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Abstract: We present a novel approach to generate Bessel–Gauss modes of arbitrary integer order
and well-defined optical angular momentum in a gradient index medium of transverse parabolic
profile. The propagation and coherence properties, as well as the quality factor, are studied using
algebraic techniques that are widely used in quantum mechanics. It is found that imposing the well-
defined optical angular momentum condition, the Lie group SU(1, 1) comes to light as a characteristic
symmetry of the Bessel–Gauss beams.
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1. Introduction

Orbital angular momentum of light—more specifically, the orbital angular momentum
about the axis of propagation [1]—has remained a lively and growing research topic over
the last 30 years (see, for example, [1–3]). The paper that gave rise to this activity [4]
communicated the idea that laser beams could carry orbital angular momentum and
that this momentum would have measurable effects in the laboratory. Very early, the
observation of angular momentum transfer from vortex beams to absorptive particles was
reported [5], and the orbital angular momentum of light went from assumption to reality,
forever changing the way we understand light. This fact arouses immediate interest in
the study of the subject [6–9], specifically in the description, production, and detection of
modes with well-defined orbital angular momentum [10–17]. This property of light is also
known as optical angular momentum and goes by the acronym OAM (although there is no
universal agreement on what the ‘O’ stands for [1], as it can mean both orbital and optical).

OAM beams find natural applications in optical communications [18] and the trans-
fer of information [19], but are also useful in the quantum domain since OAM can be
entangled [20]. Their ability to induce mechanical torque in absorptive systems makes
them a critical ingredient in optical micro-manipulation, micro-machining, and optical
tweezers [21].

Notably, the focusing and collimating properties of parabolic media allow propagation
of vortex beams [16,22–25]. Indeed, the modal delay in the multiplexing of signals is greatly
reduced using parabolic optical fibers [26] since they tolerate more than two modes with
the same propagation constant (effective refractive index).

Among the most studied vortex beams, the Laguerre-Gauss, Bessel, and Bessel–Gauss
modes stand out because their mathematical structure is well known, with which relatively
simple theoretical models of their behavior are built, and because their practical realization
seems viable in the laboratory [4,7,27–34].
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Mathematically, Laguerre-Gauss modes constitute an orthonormal set that is very
convenient to span the entire space of paraxial modes. There exist diverse techniques
for their production in practice, including spiral plates, computer-generated diffractive
gratings, mode converters, and spatial light modulators, among others [2].

Bessel modes, on the other hand, are non-diffractive and self-healing beams that
preserve their transversal structure and reconstruct themselves after passing an obstacle in
propagation events. In particular, the zero-order Bessel mode was found to be a solution
of the Helmholtz equation in free space [28]. Indeed, it is a continuous superposition
of plane waves for which the wave numbers form a cone around the optical axis. The
non-diffraction phenomenon arises because the wave vectors have the same longitudinal
component, so the plane wave components undergo the same phase shift, and identical
intensity distributions are produced as the beam propagates along the optical axis.

However, the Bessel modes are not square-integrable, so their production would
require an infinite amount of energy in practice. This limitation has been faced with the
production of light beams whose intensity distribution acquires the Bessel profile in a
finite circular area but which vanishes elsewhere in the transverse plane [29]. These beams
retain some of the most important propagation properties that characterize Bessel beams, at
least within a finite distance in the longitudinal direction. For example, they self-replicate
by paraxial transformations that can be generated by either free-space propagation, thin
lensing, parabolic media, or pure magnifiers [35]. In any case, although the production of
Bessel beams can be described analytically, their experimental realization is far from simple.

Looking for analytical alternatives to the Bessel modes, it has already been pro-
posed that the field amplitude profile can be factorized as a Bessel function and a Gaus-
sian envelope. The Fresnel diffraction integral then led to the zero-order Bessel–Gauss
mode in the paraxial approximation [30], a result verified in the laboratory by means of
laser cavities [36]. On the other hand, within a bidirectional travel plane wave scheme,
Bessel–Gauss modes of arbitrary integer order can be studied in terms of the exact so-
lutions of the wave equation [37]. They can also be constructed as superpositions of
Gaussian modes [30]. In the laboratory, ring arrays of Gaussian beams with wave vectors
forming a cylinder or a cone around the propagation axis produce modified and general-
ized Bessel–Gauss modes, respectively [31]. Due to their non-diffractive properties, the
Bessel–Gauss modes allow the design of secure communication protocols [38,39] and are
more resilient than the Laguerre-Gauss modes under high-level turbulence conditions [40].

In this work, we study Bessel–Gauss modes of arbitrary integer order with well-
defined OAM, propagating in a gradient index medium with a parabolic inhomogeneity in
the transverse direction. Our approach is algebraic and translates notions that are quite
natural in quantum mechanics to the field of optics.

The most striking feature of our approach is to find that not only the profile and the
way the BG modes propagate along the z-axis but also their quality is determined by the
underlying symmetry of well-defined OAM, which is linked to the Lie group SU(1, 1).

In Section 2, we analyze the paraxial equation for transverse parabolic media. We show
that the well-defined angular momentum condition naturally leads to the solution space
being interconnected by the generators of the su(1, 1) Lie algebra. Section 3 is addressed to
show that the BG modes are generalized su(1, 1) coherent states and explore their coherence
properties and quality factors in algebraic terms. A discussion of our results is given in
Section 4.

At the end of the paper, we add an appendix with detailed calculations where it is
shown that the subspaces of well-defined OAM are irreducible representation spaces for
the Lie algebra su(1, 1).



Photonics 2023, 10, 1162 3 of 24

2. Paraxial Wave Equation for Parabolic Media

The paraxial wave equation[
− 1

2k2
0n0

(
∂2

∂x2 +
∂2

∂y2

)
+ n0

Ω2

2
r2

]
U =

i
k0

∂

∂z
U, Ω2r2 � 1, (1)

describes the z-propagation of electromagnetic waves through weakly inhomogeneous
media with refractive index n2(r) = n2

0
(
1−Ω2r2) [16,24,41,42]. The quantities n0 ≥ 1 and

Ω ≥ 0 represent the refractive index at the optical axis and the strength of the medium
inhomogeneity, respectively. In turn, r ≡ ‖r‖ =

√
x2 + y2 denotes the norm of the position-

vector r ∈ R2, which is transverse to the propagation axis. From now on we write r in the
polar form, with ρ ≥ 0 and θ ∈ [−π, π).

Equation (1) holds if one assumes that the electric field is of the form E(r, z) =
E0ei(k0n0z−ωt)U(r, z), with E0 the field polarization, k0 = ω

c the wave number in free space,
and ω = 2πν the angular frequency. For Ω 6= 0, the complex amplitude U(r, z) represents a
field mode that is guided within the inhomogeneous medium n2(r). The limit Ω→ 0 leads
to the homogeneous case n2(r) = n2

0. At such a limit, the Rayleigh range zR = 1
2 k0n0w2

0
usually denotes the distance from the focal plane (z = z0) over which a Gaussian beam
increases its cross-sectional area by a factor of two. In this work, we follow [16,42] and set
ΩzR = 1 to consider guided modes with constant beam width w0.

2.1. Space of Solutions (Stationary and Guided LG Modes)

It may be shown [16] that the functions

Up
` (r, z) =

ei`θ

√
2π

exp
[
−i
(

z−z0
zR

)
β

p
|`|

]
Φp
|`|(ρ), ` ∈ Z, p = 0, 1, 2, . . . , (2)

are square-integrable solutions of the paraxial wave Equation (1) for ΩzR = 1, where

β
p
|`| = |`|+ 2p + 1 (3)

stands for the propagation constant, and

Φp
|`|(ρ) =

2(−1)p

w0

√
Γ(p + 1)

Γ(|`|+ p + 1)

[√
2ρ

w0

]|`|
L(|`|)

p

(
2ρ2

w2
0

)
exp

(
− ρ2

w2
0

)
(4)

is the mode amplitude. In the above expressions, z0 defines the origin of the longitudinal
coordinate, L(α)

n (x) is the associated Laguerre polynomial of degree n and order α [43], and
w0 stands for the (constant) beam width.

The mode amplitude (4) is defined on the plane transverse to the propagation direction
as a function of the polar radial coordinate ρ and is weighted by the Gaussian distribution
of standard deviation σ = w0/

√
2, i.e., Φp

|`|(ρ) represents the electric field amplitude of a
stationary Laguerre-Gauss mode.

The longitudinal and polar phases appearing in Equation (2) supply dynamical prop-
erties to the solutions Up

` (r, z); they refer to the propagation of the beam and the helicity
of the mode, respectively. The propagation occurs in the direction in which the variable z
increases. In turn, the orientation of the helicity is based on the polar phase increments:
if these are counterclockwise, the helicity is right-handed. Otherwise (clockwise), it is
left-handed. The former is characterized by ` > 0, and the latter by ` < 0. Modes with null
orbital angular momentum (` = 0) do not exhibit helicity.

Please note that the helically phased modes Up
` and Up

−` have the same amplitude and
longitudinal phase since neither the function (4) nor the propagation constant (3) depend
on sgn(`).
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From now on, the functions Up
` (r, z) introduced in (2) will be referred to as guided

Laguerre-Gauss modes (LG modes for short).
In applications where a Gaussian distribution is the desired profile, the beam propaga-

tion factorM2 (also called beam quality factor) is the most important feature describing the
quality of the beam. It was introduced to characterize laser beams by comparing their beam
parameter product (waist-radius × divergence) with that of a Gaussian beam [44,45]. As a
parameter, it determines how close a given light field is to an ideal Gaussian beam [46,47].

