulsed light
injected into the fiber. There are usually two main types of ϕ-OTDR: direct detection
structures and coherent detection structures. In this work, a coherent detection structure
is adopted, and the output signal contains a series of key characteristics such as the
phase, frequency, and amplitude of the modulated signal. The ϕ-OTDR is sensitive to
external vibrations. When vibrations are applied to the sensing fiber, the RBS at the
location of vibration will change. By taking the difference between the vibrated and non-
vibrated Rayleigh backscattered traces, the location of vibration can be determined where a
significant distinction in curve amplitude is observed after differencing.

2.2. Network Architecture of FFDNet

In this section, we describe a convolutional neural network capable of being used for
image denoising, the FFDNet, which has the network structure shown in Figure 1. The first
layer of the FFDNet network is a reversible downsampling operator that reduces the size of
a noise image to four downsampled sub-images. The back part of the nonlinear mapping,
consisting of a series of 3 × 3-pixel convolutional kernels. Each layer consists of three types
of operations: Convolution (Conv), Rectified Linear Unit (ReLU), and Batch Normalization
(BN). Specifically, the first layer consists of “Conv + ReLU”, the middle layer uses “Conv +
BN + ReLU”, and the last layer contains only “Conv” for reconstructing the output. Zero
padding is used after each convolution to ensure that the output image of each layer has the
same scale as the input image. The last layer of the network uses an upsampling operation
as an inverse of the downsampling operation of the first layer, resulting in an estimated
clean image.
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Figure 1. The architecture of the proposed FFDNet for image denoising. The input image is reduced
to four sub-images. The output image is reconstructed from four denoised sub-images.

In terms of network structure, the FFDNet network model adds two sub-networks,
image downsampling and sub-pixel convolution, which correspond to the red dashed
box and green dashed box, respectively, in Figure 2. The downsampling factor is set to 2;
therefore, the original noisy image with sizes W × H × C is reshaped into sub-images with
sizes (W/2)× (H/2)× 4C through downsampling. Then, these sub-images are used as inputs
to the network, which reduces the computational load per training iteration and increases
the receptive field of the network for denoising the sub-images to some extent. After
downsampling, the image size is reduced to half of the original size, and the receptive field
of the network for the sub-image is equivalent to twice the size of the original image [28].
The increased receptive field can make the enabling range of image noise reduction larger,
and the noise reduction will become more uniform, which helps to solve the problem of
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difficult local noise removal [26,29]. In addition, the increase in the number of sub-images
increases the number of noise reduction network samples and enables more detailed noise
reduction features to be learned [30,31]. The FFDNet network also feeds noise levels into
the network for training along with the images and expands the noise levels to a noise level
map with the same dimensionality as the input image. The introduction of the noise level
map makes the network more flexible and increases the range of noise level perception
by the noise reduction network. All the denoised low-resolution sub-images are then
reconstructed into high-resolution denoised images by upsampling. Figure 2 provides a
more intuitive view of how the input image changes in the network after downsampling
and upsampling processing.
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Figure 2. Diagram of downsampling and upsampling.

The nonlinear mapping of the FFDNet network applies three operations, convolution
(Conv), BN, and ReLU activation functions, the principles of which are explained in detail
here. The convolutional layer consists of several convolutional units, each with parameters
optimized by a back-propagation algorithm [32]. The main purpose of the convolution
operation is to extract the features of the image, which are represented by each pixel in the
image in a combined or independent way, such as texture features and edge features [33].
During the training process, the parameters of each layer of the network directly affect the
input distribution of the next layer of the network, which increases the time complexity of
training the network. To speed up the training and convergence of the network, the batch
normalization (BN) method is used to process small batches of samples extracted from
sub-images [34].

The BN layer is located after the Conv layer and before the activation function. By
introducing operations such as normalization and shifting, it forcibly pulls the distribution
of the input data of each layer of the network back to a standard normal distribution with
a mean of 0 and a variance of 1. The specific process of BN is as follows: First, the mean
value and standard deviation of output data of the previous layer are calculated, which can
be expressed as

µ =
1
m

m

∑
i=1

xi (1)

σ2 =
1
m

m

∑
i=1

(xi − µ)2 (2)

where m is the batch size of this training sample. The obtained data are then normalized
and can be expressed as

x̂i =
xi − µ√
σ2 + ε

(3)

where ε is a constant very close to 0, added to avoid the denominator being zero. Finally,
the data obtained from the above normalization processing is reconstructed, which can be
obtained as follows.

yi = γx̂i + β = BNγ,β(xi) (4)

where γ and β are the learning parameters of BN. BN allows the input values of the
activation layer to fall in regions where the activation function is more sensitive to the input,



Photonics 2023, 10, 1114 5 of 12

which helps avoid the problem of gradient disappearance and speeds up the convergence
of the network.