For the LG modes (2), the factorM2 coincides with the propagation constant (3). The
lowest value β0

0 = 1 refers to the fundamental LG mode U0
0 , which represents a Gaussian

beam. Higher-order modes Up
` may be grouped according to the nonnegative integer

n = |`|+ 2p, for which we write β
p
|`| ≡ β(n) = n + 1. In this form, ` and p can be combined

in n + 1 different ways to get the same value

β
p
|`| = β0

|−n| = β1
|−n+2| = · · · = β1

n−2 = β0
n︸ ︷︷ ︸

n+1 terms

≡ β(n) = n + 1; n = |`|+ 2p = fixed .

That is, there are n + 1 modes Up
` with exactly the same propagation constant β

p
|`| =

β(n). In other words, β
p
|`| is (n + 1)-fold degenerate for n = |`|+ 2p = fixed.

For practical purposes, one may identify the ensemble {β(n)} with the energy eigen-
values of a two-dimensional quantum harmonic oscillator (2D quantum oscillator for short),
see Figure 1.

Figure 1. The propagation constant (3) is (n + 1 )-fold degenerate for n = |`|+ 2p = fixed. In such a
case we write β

p
|`| ≡ β(n) = n + 1 (horizontal arrays). For ` = fixed, the admissible values of β

p
|`| are

equidistant, with steps of two units (vertical arrays). In general, the entire set {βp
|`|} may be counted

by a one-to-one correspondence with the energy spectrum of a two-dimensional harmonic oscillator
in the quantum domain.

The set {Up
` } is orthonormal and compete according to the inner product∫ π

−π

∫ ∞

0
U p∗
` (r, z)Uq

l (r, z)ρdρdθ = δ`,lδp,q, (5)

where u∗ stands for the complex-conjugate of u ∈ C. Hence, the LG modes (2) form an
orthonormal basis for the solution spaceH of the paraxial wave Equation (1). We formally
write

H = span{Up
` (r, z); ` ∈ Z, p = 0, 1, 2, . . .}.

Given (5), each of the functions Up
` (r, z) represents a collimated beam that carries finite

transverse optical power as it propagates along the z-axis [16].
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2.2. Subspaces with a Well-Defined Optical Angular Momentum

It is convenient to classify the LG modes into hierarchies of well-defined optical
angular momentum ` ∈ Z, which are defined as the solution subspaces

H ⊃ H` = span{Up
` (r, z); ` = fixed, p = 0, 1, 2, . . .}, ` ∈ Z.

HierarchiesH` are infinite-dimensional and satisfyH =
⊕

`H`. They are character-
ized by a denumerable set of propagation constants β

p
|`| that are equidistant, with steps of

two units β
p+1
|`| − β

p
|`| = 2, see Figure 1.

Considering that LG modes are helically phased, we may writeH− =
⊕

`<0H`,H+ =⊕
`>0H`, and H0 = H`=0 for the solution subspaces with clockwise, counterclockwise

and null helicity, respectively. Then, the entire space of solutions is also written as H =
H−⊕H0 ⊕H+.

Hereafter we work on the elements of the hierarchyH`. Our interest is addressed to
manipulate the coherence properties of electromagnetic modes with a well-defined optical
angular momentum. With this in mind, the association of the ensemble {βp

|`|} with the
energy spectrum of the 2D quantum oscillator is very useful.

By translating the algebraic structure of contemporary quantum mechanics to study
the optical system we are dealing with, we have a beautiful tool at hand for designing
LG-mode superpositions on demand. In particular, we look for the optimization of the
coherence properties of wave packets with a well-defined optical angular moment.

We have successfully carried out this translation; details are given in Appendix A.
There, a series of ladder operators is constructed such that a certain LG mode Up

` (r, z) is
connected to another Uq

l (r, z), where p and q, and ` and l, are different in general.
The most striking feature of the algebraic formalism developed in Appendix A is that

the symmetry underlying the hierarchyH` is associated with the su(1, 1) Lie algebra:

[L−` ,L+` ] = 2L`, [L`,L±` ] = ±L
±
` ,

the generators of which are defined as follows:

L−` = ei2 (z−z0)
zR

1
√

ρ
L−`
√

ρ, L+` = e−i2 (z−z0)
zR

1
√

ρ
L+
`

√
ρ, L` =

1
√

ρ
L`
√

ρ.

Here, L±` and L` are the second-order differential operators

L±` =
1
2

(w0

2

)2
[

∂2

∂ρ2 −
(`+ 1

2 )(`−
1
2 )

ρ2

]
∓ 1

2
ρ

∂

∂ρ
+

1
2

ρ2

w2
0
∓ 1

4
,

and

L` =
1
2

(w0

2

)2
[
− ∂2

∂ρ2 +
(`+ 1

2 )(`−
1
2 )

ρ2

]
+

1
2

ρ2

w2
0

.

Note that L` coincides with the radial part of the energy observable of a 2D quantum
oscillator in position representation.

The LG mode Up
` (r, z) is an eigenfunction of L` with eigenvalue λp = 1

2 β
p
|`| =

|`|
2 + p+

1
2 (to simplify the notation, we have made the dependence of λp on ` implicit). The ensemble

{λp}mimics the energy spectrum (shifted by |`|2 ) of the one-dimensional harmonic oscillator
in quantum mechanics, see Table 1. In turn, L±` are ladder operators of the LG modes, i.e.,
the action of L±` on Up

` (r, z) produces an eigenfunction of L` with eigenvalue λp ± 1 =
λp±1.
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Table 1. The Laguerre-Gauss modes Up
` (r, z) are eigenfunctions of L` with eigenvalue λp = |`|

2 + p +
1
2 (it is shown only the information for the first three values of p and |`|). The number p of nodes
admitted by the mode along the ρ-axis defines both λp and the propagation constant β

p
|`| = 2λp, and

thus determines the way the mode propagates along the z-axis.

λp ` = 0 ` = ±1 ` = ±2 ` = ±3

λ0 1/2 1 3/2 2

λ1 3/2 2 5/2 3

λ2 5/2 3 7/2 4

λ3 7/2 4 9/2 5

The nonnegative integer p corresponds to the number of nodes admitted by the LG
mode along the ρ-axis, i.e., p refers to the behavior of the mode on the plane transverse
to the propagation direction. Although the latter is stationary, the value of p defines the
propagation constant (eigenvalue) β

p
|`| = 2λp since ` = const in H` and thus determines

the way the mode propagates along the z-axis. Therefore, it is appropriate to find a way to
determine p in the basis elements ofH`.

In Appendix A, we have introduced a differential operator n̂p, called the harmonic-
number (number for short), which acts on the transverse (stationary) part of the LG modes
and returns the corresponding number of nodes, as requested. In this form, according to
the number drawn by n̂p, the eigenvalues (propagation constants) λp = 1

2 β
p
|`| define the

fundamental harmonic (p = 0) as well as the higher harmonics (p ≥ 1) in any superposition
of LG modes. The role that n̂p plays in the description of light beams with well-defined
optical angular momentum is of fundamental importance, as we are going to see.

3. Guided Bessel–Gauss Modes as Generalized Coherent States

Once we have incorporated the algebraic structure of quantum mechanics in the
description of light beams with well-defined optical angular momentum, it is acceptable
to translate some quantum mechanical concepts to the arena of electromagnetic waves.
Of course, the latter are still defined by the Maxwell theory, regardless of the algebraic
techniques used in their analysis, which seem more natural in quantum theory.

Of particular interest, the notion of coherence introduced by Glauber in quantum
optics [48] is intrinsically algebraic, so it has been generalized to encompass systems other
than light (for a recent review, see [49]).

In what follows, we adhere to the more general notion of a coherent state: it is a linear
superposition that exhibits some specific properties that are determined by the ‘user’ based
on the phenomenology under study or on theoretical arguments [49]. With this in mind,
we look for superpositions of LG modes with a well-defined optical angular momentum.

According to Barut and Girardello [50], the normalized solution of the eigenvalue
equation

L−` V`(r, z; ξ) = ξ V`(r, z; ξ), ξ = τe−iφ, τ ≥ 0, φ ∈ [−π, π), (6)

defines a coherent state for the Lie algebra we are dealing with.
To solve Equation (6), we first expressV`(r, z; ξ) in terms of the basis ofH`,

V`(r, z; ξ) =
∞

∑
p=0

cpUp
` (r, z), cp ∈ C.

The coefficients cp are defined by the action of the ladder operator L−` on the LG
modes Up

` (r, z), so the precise form of V`(r, z; ξ) is directly associated with the symmetry
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underlying the hierarchyH`, which is characterized by the Lie algebra su(1, 1). The explicit
calculation yields

V`(r, z; ξ) =

[
2τ|`|

πw2
0 I|`|(2τ)

]1/2[√
2ρ

w0

]|`|
ei`θe−

i
zR

(|`|+1)(z−z0)e
− ρ2

w2
0 Λ`(ρ, z, ξ),

where Iν stands for the modified Bessel function [43], and Λ`(ρ, z, ξ) is the superposition

Λ`(ρ, z, ξ) =
∞

∑
p=0

(
τe−iφe−i 2

zr (z−z0)eiπ
)p

(|`|+ p)!
L(|`|)

p

(
2ρ2

w2
0

)
.

Further simplification is achieved using the series and connection formulas [43,51]

Jν(2
√

uv)ev(uv)−
ν
2 =

∞

∑
k=0

vk

(k + ν)!
L(ν)

k (u), Jν(ue±iπ/2) = e±iνπ/2 Iν(u), (7)

where Jν denotes the Bessel function of the first kind. We finally write

V`(r, z; ξ) = exp
{

i
[
`θ + |`|

2 φ− (z−z0)
zR

+ τ sin
(

φ + 2
zR
(z− z0)

)]}
×
[

2
πw2

0 I|`|(2τ)

]1/2
exp

[
− ρ2

w2
0
− τ cos

(
φ + 2

zR
(z− z0)

)]
× I|`|

(
2
√

2τ
w0

ρe−
i
2 φe−

i
zR

(z−z0)
)

.