The output of the upper layer is applied to the activation function to obtain the input
value of the next layer. The rectified linear unit (ReLU), as a nonlinear activation function,
can improve the nonlinear fitting ability of the neural network and enhance the expression
ability of the model, and the ReLU function can be expressed as

ReLU(x) = max(0, x) (5)

where x is the input number, and the gradient of ReLU can only take two values: 0 or 1,
when x is less than 0, the gradient is 0; when x is greater than 0, the gradient is 1. Thus the
concatenation of gradients of ReLU does not converge to zero, effectively alleviating the
problem of vanishing gradients [35].

3. FFDNet-Based Denoising Method

The FFDNet denoising network was first proposed by Zhang et al. and applied to
image denoising [31,36]. This section details the process of pre-processing the vibration
data, explains the dataset generation method, and elucidates the denoising process of the
FFDNet network.

3.1. Vibration Data Preprocessing

The data collected typically include a data matrix consisting of the number of Rayleigh
backscattered traces and the sampling points for each trace, with the horizontal direction
of each matrix representing the spatial domain and the vertical direction representing
the temporal domain [37]. The length of the data in the spatial domain is determined by
the length of the sensing fiber, and the length in the temporal domain is 0.05 s and con-
tains 500 Rayleigh backscattered traces, with each detection pulse acquiring one Rayleigh
backscattered trace, as shown in Figure 3.
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Figure 3. Data preprocessing flow chart.

The data matrix contains the amplitude information of the vibration signal, and the
data matrix is processed differentially according to the time series. In the case of no noise,
the difference results of all adjacent time series except the vibration position are zero,
and the position where the difference result is not zero is the vibration position located.
The principle of vibration location can be referred to in the following formula.

∆a = aitL − ait(L−1)
(1 ≤ i ≤ K) (6)

where K is the number of Rayleigh backscattered traces collected and L is the number of
points sampled on each trace. After differencing the data matrix, the differential matrix is
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obtained. Finally, the differential matrix is greyed out to obtain a greyscale image containing
the vibration information, which is processed by a specific image denoising algorithm to
achieve denoising of the Rayleigh backscattered traces. The grayscale images have two
fewer channels than RGB images, and the reduced dimensionality allows convolutional
neural networks to compute greyscale images faster. The processed data matrix for each
event only represents the evolution of intensity over time at different spatial locations,
while greyscale images are able to represent the relationship between intensity changes
over time and space. Therefore, converting the processed data matrix to greyscale images
can both preserve the useful signals in the data matrix intact and reduce the amount of
computing. The complete data pre-processing process is shown in Figure 3.

3.2. FFDNet Image Denoising Process

Figure 4 demonstrates the process of denoising using the FFDNet network, which is
divided into two parts: training and testing, each of which is described below.
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The data set used for training the network is generated by computer, including the
training set and the test set. In order to avoid overfitting or underfitting the trained network,
the data set used should not be too small or too large [38]. Therefore, after several tests,
the number of data sets was chosen to be 600 greyscale images, the size of the images was
set to be 200 × 200. In these grayscale images, bright stripes with a width of 20 pixels were
added to the dark background to simulate the ideal vibration signal of the ϕ-OTDR system.
It should be noted that since the vibration position is random in reality, the bright stripes
should also be generated at random positions. At the same time, in order to improve the
recognition ability of the network for multiple vibration events, the training set was divided
into three parts on average. One, two, and three bright stripes were added, respectively,
with a width of 20 pixels and random positions. The test set is also divided into three parts
to represent single and multiple events. The number of images in the training set and the
test set are divided into a ratio of 3:1. AWGN is used to simulate the background noise of
the ϕ-OTDR system, and AWGN was superimposed into the 600 gray images generated
and sent to the training network together.

FFDNet incorporates the concept of residual learning by treating the denoising net-
work as a residual module [32]. This approach involves directly transforming the network’s
output into a residual image, assuming that the clean image is x, the noisy image is y, and
the residual image is N, where N = y − x. By adopting this framework, FFDNet aims to
improve the performance of denoising. The goal of the network to be optimized is not
the mapping between the clean image and the network output but the mapping between
the real residual image and the network output. The use of residual learning allows the
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network to learn more easily and the loss function to be optimized more efficiently than
learning a clean image directly. The loss function can be expressed as follows.

L(θ)
1

2m∑m
j=1 ‖F

(
(yj, Mj); θ

)
− Nj‖2 (7)

where Nj denotes the noise estimate of the network output, yj denotes the noise im-
age, Mj denotes the noise level map, and m denotes the number of patches of the input.
The pre-processed noisy images are sent to the trained FFDNet model for noise estimation,
and a clean image is an output based on the noise estimated by the FFDNet model.

4. Experimental Results and Analysis
4.1. Experimental Setup and Parameter Initialization

The ϕ-OTDR system based on coherent detection was used to verify the performance
of the FFDNet network. A continuous laser of 1550 nm is generated from a laser with
a linewidth of 3 kHz. The isolator (ISO) is added behind the light source to prevent the
Rayleigh backscattered light from damaging the laser. The continuous laser is divided
into two channels through a 90:10 coupler: one light is used as the reference light, and the
other light is pulse modulated by an AOM with pulse width of 50 ns and repetition rate
of 10 kHz. The AOM also introduces a frequency shift of 150 MHz to the light frequency.
Then, the detection pulse is amplified by an erbium-doped fiber amplifier (EDFA) and
injected into the 1.4 km sensing fiber through a circulator. Vibration signals generated by
the piezoelectric ceramic transducer (PZT) are applied to the fiber. The backscatter signal
and reference light returned along the sensing fiber are converted into electrical signals
by a photodetector (BPD) through a 50:50 coupler and sampled by a data acquisition card
(DAQ), which sampling rate is set at 625 MHz. The experimental apparatus is shown
in Figure 5.

Photonics 2023, 10, x FOR PEER REVIEW 7 of 13 
 

 

background noise of the φ-OTDR system, and AWGN was superimposed into the 600 gray 
images generated and sent to the training network together. 

FFDNet incorporates the concept of residual learning by treating the denoising net-
work as a residual module [32]. This approach involves directly transforming the net-
work’s output into a residual image, assuming that the clean image is x, the noisy image 

is y, and the residual image is N, where N = y − x. By adopting this framework, FFDNet 
aims to improve the performance of denoising. The goal of the network to be optimized 
is not the mapping between the clean image and the network output but the mapping 

between the real residual image and the network output. The use of residual learning al-
lows the network to learn more easily and the loss function to be optimized more effi-
ciently than learning a clean image directly. The loss function can be expressed as follows. 

L(θ) = 
1

2𝑚
∑ ‖𝐹 ((𝑦𝑗 ,𝑀𝑗);𝜃) − 𝑁𝑗

𝑚
𝑗=1 ‖2 (7) 

where 𝑁𝑗 denotes the noise estimate of the network output, 𝑦𝑗 denotes the noise image, 

𝑀𝑗 denotes the noise level map, and m denotes the number of patches of the input. The 
pre-processed noisy images are sent to the trained FFDNet model for noise estimation, 
and a clean image is an output based on the noise estimated by the FFDNet model. 

4. Experimental Results and Analysis 

4.1. Experimental Setup and Parameter Initialization 

The φ-OTDR system based on coherent detection was used to verify the performance 

of the FFDNet network. A continuous laser of 1550 nm is generated from a laser with a 
linewidth of 3 kHz. The isolator (ISO) is added behind the light source to prevent the 
Rayleigh backscattered light from damaging the laser. The continuous laser is divided into 

two channels through a 90:10 coupler: one light is used as the reference light, and the other 
light is pulse modulated by an AOM with pulse width of 50 ns and repetition rate of 10 
kHz. The AOM also introduces a frequency shift of 150 MHz to the light frequency. Then, 

the detection pulse is amplified by an erbium-doped fiber amplifier (EDFA) and injected 
into the 1.4 km sensing fiber through a circulator. Vibration signals generated by the pie-

zoelectric ceramic transducer (PZT) are applied to the fiber. The backscatter signal and 
reference light returned along the sensing fiber are converted into electrical signals by a 
photodetector (BPD) through a 50:50 coupler and sampled by a data acquisition card 

(DAQ), which sampling rate is set at 625 MHz. The experimental apparatus is shown in 
Figure 5. 