(8)

Hereafter the functions (8) will be referred to as Bessel–Gauss coherent states (BG coher-
ent states or BG modes for short). We also simplify notation by making z0 = 0.

Next, we clarify the role played by the real and imaginary parts of the eigenvalue
ξ = τe−iφ in the description of the BG modes.

• Fundamental Gaussian mode. Using the properties of the modified Bessel function
Iν [43,51] one has

lim
ξ→0

V`(r, z; ξ) =


√

2
πw2

0
exp

(
−i z

zR

)
exp

(
− ρ2

w2
0

)
, ` = 0

0, ` 6= 0
. (9)

That is, for ξ = 0, there is only one regular solution to the Barut-Girardello
Equation (6), given by the fundamental Gaussian mode V`=0(r, z; 0) = Up=0

`=0 (r, z), which is
a coherent state by definition.

• Modified Bessel and Bessel profiles. For ξ 6= 0 the functions V`(r, z; ξ) consist of
a modified Bessel function I|`| modulated by a Gaussian distribution of standard
deviation σ = w0/

√
2. The latter accelerates the radial decay of the beam. Depending

on the eigenvalue-phase φ, the function I|`| is interchanged by J|`|, and vice versa (the
same occurs at specific points along the propagation axis, see details below).

For example, making φ = 0, the profile of V`(r, z; τ) is determined by the modified
Bessel function I|`| in (8). However, from the connection formula included in Equation (7),
we see that φ = −π replaces I|`| with the Bessel function J|`| in (8). Thus, we have

V`(r, z;−τ) =

[
2

πw2
0 I|`|(2τ)

]1/2
exp

{
i
[
`θ − z

zR
− τ sin

(
2z
zR

)]}
× exp

[
− ρ2

w2
0
+ τ cos

(
2z
zR

)]
J|`|
(

2
√

2τ
w0

ρe−i z
zR

)
.

(10)
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This result shows that the phase φ of the complex eigenvalue ξ 6= 0 characterizes the Bessel
profile of our coherent states.

• Contribution of the p-th harmonic. The most likely eigenvalue λp occurring in the
superposition V`(r, z; ξ) is determined by the expectation value 〈L`〉 = 〈n̂p〉+ 1

2 (|`|+
1). The helicity parameter ` is fixed, so the relevant information is encoded in the
expectation value of the number operator n̂p. The straightforward calculation yields

〈n̂p〉 =
τ I|`|+1(2τ)

I|`|(2τ)
. (11)

Figure 2a shows the behavior of 〈n̂p〉 as a function of |ξ| = τ. In general, it can be seen
that 〈n̂p〉 decreases quadratically with τ < 1 but increases linearly with τ > 1. The
latter is easily verified from the properties of the modified Bessel function Iν [43], so
one has

〈n̂p〉τ�1 ≈
(

1
|`|+1

)
τ2, 〈n̂p〉τ�1 ≈ τ. (12)

(a) Expected value of the number operator n̂p (b) Expected value of the OAM operator L`

Figure 2. The quality of the Bessel–Gauss modes V`(r, z; ξ) can be manipulated in terms of the
parameter |ξ| = τ. The harmonics 〈n̂p〉 = p occur at smaller values of τ for smaller values of |`| (a).
The fundamental harmonic (p = 0) is only permitted for ` = 0. Therefore, the lowest eigenvalue
〈L`〉 = λ0 = 1

2 (|`|+ 1) never occurs in higher BG modes (b). The BG modes are as close to the ideal
Gaussian beam as the expected value 〈L`〉 is close to λ0, which occurs in the vicinity of τ = 0. The
color-code is as follows: ` = 0 (continuous, narrow-red), ` = 1 (dashed, blue), ` = 2 (continuous,
wide-orange), and ` = 3 (dotted, black).

In Figure 2a, we see that the fundamental harmonic 〈n̂p=0〉 = 0 occurs at τ = 0, which
by necessity implies ` = 0, see Equation (9). The higher harmonics 〈n̂p〉 = p ≥ 1 occur at
smaller values of τ for smaller values of |`|.

On the other hand, Figure 2b shows that the higher eigenvalues 〈L`〉 = λp, p ≥ 1,
occur at larger values of τ for larger values of |`|. Remarkably, with the exception of the
fundamental BG mode, the lowest eigenvalue 〈L`〉 = λ0 never occurs in higher BG modes
since 〈n̂p=0〉 = 0 is not defined for ` 6= 0.

The latter means that only the fundamental BG mode behaves like a Gaussian beam.
In turn, the higher BG modes are as close to the ideal Gaussian beam as the expected value
〈L`〉 is close to λ0 (see Table 1), which occurs in the vicinity of τ = 0.

Clearly, the modulus of the complex eigenvalue ξ is responsible for the quality of the
BG modes. By setting τ close to zero, we can make the BG modes as Gaussian as the limit
τ → 0 allows.

The contribution of the p-th harmonic to the coherence of the BG mode V`(r, z; ξ) is
more easily visualized using the square modulus of the related coefficient

|cp(`, τ)|2 =
τ|`|+2p

I|`|(2τ)Γ(p + 1)Γ(|`|+ p + 1)
.
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For small values of τ, the above expression acquires the form

|cp(`, τ)|2 ≈ τ2p Γ(|`|+ 1)
Γ(p + 1)Γ(|`|+ p + 1)

.

In the vicinity of τ = 0 one has τ0 > τ2 > τ4 > · · · . Therefore, the harmonics labeled
with small p contribute more significantly to increasing the quality of the BG mode. This is
illustrated in Figure 3. Clearly, c0 provides the largest square modulus for τ ≈ 0, so the
fundamental LG mode is dominant in any superposition intended to build high-quality BG
modes. The contribution of the remaining harmonics can be treated as a disturbance (noise)
that deviates the BG mode from the ideal Gaussian profile.

(a) Fundamental mode contribution (b) First mode contribution (c) Second mode contribution

Figure 3. The harmonics labeled with small p contribute more significantly to increasing the quality
of the BG mode. By setting τ close to zero, the main contribution is provided by the fundamental
mode (a). The remaining harmonics (figures (b,c) show p = 1 and p = 2) contribute by perturbing
the fundamental harmonic in such a way that the BG mode deviates from the ideal Gaussian profile.
The color-code is the same as in Figure 2.

3.1. Variances and Standard Deviations

We now introduce the quadratures

L1;` =
L+` + L−`

2
, L2;` =

L+` −L
−
`

2i
,

which are non-commuting variables [L1;`,L2;`] = −iL`. Using the BG modes, the related
variances are equally weighted:

µL1;`
= µL2;`

= 1
2 〈L`〉.

As a consequence, the inequality

σL1;`
σL2;`

≥ 1
2 |〈[L1;`,L2;`]〉|,

named after Robertson [52], is saturated.
The latter means that the average errors of L1;` and L2;` are not only the same but

minimal (it is said that the BG modes are minimum uncertainty states). Then, it may not
be possible to prepare a state with both distributions, σL1;`

and σL2;`
, sharply concentrated

around any concrete value [53]. Therefore, to characterize the BG modes V`(r, z; ξ), we
need to set up another uncertainty relationship, the one that holds for the appropriate
observables.

In the formal operator description of paraxial wave optics, the canonical conjugate
variables of transverse-position r and transverse-propagation direction p are treated as
self-adjoint operators, see for example [54,55]. Using the BG modes, the mean value of such
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variables vanishes for the on-axis beams, 〈r〉 = 〈p〉 = 0. Additionally, the straightforward
calculation yields 〈[r, p]〉 = 2

k0
, together with

µr = w2
0

[
〈L`〉+ τ cos

(
2z
zR

+ φ
)]

, µp = 4
k2

0w2
0

[
〈L`〉 − τ cos

(
2z
zR

+ φ
)]

. (13)

Therefore, the Robertson inequality for r and p gives

σrσp = 2
k0

[
〈L`〉2 − τ2 cos2

(
2z
zR

+ φ
)]1/2

≥ 1
k0

. (14)

If τ 6= 0, the transverse-spreading σrσp oscillates between two extreme values

σrσp|max = 2
k0
〈L`〉, σrσp|min = 2

k0

√
〈L`〉2 − τ2, (15)

which are periodically attained at zn = 1
2 [(n + 1

2 )π − φ]zR and zq = 1
2 (qπ − φ)zR, respec-

tively, with n, q ∈ Z.
The above results exhibit the self-focusing and collimation properties of the BG modes

and show that the corresponding beam is collimated.
By necessity, if τ = 0, then ` = 0. In such a case, the transverse-spreading σrσp is

constant and acquires the global minimum value

σrσp|Gauss = k−1
0 , (16)

so it saturates inequality (14). The latter because V`=0(r, z; ξ = 0) is the fundamental
Gaussian mode U0

0(r, z), see Equation (9).

(a) Transverse-spreading σrσp (b) Beam quality factor M2
` = k0σrσp|min

Figure 4. The transverse-spreading σrσp introduced in (14) for the Bessel–Gauss coherent states
V`(r, z; ξ) oscillates between the extreme values σrσp|max and σrσp|min, dashed and continuous
curves, respectively. The areas between these values are shadowed to facilitate the comparison of
results (a). The function σrσp|max also refers to the mean energy and the quadrature deviations,
compare (a) with Figure 2. The minimal value σrσp|min is directly proportional to the M2

` factor (18),
plotted in (b). In all cases, the curves correspond to ` = 3, 2, 1, 0 (from top to bottom). The horizontal
and vertical axis are in units of τ and k−1

0 , respectively. The lowest bound defined by both the
Robertson and the Schrödinger inequalities, is attained at τ = 0 for ` = 0, written σrσp|Gauss = k−1

0 .