 

Figure 5. (a) Schematic diagram of the φ-OTDR system (b) Physical diagram of the φ-OTDR system 
(Laser: narrow linewidth semiconductor laser; ISO: isolator; AOM: acoustic-optic modulator; EDFA: 

erbium-doped fiber amplifier; FUT: fiber under test. PZT: piezoelectric ceramic transducer; BPD: 
balanced photodetector; DAQ: data acquisition card; AFG: arbitrary function generator.). 

For the experimental validation, three piezoelectric ceramics were placed 100 m apart 
on 1.4 km sensing fiber to simulate disturbances at different locations in the real world. 

Figure 5. (a) Schematic diagram of the ϕ-OTDR system (b) Physical diagram of the ϕ-OTDR system
(Laser: narrow linewidth semiconductor laser; ISO: isolator; AOM: acoustic-optic modulator; EDFA:
erbium-doped fiber amplifier; FUT: fiber under test. PZT: piezoelectric ceramic transducer; BPD:
balanced photodetector; DAQ: data acquisition card; AFG: arbitrary function generator.).

For the experimental validation, three piezoelectric ceramics were placed 100 m apart
on 1.4 km sensing fiber to simulate disturbances at different locations in the real world.

In order to further verify the ability of the FFDNet network to identify different vibra-
tion intensities, we used a signal generator to apply different voltages to different piezo-
electric ceramics as a means of adjusting the strength of the vibration signal to determine
whether the FFDNet can accurately remove noise. At the same time, the proposed scheme
is compared with the classical wavelet denoising scheme and Gaussian filtering scheme.

The system structure of FFDNet was described in Section 2.2 and is shown in Figure 1.
Its network depth was set to 15, and the Adam algorithm was used to minimize the loss
function during training, with its hyperparameters set to default values. We trained the
network for 80 epochs, and in order to make the network converge faster and more sta-
ble, we used a decaying learning rate by setting the initial learning rate to 1 × 103 and
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decreasing it by a factor of 0.1 every 30 epochs. The detailed hyperparameter initialization
for FFDNet is shown in Table 1. The hardware environment used to train the FFDNet net-
work model was a computer with a 10-core Intel(R) Core(TM) i9-10850K CPU @ 3.60 GHz,
16GBRAM, and an NVIDIA RTX3070 GPU. The software environment is a Windows 10
operating system. Training is based on a Python 3.6 environment and the PyTorch deep
learning framework.

Table 1. FFDNet hyperparameter initialization.

Hyperparameters Initial Value

Weight Initialization 1
Bias Initialization 0

Learning Rate 0.001 (0.1× decrease for every 30 epoch)
Epoch 80

Batch size 128

4.2. Comparison and Analy{Citation}sis of Experimental Results

The experimental setup for this experiment is shown in Figure 5. Piezoelectric ceramics
were placed at 1170 m, 1270 m, and 1370 m, named PZT No.1, PZT No.2, and PZT No.3 by
distance domain, respectively. In order to further demonstrate the robustness of FFDNet
network denoising, the experiment was divided into three parts: the first experiment only
applied 200 Hz vibration to PZT No.1; the second experiment selected PZT No.1 and
PZT No.2 to apply 200 Hz vibration at the same time, the voltage was set to 3v and 2v,
respectively; the third experiment applied 200 Hz vibration to three PZTs at the same time,
the voltage was set to 1v, 3v and 2v, respectively. The effectiveness of the FFDNet network
in single and multi-event denoising is verified by these experiments. Figure 6a–c shows
the results of the original 500 Rayleigh backscattered traces after differencing. The peaks
at 1170 m, 1270 m, and 1370 m, which correspond to the bright stripes in the greyscale
image. However, as can be seen from the images, although the ϕ-OTDR system based on
coherent detection was able to locate our artificially imposed vibration signal, the composite
background noise at 1080~1120 m was still at a high level, leading to a pseudo peak in this
range. The SNR dropped to around 8 dB for all three experiments. The SNR of the location
information is described as

SNR = 20log10

(
Vsignal/RMS(V noise)

)
(8)

where Vsignal and RMS(Vnoise) are the energy values of the signal voltage and the back-
ground noise voltage, respectively [39,40].
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and (c) multi-event.

As shown in Figure 7, the trained FFDNet network effectively reduced the noise in
the image. Despite this noise reduction, the vibration signal at the designated location
remained intact. The figure demonstrates that the original vibration width was preserved
for both single and multiple vibration events. This demonstrates that FFDNet can accurately
identify vibration signals in complex environments and remove environmental noise with a
high degree of robustness while retaining detailed information about the vibration signals.



Photonics 2023, 10, 1114 9 of 12

Photonics 2023, 10, x FOR PEER REVIEW 9 of 13 
 

 

 

Figure 6. Differential processing of raw Rayleigh backscatter traces: (a) single-event, (b) dual-event, 

and (c) multi-event. 

As shown in Figure 7, the trained FFDNet network effectively reduced the noise in 
the image. Despite this noise reduction, the vibration signal at the designated location 
remained intact. The figure demonstrates that the original vibration width was preserved 

for both single and multiple vibration events. This demonstrates that FFDNet can accu-
rately identify vibration signals in complex environments and remove environmental 

noise with a high degree of robustness while retaining detailed information about the vi-
bration signals. 

 

Figure 7. Differential Rayleigh backscattered traces denoised by the trained FFDNet network: (a) 
single-event, (b) dual-event, and (c) multi-event. 

After verifying the feasibility of FFDNet network denoising, the traditional denoising 

methods were also used to denoise the original differential data as a comparison with 
FFDNet network. Figures 8 and 9 show the results after wavelet denoising and Gaussian 
filtering, respectively. Among the traditional denoising methods, they are generally di-

vided into spatial domain methods and transform domain methods. Gaussian filter is a 
typical spatial domain method, while the most representative of the transform domain 
method is wavelet denoising. The wavelet denoising method carries out wavelet trans-

form of the original signal, sets a coefficient threshold, i.e., below the threshold as a useful 
signal to retain and above the threshold as noise to remove, and finally reconstructs the 
signal to obtain the final result. We used the bior2.2 function as the wavelet basis function 

to decompose the original signal into four layers and filter it layer by layer with the thresh-
old value. The original differential Rayleigh backscattered traces of the three experiments 

were denoised by wavelet denoising. The final denoised results of the three experiments 
are shown in Figure 8a–c. After wavelet denoising, the SNR is improved to about 11 dB, 
while the details of the original signal are preserved. However, although the SNR of the 

system is improved after wavelet denoising, there are still obvious pseudo peaks between 
1080 and 1120 m. The other traditional denoising method we have chosen is Gaussian 
filtering. It is the process of weighted averaging over the entire image, where the value of 

each pixel point is obtained by a weighted average of its own and other pixel values in its 
neighborhood. The specific operation of Gaussian filtering is that a Gaussian filter tem-
plate is used to scan each pixel in the image, and use the weighted average gray value of 

the pixels in the neighborhood determined by the template to replace the value of the 
central pixel of the template. The original differential Rayleigh backscatter traces from 

these three experiments were denoised by Gaussian filter using a 5 × 5 template, and the 
final denoised results of the three experiments are shown in Figure 9a–c, where the SNR 

Figure 7. Differential Rayleigh backscattered traces denoised by the trained FFDNet network:
(a) single-event, (b) dual-event, and (c) multi-event.

After verifying the feasibility of FFDNet network denoising, the traditional denoising
methods were also used to denoise the original differential data as a comparison with
FFDNet network. Figures 8 and 9 show the results after wavelet denoising and Gaussian
filtering, respectively. Among the traditional denoising methods, they are generally divided
into spatial domain methods and transform domain methods. Gaussian filter is a typical
spatial domain method, while the most representative of the transform domain method
is wavelet denoising. The wavelet denoising method carries out wavelet transform of
the original signal, sets a coefficient threshold, i.e., below the threshold as a useful signal
to retain and above the threshold as noise to remove, and finally reconstructs the signal
to obtain the final result. We used the bior2.2 function as the wavelet basis function to
decompose the original signal into four layers and filter it layer by layer with the threshold
value. The original differential Rayleigh backscattered traces of the three experiments
were denoised by wavelet denoising. The final denoised results of the three experiments
are shown in Figure 8a–c. After wavelet denoising, the SNR is improved to about 11 dB,
while the details of the original signal are preserved. However, although the SNR of the
system is improved after wavelet denoising, there are still obvious pseudo peaks between
1080 and 1120 m. The other traditional denoising method we have chosen is Gaussian
filtering. It is the process of weighted averaging over the entire image, where the value
of each pixel point is obtained by a weighted average of its own and other pixel values
in its neighborhood. The specific operation of Gaussian filtering is that a Gaussian filter
template is used to scan each pixel in the image, and use the weighted average gray value
of the pixels in the neighborhood determined by the template to replace the value of the
central pixel of the template. The original differential Rayleigh backscatter traces from these
three experiments were denoised by Gaussian filter using a 5 × 5 template, and the final
denoised results of the three experiments are shown in Figure 9a–c, where the SNR of the
system is improved to about 11 dB. Similarly, it can be seen from the result that although
the SNR of the system is improved compared with that without denoising, the pseudo
peaks still exist within 1080~1120 m. For the two traditional denoising methods, both the
transform domain method and the spatial domain method will have the phenomenon of
not being able to remove the pseudo peaks, which does not fully meet the needs of the
ϕ-OTDR system. The experimental results have proven that compared to the deep learning
denoising methods, the traditional denoising methods still exist some limitations.