Figure 4a shows a comparison between the extreme values (15) of the transverse-
spreading σrσp, as a function of τ = |ξ|, for ` = 0, 1, 2, 3. The smaller τ, the shorter the
difference σrσp|max − σrσp|min, which confirms that the beam is better collimated for small
values of τ.

3.2. Beam Quality

We would like to emphasize that 〈r〉 = 〈p〉 = 0 is just a necessary condition (but
not sufficient) for r and p to fluctuate totally independently from another. Indeed, after
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Schrödinger [56] it is currently known that the Robertson inequality includes the skew
Hermitian part [r, p] of the product rp, but it omits the complementary Hermitian part. In
fact, taking into account the complete decomposition rp = 1

2{r, p}+ 1
2 [r, p], with {·, ·} the

anticommutator of the involved operators, we should follow Schrödinger, who proposed
the more precise inequality√

µûµv̂ −
[

1
2 〈{û, v̂}〉 − 〈û〉〈v̂〉

]2
≥ 1

2 |〈[û, v̂]〉|. (17)

The term in square brackets under the square-root symbol is known as covariance and
measures the joint variability of û and v̂ when non-commutability is taken into account.

In addition to (13), for the present case one has 〈{r, p}〉 = − 4
k0

τ sin( 2z
zR

+ φ). Then, the

Schrödinger inequality (17) yields
√
〈L`〉2 − τ2 ≥ 1

2 , i.e., considering the non-commutability
of r and p, the Robertson inequality (14) must be corrected to only compare σrσp|min with
the lowest bound k−1

0 (that is, with the transverse-spreading of an ideal Gaussian beam).
Taking this conclusion into account, we introduce the function

M2
` (τ) := k0σrσp|min = k0

√
µrµp − 1

4 〈{r, p}〉2 = 2
√
〈L`〉2 − τ2, (18)

which satisfies M2
` (τ) ≥ 1, see Figure 4b. The lowest bound M2

0(0) = 1 corresponds to the
fundamental Gaussian mode V`=0(r, z; ξ = 0) = U0

0(r, z).
The function (18) may be identified with theM2 factor of light signals [46,47], which

is often used to specify the beam quality [44,45]: the higher the value ofM2, the lower is
the beam quality. By definition, the lowest valueM2 = 1 is assigned to Gaussian beams,
which are called diffraction-limited beams.

Indeed, the very last expression of (18) coincides with theM2 factor obtained in [32]
for generic Bessel–Gauss beams. The authors of [32] develop a direct calculation of the
second-order moments associated with the intensity distributions at the waist plane and
in the far field, denoted σ0 and σ∞ respectively, to writeM2 = 2πσ0σ∞. Here, we have
simplified the derivation of such a result using algebraic techniques, with no cumbersome
calculations involved.

Additionally, the penultimate expression of (18) is commonly used as a definition of the
M2 factor when the first-order moments of the canonical variables vanish, as for the case
of on-axis paraxial beams. But the calculation of moments is extremely difficult in general,
so there are only a few examples where it has been possible [57,58]. It is then extremely
interesting to provide either models allowing the calculation of higher-order moments
or innovative approaches addressed to circumvent technical difficulties. However, it is
notable that the intimate relation between the beam quality factorM2 and the Schrödinger
inequality (17) is barely recognized in the literature. Remarkable exceptions are [59],
where it is suggested a link between some invariant quantities and generalized uncertainty
relations like the Schrödinger one, and [24], where theM2 factor of Hermite-Gauss modes
is directly related to the Schrödinger inequality for r and p.

In the present work, we have exploited the fact that the Schrödinger correction to the
Robertson inequality (14) eliminates the sinusoidal z-dependence of the product σrσp, and
considers only the minimal value σrσp|min to measure the joint variability of r and p when
non-commutability is taken into account. It is then relevant to find that the M2

` factor (18)
coincides with σrσp|min.

For small values of τ, theM2 factor behaves as follows

M2
` (τ)

∣∣∣
τ�1
≈ 2τ4

(|`|+ 1)3 + |`|+ 1. (19)
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At the very limit τ → 0, the lowest value M2
` (τ = 0) = |`|+ 1 is only reached for

` = 0, i.e., the ideal Gaussian profile M2
`=0(τ = 0) = 1 occurs for the fundamental mode

V`=0 = Up=0
`=0 only, as we have already mentioned.

For ` 6= 0, the quality of the BG mode obeys the rule M2
` (τ) > |`|+ 1. How close

M2
` (τ) is to its lower bound depends on how close τ is to zero.

However, keep in mind that the optical angular momentum `h̄ spoils the beam quality:
poor beam quality results for large |`|, no matter how small τ is.

Therefore, our previous conclusion is reinforced: the fundamental LG mode is dom-
inant in wave packets, leading to high-quality BG modes. The remaining harmonics
contribute by producing noise, so the BG mode deviates from the ideal Gaussian profile.
The smaller the value of the mean 〈n̂p〉, the better the quality of the BG mode. A high mean
harmonic number means a very large factor M2

` for the BG beams.

3.3. Propagation Properties

Please note that although the BG modes (8) are superpositions of LG modes with
constant width, they exhibit self-focus since the propagation constants are commensurable,
so their initial transversal profile is reproduced periodically along the propagation direction,
see Figure 5.

Figure 5. Intensity of the BG coherent states V`(r, z; ξ) introduced in (8), from the longitudinal
perspective, for ξ = −τ and the indicated values of τ. The function V`(r, z; ξ) is periodic with
period 2πzR. Collimation: The beam is better collimated for small values of τ. Self-focusing: The
configuration at z = 0, where the radial uncertainty σr is minimum and the value of σp as well as
intensity are maxima, is recovered at zq = qπzR. In turn, the maximum value of σr (minimum value of
σp) and minimum intensity are attained at zn = (n + 1

2 )πzR. In both cases, the transverse-spreading
σrσp reaches its minimum value. Transverse profile: For ` = 0 the intensity is different from zero
at ρ = 0 (upper row), but it cancels at ρ = 0 for |`| = 1 (lower row). The behavior for |`| ≥ 2 is
qualitatively equivalent to the case |`| = 1.

The intensity |V`(r, z; ξ)|2 is symmetrical with respect to rotations around the propaga-
tion axis and periodical in z with period πzR since V`(r, z; ξ) is periodical in z with period
2πzR. For ` = 0 and any value of z, the intensity is different from zero at ρ = 0, so it depicts
a spot on the transverse plane. However, if ` 6= 0, the intensity cancels at ρ = 0 and is
distributed in an annular way on the transverse plane for any value of z.
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The maximum transverse-spreading of the beam is parameterized by |ξ| = τ. On the
other hand, for propagation along the z-axis, the following periodical identities are obeyed

V`(r, 2zq; ξ) = V`(r, 0; ξ), |V`(r, zq; ξ)|2 = |V`(r, 0; ξ)|2,

V`(r, zn; ξ) = (−1)n(|`|+1)V`(r, π
2 zR; ξ), |V`(r, zn; ξ)|2 = |V`(r, π

2 zR; ξ)|2,
(20)

where
zq = qπzR, zn = (n + 1

2 )πzR, q, n ∈ Z,

and

V`(r, π
2 zR; ξ) =

[
2

πw2
0 I|`|(2τ)

]1/2
exp

{
i
[
`θ + |`|

2 φ− π
2 (|`|+ 1)− τ sin φ

]}
× exp

[
− ρ2

w2
0
+ τ cos φ

]
J|`|
(

2
√

2τ
w0

ρe−
i
2 φ
)

.
(21)

Identities (20) mean that both the mode field and the cross-section change periodically
as the beam propagates. Thus, there is a finite spread of the optical power that is reverted
periodically at concrete points along the propagation axis.

In turn, function (21) reveals that the Bessel profile of the coherent states V`(r, z; ξ)
changes from I|`| to J|`| at the odd multiples of a quarter of the period 2πzR, no matter the
value of the phase φ.

Next, we analyze the propagation properties of the BG coherent states V`(r, z; ξ) for
the real eigenvalue ξ = −τ (φ = −π) and the pure imaginary one ξ = i (φ = π

2 ). The
behavior for any other value of φ is qualitatively equivalent to such cases.

3.3.1. Behavior for Real Eigenvalues

For ξ = −τ, the functions V`(r, z;−τ) are defined in Equation (10). The choice ξ = τ
gives rise to an expression quite similar to (10), but including the modified Bessel function
I|`| instead of J|`|. The qualitative behavior of V`(r, z; ξ) is basically the same for either
ξ = −τ or ξ = τ. Hence, we consider V`(r, z;−τ) as representative of the BG coherent
states (8) for ξ ∈ R.

• Initial configuration and periodicity. Considering z = 0 as the point of departure,
the initial configuration of the beam is recovered at the points z2q = 2qπzR, with q ∈ Z,
see Figure 5. At any of these points, the Bessel function J|`| is real-valued and exhibits
a denumerable set of zeros. The latter defines a radial distribution of the phase plane
where J|`| < 0 produces a phase shift π. In turn, the polar variable θ sweeps |`| times
the interval [−π, π) in every one of the regions defined by the sign of J|`|.

Figure 6 shows the intensity and phase distribution of V0(r, z2q;− 1
2 ). The plots repre-

sent the initial configuration of the beam. In this case (` = 0), the polar variable θ is not
present, so the phase plane is covered by a radial distribution of constant phases 0 and π,
according to the sign of the Bessel function J0.