Photonics 2023, 10, x FOR PEER REVIEW 10 of 13 
 

 

of the system is improved to about 11 dB. Similarly, it can be seen from the result that 
although the SNR of the system is improved compared with that without denoising, the 

pseudo peaks still exist within 1080~1120 m. For the two traditional denoising methods, 
both the transform domain method and the spatial domain method will have the phenom-
enon of not being able to remove the pseudo peaks, which does not fully meet the needs 

of the φ-OTDR system. The experimental results have proven that compared to the deep 
learning denoising methods, the traditional denoising methods still exist some limitations.  

 

Figure 8. Differential Rayleigh backscattered traces after wavelet denoising: (a) single-event, (b) 
dual-event, and (c) multi-event. 

 

Figure 9. Differential Rayleigh backscattered traces after Gaussian filtering: (a) single-event, (b) 
dual-event, and (c) multi-event. 

The comparison of SNR improvement of the three denoising methods is shown in 

Figure 10. It can be seen that the denoising scheme based on FFDNet network greatly 
improves the SNR of the system, up to 37.84 dB. In general, compared with the traditional 
denoising methods, the proposed denoising scheme has the characteristics of high SNR 

and high robustness and has high potential in practical applications. 

 

Figure 8. Differential Rayleigh backscattered traces after wavelet denoising: (a) single-event,
(b) dual-event, and (c) multi-event.



Photonics 2023, 10, 1114 10 of 12

Photonics 2023, 10, x FOR PEER REVIEW 10 of 13 
 

 

of the system is improved to about 11 dB. Similarly, it can be seen from the result that 
although the SNR of the system is improved compared with that without denoising, the 

pseudo peaks still exist within 1080~1120 m. For the two traditional denoising methods, 
both the transform domain method and the spatial domain method will have the phenom-
enon of not being able to remove the pseudo peaks, which does not fully meet the needs 

of the φ-OTDR system. The experimental results have proven that compared to the deep 
learning denoising methods, the traditional denoising methods still exist some limitations.  

 

Figure 8. Differential Rayleigh backscattered traces after wavelet denoising: (a) single-event, (b) 
dual-event, and (c) multi-event. 

 

Figure 9. Differential Rayleigh backscattered traces after Gaussian filtering: (a) single-event, (b) 
dual-event, and (c) multi-event. 

The comparison of SNR improvement of the three denoising methods is shown in 

Figure 10. It can be seen that the denoising scheme based on FFDNet network greatly 
improves the SNR of the system, up to 37.84 dB. In general, compared with the traditional 
denoising methods, the proposed denoising scheme has the characteristics of high SNR 

and high robustness and has high potential in practical applications. 

 

Figure 9. Differential Rayleigh backscattered traces after Gaussian filtering: (a) single-event,
(b) dual-event, and (c) multi-event.

The comparison of SNR improvement of the three denoising methods is shown in
Figure 10. It can be seen that the denoising scheme based on FFDNet network greatly
improves the SNR of the system, up to 37.84 dB. In general, compared with the traditional
denoising methods, the proposed denoising scheme has the characteristics of high SNR
and high robustness and has high potential in practical applications.
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5. Conclusions

In this paper, an FFDNet based denoising method is proposed to improve the SNR
of vibration measurements in ϕ-OTDR systems. The noise removal of multiple vibration
events at different locations is achieved, and the SNR of the vibration source’s location
information is improved to 37.84 dB, 37.11 dB, and 37.31 dB in single-event, dual-event,
and multi-event experiments, respectively, which verifies the performance of the proposed
denoising method. Compared with transform domain denoising methods and spatial
domain denoising methods (such as wavelet denoising and Gaussian filtering), the deep
learning based denoising method (FFDNet) can better improve the SNR system and more
effectively preserve the vibration signals details. Therefore, the FFDNet based denoising
method has proved to be a potential solution to improve the performance of the ϕ-OTDR
system and enhance its ability to recognize multi-vibration events.
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