To get general insights about the behavior of the BG coherent states (10) for |`| 6= 0,
in Figure 7, we show the transverse intensity and phase distribution of V1(r, z2q;− 1

2 ). The
polar phase θ sweeps [−π, π) once in each of the radial zones defined by sign of the Bessel
function J|`|. The helicity of modes ` = −1 and ` = 1 is clockwise and counterclockwise,
respectively.

• Self-focusing. A second class of interesting points distributed along the propagation
axis is defined by the rule zq = qπzR, with q ∈ Z. The self-focus of the field is
produced twice in each period 2πzR, just at the points zq of the propagation axis, see
Figure 5.
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(a) (b)
Figure 6. Intensity (a) and phase distribution (b) of the BG coherent state V`(r, z; ξ) for ` = 0 and
ξ = −1/2. These configurations occur in the transverse planes defined by the points z2q = 2qπzR.
The related profile is characterized by the Bessel function of the first kind J0 depicted at the right, so
the phase distribution is radial, with discontinuities located at the zeros of J0 that represent a phase
shift ±π. The brown zones correspond to positive values of J0 and identify the phase e0 = 1. In turn,
the yellow zones represent negative values of J0, with phase eiπ = −1.

(a) (b) (c)
Figure 7. Intensity (b) and phase distribution of the coherent state V`(r, z; ξ) for ξ = −1/2, with
` = −1 (a) and ` = 1 (c). These configurations occur in the transverse planes defined by the points
z2q = 2qπzR. The polar phase θ sweeps [−π, π) once in each of the radial zones defined by the sign
of the Bessel function J1. Brown and yellow color-codes identify the phases −π and π, respectively.
The helicity of mode ` = −1 is clockwise while ` = 1 is counterclockwise.

(a) (b)
Figure 8. Intensity (a) and phase distribution (b) of the coherent state V`(r, z; ξ) for ` = 0 and ξ =

−1/2. These configurations occur in the transverse planes defined by the points z2n = 1
2 (4n + 1)πzR.

The related profile is characterized by the modified Bessel function I0, which is positive (this function
is depicted at the right). The latter means that in contrast with J0, the function I0 provides no phase
shifts to a coherent state (compare with Figure 6). Thus, the brown color-code refers to a phase e0 = 1.

• Maximum spreading of the beam. At the points zn = 1
2 (2n + 1)πzR, with n ∈ Z, the

coherent state V`(r, z; ξ) changes its profile from the Bessel function of the first kind J|`|
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to the modified Bessel function I|`|. The latter yields the maximum radial uncertainty
of the beam. The intensity distribution is blurred on the transverse plane, and the
phase distribution occurs without the radial distribution of the previous cases (the
Bessel function Iν(u) has no zeros along the real axis of the complex u-plane if ν is an
integer [43]). Figures 8 and 9 show the transverse intensity and phase distribution for
` = 0 and ` = 1, respectively.

(a) (b) (c)
Figure 9. Intensity (b) and phase distribution of the coherent state V`(r, z; ξ) for ξ = −1/2, with
` = −1 (a) and ` = 1 (c). These configurations occur in the transverse planes defined by the points
z2n = 1

2 (4n + 1)πzR. The polar phase θ sweeps [−π, π) once in the transverse plane. Brown and
yellow color-codes identify the phases −π and π, respectively. The helicity of mode ` = −1 is
clockwise while ` = 1 is counterclockwise.

• Vortices. At any other point of the propagation axis, the Bessel function appearing in
(10) is complex-valued. Thus, J|`| contributes to the global phase of V`(r, z;−τ) with a
term that depends on ρ in general. As a consequence, the phase distribution of the
initial configuration is distorted such that it exhibits vortices. This is illustrated in
Figure 10 for ` = 1, the real and imaginary parts of V1(r, z;−τ) change sign in different
regions of the transverse plane. The phase distribution is, therefore, characterized by
the quotient of such signs.

Figure 10. Real and imaginary parts of the coherent state V`(r, z; ξ) for ` = 1, ξ = −1/2 and z = π
4 zR.

Their contributions to the polar phase produce the vortex shown in the figure at the right, which also
shows the field intensity.

3.3.2. Behavior for Pure Imaginary Eigenvalues

Making ξ = −iτ in (8), the modified Bessel function I|`| is complex-valued, no matter
the value of the propagation variable z. As in the previous case, I|`| contributes to the global
phase of V`(r, z;−iτ) with a term that depends on ρ. See Figures 11 and 12.
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Figure 11. Real and imaginary parts of the BG coherent state V`(r, z; ξ) for ` = 3, ξ = −i/2 and z = 0.
Their contributions to the polar phase produce the vortex shown in the figure at the right, which also
shows the field intensity.

Figure 11 shows the real and imaginary parts of V`(r, z;−iτ) at z = 0, with τ = 1/2.
As in the previous case, these functions change signs in different regions of the transverse
plane. Please note that the number of local maxima is defined by the value of `; the same
holds for the number of local minima (where the functions acquire negative values). The
number of vortices in the phase distribution is also determined by `. After the beam
propagation, at z = π

2 zR, the distribution of local maxima and minima has changed, as well
as the configuration of vortices, see Figure 12.

Figure 12. Real and imaginary parts of the BG coherent state V`(r, z; ξ) for ` = 3, ξ = −i/2 and
z = π

2 zR. Their contributions to the polar phase produce the vortex shown in the figure at the right,
which also shows the field intensity.

4. Discussion

We have studied the z-propagation of electromagnetic waves through weakly inho-
mogeneous media of parabolic refractive index. After imposing the constant beam-width
condition, we focused on the electric field of guided Laguerre-Gauss modes propagating
along the z-axis with constant width and carrying finite transverse optical power [16].
These exhibit helicity, distinguished by an integer ` 6= 0, which is right-handed if ` > 0 and
left-handed if ` < 0. Modes with no helicity are characterized by ` = 0.

The guided Laguerre-Gauss modes (LG modes for short) form an orthonormal basis
for the space of solutionsH of the paraxial wave equation and can be grouped according
to the helicity parameter `, so they span infinite-dimensional solution subspaces (called
hierarchies)H` ⊂ H such thatH =

⊕
`H`.

The most striking feature of this decomposition is that the symmetry underlying the
hierarchiesH` is linked to the simplest noncompact non-Abelian Lie group [60], denoted
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by SU(1, 1). We have shown that the hierarchiesH` are irreducible representation spaces
for the Lie algebra su(1, 1), we have also identified the differential form of the generators
L`, L±` .

Surprisingly, the LG modes satisfy the eigenvalue equation of L` with the correspond-
ing propagation constants playing the role of eigenvalues. In turn, L±` are ladder operators
that connect a certain LG mode to another with eigenvalues stepped by one unit. These
results mean that the Lie algebra su(1, 1) determines the way the LG modes propagate
along the z-axis.

Following the notion of coherent states introduced by Barut and Girardello [50], in each
hierarchyH`, we have constructed a linear superposition of LG modes that is eigenfunction
of L−` with complex eigenvalue ξ = τe−iφ. These generalized coherent states are nothing
more than guided Bessel–Gauss modes (BG modes) carrying finite transverse optical power
that propagate with a well-defined optical angular momentum and self-focus along the
z-axis. The phase φ = arg(ξ) characterizes the profile of the mode (either J|`| or I|`|), while
the modulus τ = |ξ| is responsible for its quality.

We have found that by setting τ close to zero, the BG modes so constructed are as
Gaussian as the limit τ → 0 allows. With this in mind, to evaluate the quality of a signal
that is represented by any of these modes, we have analyzed the transverse-spread σrσp of
measuring the joint variability of the transverse-position r and the transverse-propagation
direction p. The Robertson inequality [52] produces a result that depends sinusoidally
on the propagation variable z and is such that the smaller τ, the shorter the difference
σrσp|max − σrσp|min. In turn, the Schrödinger inequality [56] removes the dependence on z
by providing σrσp|min only.

Using the above results, to determine how close a BG mode is to an ideal Gaussian
beam, we have introduced the quantity M2

` (τ) = k0σrσp|min = 2
√
〈L`〉2 − τ2 ≥ 1, where

〈L`〉 is the expectation value of L`. It is remarkable that M2
` (τ) coincides with the notion

of the beam propagation factor (also called beam quality factor) M2 [44,45], the most
important feature describing the quality of light beams [46,47].

It is necessary to emphasize that both the Robertson and the Schrödinger inequalities
are commonly used in quantum mechanics but rarely reported in connection with the beam
quality factorM2. Remarkable exceptions are [59], where it is suggested a link between
some invariant quantities and generalized uncertainty relations like the Schrödinger one,
and [24], where theM2 factor of Hermite-Gauss modes is directly related to the Schrödinger
inequality for r and p.

Our expression forM2 is in complete agreement with the results reported in, e.g., [32],
where generic BG beams are studied. The authors of [32] develop a direct calculation of
the second-order moments associated with the intensity distributions at the waist plane
and in the far field, denoted σ0 and σ∞ respectively, to writeM2 = 2πσ0σ∞. However,
using algebraic techniques, without cumbersome calculations involved, with M2

` (τ) we
have introduced a simple and elegant way to evaluateM2 in terms of τ, the modulus of
the complex parameter ξ that characterizes the BG modes as generalized coherent states.

Clearly, not only the profile and the way the BG modes propagate along the z-axis
but also their quality is determined by the underlying symmetry of the hierarchy H`.
This conclusion would not be clear without transferring notions that are quite natural in
quantum mechanics to the field of optics. In particular, the construction of ladder operators
for LG modes that have a well-defined optical angular momentum allows the creation of
linear superpositions of them, whose coherence properties can be maximized to generate
BG modes as generalized coherent states for the Lie algebra su(1, 1).

From the experimental point of view, our BG modes may be produced as the result of
the interference of a Gaussian beam with itself [61] by means of all the available techniques
to generate some other BG beams. These include, for instance, the assemblies of circular
slits and focusing lenses [36] and the use of conical lenses (also called axicons) [62].
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5. Conclusions

Summarizing some of the most notable coherence properties of the BG modes reported
in this work, we have:

◦ The maximum transverse-spreading of any BG mode is parameterized by τ = |ξ|. The
shorter the value of τ, the better the collimation of the corresponding beam.

◦ The quality of the BG modes is also parameterized by τ: the shorter the value of τ, the
closer the BG modes are to the Gaussian profile.

◦ The optical angular momentum `h̄ spoils the beam quality: poor beam quality results
for large |`|, no matter how small τ is.

◦ The fundamental LG mode is dominant in any superposition intended to build high-
quality BG modes. The contribution of the remaining LG modes can be treated as a
disturbance (noise) that deviates the BG mode from the ideal Gaussian profile.

◦ The profile of the BG mode is I|`| for φ = arg(ξ) = 0, and J|`| for φ = −π.
◦ No matter the value of φ, the profile of the BG modes changes periodically from I|`| to

J|`| as the beam propagates along the z-axis.
◦ The transverse-spreading of the BG modes is always finite and changes periodically

from its maximum value to its minimum value at very specific points along the
propagation axis.

◦ At any other point of the propagation axis, the phase distribution of the BG modes
exhibits vortices.

All these properties are the result of constructing the BG modes as generalized coherent
states for the Lie algebra su(1, 1), in terms of the irreducible representation spanned by LG
modes that have a well-defined optical angular momentum.

Like other BG beam models, our generalized coherent states could find applications
in optical engineering. For example, to design secure communication protocols [38,39] or
improve efficiency in laser writing, such as micro-machining [61,62] and Bragg grating
inscription on materials [63]. Higher-order BG beams are also efficient for controlling light
filamentation in nonlinear materials [64] and for designing optical tweezers [21]. For appli-
cations in the quantum domain, since optical angular momentum can be entangled [20],
the BG modes are more suitable for generating and studying entanglement in SPDC
processes [65].

It is feasible to use other linear superpositions of LG modes to construct additional
coherent states, this time in terms of the Lie group SU(1, 1), in the sense proposed by
Perelomov [60]. In this case, it is well known that there will be several types of coherent
states since SU(1, 1) has several series of unitary irreducible representations. The analysis of
the coherence properties of the resulting modes can be achieved by following the procedure
developed in this article. Work is underway in this direction and will be reported elsewhere.

Author Contributions: Conceptualization, S.C.y.C. and O.R.-O.; methodology, formal analysis, inves-
tigation and original draft preparation, S.C.y.C., Z.G., P.J.-M. and O.R.-O.; review and editing, S.C.y.C.
and O.R.-O.; project administration and funding acquisition, S.C.y.C. and O.R.-O. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT,
Mexico), grant numbers A1-S-24569 and CF19-304307, and by Instituto Politécnico Nacional (IPN,
Mexico), project SIP20232237.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: P. Jiménez-Macías acknowledges the scholarship support from CONACyT.

Conflicts of Interest: The authors declare no conflict of interest.



Photonics 2023, 10, 1162 19 of 24

Appendix A. The Irreducible Representation Space of the Lie Algebra su(1, 1)

From Equations (1) and (2), we obtain the differential equation for the stationary LG
modes: [

−
w2

0
2

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
− `2

ρ2

)
+ 2

ρ2

w2
0
− 2β

p
|`|

]
Φp
|`| = 0. (A1)

The fundamental solutions of (A1) form a complete and orthonormal set in the hierar-
chyH`, ∫ ∞

0
Φ p∗
|`| (ρ)Φ

q
|`|(ρ)ρdρ = δp,q. (A2)

In other words, if ` = fixed, the stationary LG modes Φp
|`|(ρ) form an orthonormal

basis for the (stationary) solution subspace

H` ⊇ V` = span{Φp
|`|(ρ); ` = fixed, p = 0, 1, 2, . . .}, ` ∈ Z.

Note that V` and V−` are isomorphic (V` ' V−`) since their basis elements do not
depend on sgn(`). In turn, the stationary subspace V0 has not a concomitant.

To eliminate the term with the first-order derivative in Equation (A1), one uses the
transformation

Φp
|`|(ρ) = ρ−1/2ψp(ρ; `).

Then we arrive at the eigenvalue problem

H` ψp = εp(`)ψp, p = 0, 1, 2, . . . ,

where the eigenvalues εp(`) ≡ 2β
p
|`| = 2(|`|+ 1) + 4p are equidistant, with steps of four

units εp+1(`)− εp(`) = 4, and the second-order differential operator

H` =
w2

0
2

[
− ∂2

∂ρ2 +
`2 − 1

4
ρ2

]
+

2ρ2

w2
0

(A3)

plays the role of a Hamiltonian.
From (A2), it is immediate to verify the orthonormality of the ψp-functions. Indeed,

they satisfy the oscillation theorems of the Sturm theory (see, e.g., [66]). Then, one has at
hand an additional basis for the subspace V`,

V` = span{ψp(ρ; `); ` = fixed, p = 0, 1, 2, . . .}, ` ∈ Z.

The isomorphism V` ' V−` implies ψp(ρ; `) = ψp(ρ;−`) and εp(`) = εp(−`), so the
Hamiltonians H±` are isospectral (the Hamiltonian H`=0 has not a concomitant).

The Hamiltonian H` may be identified with the radial part of the energy observable
of a 2D quantum oscillator in position representation (see, for example, [67,68]). The
identification is complete after considering

(i) The ensemble {βp
|`|} is in one-to-one correspondence with the energy spectrum of the

2D quantum oscillator.
(ii) The square integrability condition for quantum bound states corresponds to finite

transverse optical power for localized optical beams [24].

In our case, item (ii) is granted by the orthonormality of the set {ψp}.
It is, therefore, natural to apply quantum mechanical algebraic methods in the study

of the LG modes we are dealing with.
The interest in constructing operators to intertwine the basis elements of the solution

spaceH of a given dynamical law is not merely mathematical [69]. The algebras fulfilled by
these operators are connected with the symmetries of both the spaceH itself and the states
of the physical system that are represented by the elements ofH [67,68,70,71]. With this in
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mind, problems arising from eigenvalue equations can be faced in algebraic form, where
the symmetries of the system are used to construct solutions simply and elegantly [67–71].
An outstanding algebraic approach, known as the factorization method [72], is commonly
used in contemporary quantum mechanics to study a diversity of systems [73]. The main
idea is to express a given operator M0 as the product of two additional operators, M1
and M2, so that M0 = M1M2 + ε, with ε a number called factorization constant. Neither
operators M0,1,2 are restricted to be self-adjoint nor ε to be real. The factorization operators
M1,2 provide intertwining relationships between the eigenfunctions of M0 that may be
used to construct the corresponding ladder operators [16,24,42,67,68,73]. Here, we address
the factorization of the Hamiltonian H` to get ladder operators for the basis elements of V`.
The results are easily generalized toH`.

For the 2D oscillator-like Hamiltonians (A3), the factorization method yields four
different configurations [67,68]

H` = a+` a−` + ε` = a−`−1a+`−1 + ε`−2 = b+` b−` − ε`−2 = b−`+1b+`+1 − ε`, (A4)

where both the factorization constant ε` = 2(`+ 1) and the first-order differential operators

a±` =
w0√

2

[
∓ ∂

∂ρ
−

`+ 1
2

ρ

]
+

√
2

w0
ρ, b±` =

w0√
2

[
∓ ∂

∂ρ
+

`− 1
2

ρ

]
+

√
2

w0
ρ, (A5)

are labeled by the orbital angular momentum parameter ` ∈ Z.
The factorization operators (A5) satisfy the symmetry relationships a±−` = b±` , so that

H−` admits four different factorizations that are equivalent to those given in Equation (A4),
with ε−` = −ε`−2 and ε−`−2 = −ε`. Using these symmetries, a given function ψp(ρ; `) ∈
V` can be mapped to any other function ψq(ρ; l) ∈ Vl , where q and p, and ` and l, are
different in general. Indeed, from (A4), the straightforward calculation gives

a−` H` = (H`+1 + 2)a−` , H`a+` = a+` (H`+1 + 2),

b−` H` = (H`−1 + 2)b−` , H`b+` = b+` (H`−1 + 2).
(A6)

The bases of V` and V`+1 are correlated through the action of the pair a±` . In turn, the
pair b±` correlates the bases of V` and V`−1. Therefore, making l = `+ k, with k an integer,
the basis elements of V` can be correlated with those of Vl by the appropriate combination
of a±` and b±` , including iterations.

Nevertheless, it must be clear that the factorization operators (A5) are linear on the
entire solution space V =

⊕
` V`, but they are not linear on a given hierarchy V` if the

latter is considered isolated from the remaining subspaces of V . In fact, the intertwining
relationships (A6) correspond to the mappings

a−` : V` → V`+1, a+` : V`+1 → V`, b−` : V` → V`−1, b+` : V`−1 → V`. (A7)

Then, the domains of a−` and b−` are defined in V` but their ranges are included in V`+1 and
V`−1, respectively, i.e., neither a−` nor b−` define an automorphism of V`, so they are not
linear on V`. Similarly, the ranges of a+` and b+` are in V` but their domains are outside such
hierarchy.

We are interested in constructing ladder relationships for the basis elements of V`. Thus,
we are looking for automorphisms of V`. Clearly, none of the factorization operators (A5) is
useful by itself to our purposes. The solution to the problem is in the combined action of
a±` and b±` .



Photonics 2023, 10, 1162 21 of 24

In the simplest case, if a±` is applied after its concomitant a∓` (equivalently, if b±` is
applied after b∓` ), the combined action coincides with one of the automorphisms defined by
the factorization (A4). Of particular interest, the differential (harmonic-number) operator

n̂p =


1
4 a+` a−` = 1

4 (H` − ε`), ` ≥ 0

1
4 b+` b−` = 1

4 (H−` − ε−`), ` ≤ 0
,

when acting on ψp(ρ; `), returns the corresponding number of nodes:

n̂p ψp = p ψp, ` = fixed, p = 0, 1, 2, . . .

To simplify the notation, we have made the dependence of n̂p on ` implicit (it will be made
explicit only if necessary).

At the current stage, we could associate n̂p with the photon-number operator of the
well-known boson algebra. The higher the number of nodes, the more excited the LG
mode. Indeed, as H` and n̂p commute, the Hamiltonian eigenvalue (propagation constant)
εp(`) = 2β

p
|`| is completely determined by the number of nodes (and vice versa). In this

sense, according to the value of p, the eigenvalues εp(`) define the first -or fundamental-
harmonic mode (p = 0), the second harmonic mode (p = 1), and so on.

Using (A7) we see that alternating a±` and b±` some less trivial automorphisms are
achievable. For example, the products b−`+1a−` and a−`−1b−` provide the same differential
operator

A−` = b−`+1a−` = a−`−1b−` = −H` + 2ρ
∂

∂ρ
+ 4

ρ2

w2
0
+ 1.

The Hermitian conjugate of A−` is also useful,

A+
` = a+` b+`+1 = b+` a+`−1 = −H` − 2ρ

∂

∂ρ
+ 4

ρ2

w2
0
− 1; A+

` =
(

A−`
)†.

Indeed, it may be shown that the set

L−` = 1
4 A−` , L+

` = 1
4 A+

` , L` =
1
4 H`, (A8)

generates the su(1, 1) Lie algebra

[L−` , L+
` ] = 2L`, [L`, L±` ] = ±L±` .

The feature of (A8) that garners the most attention is that the spectrum of L`, given by:

λp =
1
4

εp(`) =
|`|
2

+ p +
1
2

,

mimics the energy distribution (shifted by 1
2 |`|) of the one-dimensional harmonic oscillator

in quantum mechanics. The analogy is even clearer if we rewrite the Hamiltonian H` in
terms of the number operator n̂p. One way of thinking about this property is to consider the
hierarchy V` as the space of stationary states of an oscillator-like system that is represented
by the ‘energy’ operator L` = n̂p +

1
2 (`+ 1). The entire space V =

⊕
` V` is thus associated

with an infinite collection of such oscillator-like systems.
On the other hand, L±` are ladder operators for the basis elements of V`. Namely

ψp±1 ∝ L±` ψp is eigenfunction of L` with eigenvalue λp±1 = λp ± 1. Concrete expressions
can be derived from the formulas

L−` ψ0 = 0, L−` ψp =
√

p(|`|+ p)ψp−1, L+
` ψp =

√
(p + 1)(|`|+ p + 1)ψp+1. (A9)
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From left-equation (A9), we see that L−` is bounded from below by ψ0, which is free of
nodes and belongs to the lowest eigenvalue of the hierarchy. The remaining equations (A9)
allow to reproduce any basis element ψp from ψ0.

The hierarchy V` is, therefore, an irreducible representation space for the Lie algebra
su(1, 1). In fact, the eigenvalue κ`(κ` − 1) of the Casimir operator C = 1

4 (`
2 − 1)I yields

the Bargmann index κ` = 1
2 (|`|+ 1), with I the identity operator in V`. This means that

the representation is parameterized by a single number κ`, which acquires discrete values
1
2 , 1, 3

2 , 2, . . .. It is useful to note that the eigenvalues of L` acquire now a simpler form
λp(`) = κ` + p, with κ` the lowest eigenvalue of L` in the hierarchy V` (see Figure 1).

All algebraic operators that have been defined to act on V` ⊆ H` can be promoted
now to operators that act on H`. In particular, the factorization operators a±` and b±` are
respectively replaced by

A±` = e∓i (z−z0)
zR e∓iθ 1

√
ρ

a±`
√

ρ, B±` = e∓i (z−z0)
zR e±iθ 1

√
ρ

b±`
√

ρ.

The polar and longitudinal phases of these new operators are closely related to the
dynamical properties of the LG modes: they respectively refer to the helicity of the beam
and its propagation along the z-axis.

Consistently, the generators of the Lie algebra su(1, 1) acquire the form

L−` = ei2 (z−z0)
zR

1
√

ρ
L−`
√

ρ, L+` = e−i2 (z−z0)
zR

1
√

ρ
L+
`

√
ρ, L` =

1
√

ρ
L`
√

ρ.

Thus, the hierarchyH` is an irreducible representation space for the su(1, 1) Lie algebra.

References
1. Barnett, S.M.; Babiker, M.; Padgett, M.J. Optical orbital angular momentum. Philos. Trans. R. Soc. A 2017, 375, 20150444. [CrossRef]
2. Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204.

[CrossRef]
3. Barnett, S.M.; Babiker, M.; Padgett, M.J. (Eds.) Theme Issue “Optical Orbital Angular Momentum”; Royal Society: London, UK, 2017;

Volume 375. [CrossRef]
4. Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of

Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [CrossRef]
5. He, H.; Friese, M.E.J.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Direct Observation of Transfer of Angular Momentum to

Absorptive particles from a Laser Beam with a Phase Singularity. Phys. Rev. Lett. 1995, 75, 826–829. [CrossRef] [PubMed]
6. Allen, L.; Padgett, M.J. The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum

density. Opt. Commun. 2000, 184, 67–71. [CrossRef]
7. Padgett, M.; Allen, L. Light with a twist in its tail. Contemp. Phys. 2000, 41, 275–285 [CrossRef]
8. Barnett, S.M. Optical angular momentum flux. J. Opt. B Quantum Semiclass Opt. 2002, 4, S7–S16. [CrossRef]
9. Chaturvedi, A.S.; Mukunda, N. On ‘Orbital’ and ‘Spin’ Angular Momentum of Light in Classical and Quantum Theories—A

General Framework. Fortschr. Phys. 2018, 66, 1800040.
10. Bazhenov, V.Y.; Soskin, M.S.; Vasnetsov, M.V. Screw dislocations in light wavefronts. J. Mod. Opt. 1992, 39, 985–990. [CrossRef]
11. Beijersbergen, M.W.; Allen, L.; van der Veen, H.E.L.; Woerdman, J.P. Astigmatic mode converters of orbital angular momentum.

Opt. Commun. 1993, 96, 123–132. [CrossRef]
12. Arlt, J.; Dholakia, K.; Allen, L.; Padgett, M.J. The production of multiringed Laguerre-Gaussian modes by computer-generated

holograms. J. Mod. Opt. 1997, 45, 1231–1237. [CrossRef]
13. Ngcobo, S.; Aït-Ameur, K.; Passilly, N.; Hasnaoui, A.; Forbes, A. Exciting higher-order radial Laguerre-Gaussian modes in a

dipole-pumped solid-state laser resonator. Appl. Opt. 2013, 52, 2093–2101. [CrossRef] [PubMed]
14. Forbes, A.; Dudley, A.; McLaren, M. Creation and detection of optical modes with spacial light modulators. Adv. Opt. Photon.

2016, 8, 200–227. [CrossRef]
15. Cruz y Cruz, S.; Escamilla, N.; Velázquez, V. Generation of Sources of Light with Well Defined Orbital Angular Momentum. J.

Phys. Conf. Ser. 2016, 698, 012016. [CrossRef]
16. Cruz y Cruz, S.; Gress, Z.; Jiménez-Macías, P.; Rosas-Ortiz, O. Laguerre-Gaussian Wave propagation in Parabolic Media. In

Geometric Methods in Physics XXXVIII; Trends in Mathematics Birkhäuser: Cham, Switzerland, 2020; pp. 117–128.
17. Gress-Mendoza, Z.; Cruz y Cruz, S.; Velázquez, V. Production and Characterization of Helical Beams by means of Diffraction

Gratings. J. Phys. Conf. Ser. 2023, 2448, 012017. [CrossRef]

http://doi.org/10.1098/rsta.2015.0444
http://dx.doi.org/10.1364/AOP.3.000161
http://dx.doi.org/10.1098/rsta.2015.0444
http://dx.doi.org/10.1103/PhysRevA.45.8185
http://dx.doi.org/10.1103/PhysRevLett.75.826
http://www.ncbi.nlm.nih.gov/pubmed/10060128
http://dx.doi.org/10.1016/S0030-4018(00)00960-3
http://dx.doi.org/10.1080/001075100750012777
http://dx.doi.org/10.1088/1464-4266/4/2/361
http://dx.doi.org/10.1080/09500349214551011
http://dx.doi.org/10.1016/0030-4018(93)90535-D
http://dx.doi.org/10.1080/09500349808230913
http://dx.doi.org/10.1364/AO.52.002093
http://www.ncbi.nlm.nih.gov/pubmed/23545965
http://dx.doi.org/10.1364/AOP.8.000200
http://dx.doi.org/10.1088/1742-6596/698/1/012016
http://dx.doi.org/10.1088/1742-6596/2448/1/012017


Photonics 2023, 10, 1162 23 of 24

18. Willner, A.E.; Ren, Y.; Xie, G.; Yan, Y.; Li, L.; Zhao, Z.; Wang, J.; Tur, M.; Molisch, A.F.; Ashrafi, S. Recent advances in high-capacity
free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Philos. Trans. R. Soc. A
2017, 375, 20150439. [CrossRef] [PubMed]

19. Russell, P.S.; Beravat, R.; Wong, G.K.L. Helically twisted photonic crystal fibres. Philos. Trans. R. Soc. A 2017, 375, 20150440.
[CrossRef]

20. Krenn, M.; Malik, M.; Erhard, M.; Zeilinger, A. Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian
modes. Philos. Trans. R. Soc. A 2017, 375, 20150442. [CrossRef]

21. Yang, Y.; Ren, Y.-X.; Chen, M.; Arita, Y.; Rosales-Guszmán, C. Optical trapping with structured light: A review. Adv. Photonics
2021, 3, 034001. [CrossRef]

22. Kotlyar, V.V.; Kovalev, A.A.; Nalimov, A.G. Propagation of hypergeometric laser beams in a medium with a parabolic refractive
index. J. Opt. 2013, 15, 125706. [CrossRef]

23. Petrov, N.I. Spin-Dependent Transverse Force on a Vortex Light Beam in an Inhomogeneous Medium. JETP Lett. 2016, 13, 443–448.
[CrossRef]

24. Cruz y Cruz, S.; Gress, Z. Group approach to the paraxial propagation of Hermite-Gaussian modes in a parabolic medium. Ann.
Phys. 2017, 383, 257–277. [CrossRef]

25. Wu, Y.; Wu, J.; Lin, Z.; Fu, X.; Qiu, H.; Chen, K.; Deng, D. Propagation properties and radiation forces of the Hermite-Gaussian
vortex beam in a medium with a parabolic refractive index. Appl. Opt. 2020, 59, 8342–8348. [CrossRef] [PubMed]

26. Puttnam, B.J.; Rademacher, G.; Luís, R.S. Space-division multiplexing for optical fiber communications. Optica 2021, 8, 1186–1203.
[CrossRef]

27. Siegman, A.E. Lasers; California University Science Books: Melville, NY, USA, 1986.
28. Durnin, J. Exact solutions for nondiffracting beams I The scalar theory. J. Opt. Soc. Am. A 1987, 4, 651. [CrossRef]
29. Durnin, J.; Miceli, J.; Eberly, J. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499. [CrossRef] [PubMed]
30. Gori, F.; Guattari, G.; Padovani, C. Bessel-Gauss beams. Opt. Commun. 1987, 64, 491. [CrossRef]
31. Bagini, V.; Frezza, F.; Santarsiero, M.; Schettini, G.; Schirripa Spagnolo, G. Generalized Bessel-Gauss beams. J. Mod. Opt. 1996, 43,

1155–1166.
32. Borghi, R.; Santarsiero, M. M2 factor of Bessel-Gauss beams. Opt. Lett. 1997, 22, 262–264. [CrossRef]
33. Li, Y.; Lee, H.; Wolf, E. New generalized Bessel-Gaussian beams. J. Opt. Soc. Am. A 2004, 21, 640–646 [CrossRef]
34. Stoyanov, L.; Stefanov, A.; Dreischuh, A.; Paulus, G.G. Gouy phase of Bessel-Gaussian beams: Theory vs. experiment. Opt.

Express 2023, 31, 13683–13699. [CrossRef]
35. Wolf, K.B. Diffraction-Free Beams Remain Diffraction Free under All Paraxial Optical Transformations. Phys. Rev. Lett. 1988, 60,

757–759. [CrossRef] [PubMed]
36. Uehara, K.; Kikuchi, H. Generation of Nearly Diffraction-Free Laser Beams. Appl. Phys. B 1989, 48, 125–129. [CrossRef]
37. Overfelt, P.L. Bessel-Gauss pulses. Phys. Rev. A 1991, 44, 3941–3947. [CrossRef] [PubMed]
38. Wang, T.-L.; Gariano, J.A.; Djordjevic, I.B. Employing Bessel-Gaussian Beams to Improve Physical-Layer Security in Free-Space

Optical Communications. IEEE Photonics J. 2018, 10, 7907113. [CrossRef]
39. Wang, W.; Zhang, G.; Ye, T.; Wu, Z.; Bai, L. Scintillation of the orbital angular momentum of a Bessel-Gaussian beam and its

application on multi-parameter multiplexing. Opt. Express 2023, 31, 4507–4520. [CrossRef]
40. Doster, T.; Watnik, A.T. Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: Analysis of channel efficiency.

Appl. Opt. 2016, 55, 10239–10246. [CrossRef]
41. Gress, Z.; Cruz y Cruz, S. A Note on the Off-Axis Gaussian Beams Propagation in Parabolic Media. J. Phys. Conf. Ser. 2017, 839,

012024. [CrossRef]
42. Gress, Z.; Cruz y Cruz, S. Hermite Coherent States for Quadratic Refractive Index Optical Media, In Integrability, Supersymmetry

and Coherent States; Kuru, S., Negro, J., Nieto, L.M., Eds.; CRM Series in Mathematical Physics; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 323–339.

43. Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press:
Cambridge, UK, 2010.

44. Siegman, A.E. New developments in laser resonators. SPIE 1990, 1224, 1.
45. Siegman, A.E. Defining, measuring, and optimizing laser beam quality. SPIE 1993, 1868, 1.
46. Bélanger, P.-A.; Champagne, Y.; Paré, C. Beam propagation factor of diffracted laser beams. Pot. Commun. 1994, 105, 233.

[CrossRef]
47. Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 2nd ed.; John Wiley: Hoboken, NJ, USA, 2007.
48. Glauber, R.J. Quantum Theory of Optical Coherence; Selected Papers and Lectures; Wiley-VCH: Weinheim, Germany, 2007.
49. Rosas-Ortiz, O. Coherent and Squeezed States: Introductory Review of Basic Notions, Properties, and Generalizations. In

Integrability, Supersymmetry and Coherent States; Kuru, S., Negro, J., Nieto, L.M., Eds.; CRM Series in Mathematical Physics;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 187–230.

50. Barut, A.O.; Girardello, L. New “coherent” states associated with non-compact groups. Commun. Math. Phys. 1971, 21, 41.
[CrossRef]

51. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; 7th ed.; Academic Press: Burlington, MA, USA, 2007.
52. Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163. [CrossRef]

http://dx.doi.org/10.1098/rsta.2015.0439
http://www.ncbi.nlm.nih.gov/pubmed/28069770
http://dx.doi.org/10.1098/rsta.2015.0440
http://dx.doi.org/10.1098/rsta.2015.0442
http://dx.doi.org/10.1117/1.AP.3.3.034001
http://dx.doi.org/10.1088/2040-8978/15/12/125706
http://dx.doi.org/10.1134/S0021364016070122
http://dx.doi.org/10.1016/j.aop.2017.05.020
http://dx.doi.org/10.1364/AO.400463
http://www.ncbi.nlm.nih.gov/pubmed/32976420
http://dx.doi.org/10.1364/OPTICA.427631
http://dx.doi.org/10.1364/JOSAA.4.000651
http://dx.doi.org/10.1103/PhysRevLett.58.1499
http://www.ncbi.nlm.nih.gov/pubmed/10034453
http://dx.doi.org/10.1016/0030-4018(87)90276-8
http://dx.doi.org/10.1364/OL.22.000262
http://dx.doi.org/10.1364/JOSAA.21.000640
http://dx.doi.org/10.1364/OE.480761
http://dx.doi.org/10.1103/PhysRevLett.60.757
http://www.ncbi.nlm.nih.gov/pubmed/10038644
http://dx.doi.org/10.1007/BF00692137
http://dx.doi.org/10.1103/PhysRevA.44.3941
http://www.ncbi.nlm.nih.gov/pubmed/9906411
http://dx.doi.org/10.1109/JPHOT.2018.2867173
http://dx.doi.org/10.1364/OE.478127
http://dx.doi.org/10.1364/AO.55.010239
http://dx.doi.org/10.1088/1742-6596/839/1/012024
http://dx.doi.org/10.1016/0030-4018(94)90721-8
http://dx.doi.org/10.1007/BF01646483
http://dx.doi.org/10.1103/PhysRev.34.163


Photonics 2023, 10, 1162 24 of 24

53. Kennard, E.H. Zur quanten mechanik einfacher bewegungstypen. Z. Phys. 1929, 44, 326. [CrossRef]
54. Gloge, D.; Marcuse, D. Formal Quantum Theory of Light Rays. J. Opt. Soc. Am. 1969, 59, 1629. [CrossRef]
55. Stoler, D. Operator methods in physical optics. J. Opt. Soc. Am. A 1981, 71, 334. [CrossRef]
56. Schrödinger, E. E Zum Heisenberschen Unsch"afprinzip. Ber. Kgl. Akad. Wiss. Berlin 1930, 24, 296.
57. B.; res, M.A.; López-Mago, D.; Gutérrez-Vega, J.C. Higher order moments and overlaps of rotationally symmetric beams. J. Opt.

2010, 12, 015706. [CrossRef]
58. Martínez-Herrero, R.; Manjavacas, A. Overall second-order parametric characterization of light beams propagating through

spiral phase elements. Opt. Commun. 2009, 282, 473. [CrossRef]
59. Dodonov, V.V.; Man’ko, O.V. Universal invariants of quantum-mechanical and optical systems. J. Opt. Soc. Am. A 2000, 17, 2403.

[CrossRef] [PubMed]
60. Perelomov, A. Generalized Coherent States and Their Applications; Springer: Berlin, Germany, 1986.
61. Beuton, R.; Chimier, B.; Quinoman, P.; González, Alaiza de Martínez, P.; Nuter, R.; Duchateau, G. Numerical studies of dielectric

material modifications by a femtosecond Bessel-Gauss laser beam. Appl. Phys. A 2021, 127, 334. [CrossRef]
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