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Abstract: Bi2O2Se, as a novel two-dimensional semiconductor material, has been prepared and used
in the field of photodetection. Herein, Bi2O2Se nanosheets were prepared using a hydrothermal
method. Bi2O2Se films were also prepared using a drop-coating method. A photoconductive
detector based on the Bi2O2Se film was constructed. The influence of nanosheet size was considered.
Ultrasonic crashing treatments and different drying processes were used for the improvement of
device performance. The obtained results demonstrate that the Bi2O2Se film based on treated
nanosheets is denser and more continuous, leading to a higher photocurrent (1.4 nA). Drying in a
vacuum can further increase the photocurrent of the device (3.0 nA). The photocurrent would increase
with the increase in drying temperatures, while the dark current increases synchronously, leading to
a decrease in the on/off ratio. The device based on Bi2O2Se film was dried in a vacuum at 180 ◦C
and exhibited high responsivity (28 mA/W) and detectivity (~4 × 109 Jones) under 780 nm light
illumination. Together, these results provide a data foundation and vision for the further development
of photodetectors based on Bi2O2Se material.
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1. Introduction

Two-dimensional (2D) materials, due to their unique layer structures and high car-
rier mobility, have received much attention in the field of electronic and optoelectronic
devices [1–7]. Various high-crystallinity 2D materials have been prepared and used to
construct high-performance optoelectronic devices, such as MoS2, InSe, MoSe2, and so
on [6–11]. As a new Bi-based 2D semiconductor material with good stability under air con-
ditions, Bi2O2Se possesses great potential for the construction of infrared photodetectors,
phototransistors, and ultrafast lasers [4,5,8,10,12]. Bi2O2Se has a modest bandgap of 0.8 eV,
high carrier mobility (450 cm2/(V·s) at room temperature) and concentration (>1017 cm−3),
and good thermal and chemical stability [3,4,8]. Compared with other 2D layered materials,
the layers of Bi2O2Se are connected by relatively strong electrostatic forces. In addition, due
to this interlayered zipper-like structure, it exhibits many unique characteristics. However,
high-quality and high-crystallinity Bi2O2Se nanosheets are mostly grown on mica substrate
via the chemical vapor deposition (CVD) method [4,10,12,13]. The electrostatic interaction
between Bi2O2Se and the mica substrate leads to difficulty when using transfer technology.
Moreover, the CVD technology needs the support of high-vacuum and high-temperature
technology [4,5,14–16]. These factors affect the development of Bi2O2Se-based devices and
limit their actual applications. Therefore, some simple and effective methods to prepare
Bi2O2Se-based optoelectronic devices are necessary [17–19].

The hydrothermal method is always used to prepare nanomaterials in a large scale [20–24].
Ding et al. [21] synthesized Bi2O2Se nanosheets using the hydrothermal method, using
Bi(NO3)3·5H2O, deionized water, hydrazine hydrate, Se powder, and LiNO3:KNO3 mixed
salts (1:1.35 in a molar ratio) as raw materials. The obtained Bi2O2Se nanosheets display
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superior photocatalytic performance combined with TiO2 nanoparticles [21]. Yuan Sun et al.
synthesized ultrathin Bi2O2Se nanosheets using the hydrothermal method with LiNO3 as an
adjuvant. They carefully studied the influence of LiNO3 on the morphology of the Bi2O2Se
nanosheets, and prepared large-size nanosheets (0.5–1 µm). The obtained ultrathin Bi2O2Se
nanosheets were used in photoelectrochemical tests and exhibit a high current density of
4.11 µA cm−2 at an applied voltage of 1.0 V [25]. Leyang Dang et al. synthesized Bi2O2Se
nanosheets (size > 60.0 µm and thickness ~4.92 nm) using a hydrothermal method with an
organic ion as a template and constructed a photodetector, which showed a limited responsivity
of 842.91 A W−1 and a detectivity of 8.18 × 1012 cm Hz1/2 W−1 under a 532 nm laser [20].
Gexiang Chen et al. also fabricated Bi2O2Se nanosheets using the hydrothermal method and
used it to construct a photoelectrochemical-type self-powered photodetector. The responsivity
and response time of the obtained device can reach 20 µA W−1 and 0.12 s [1]. Generally, the per-
formance of photoconductive-type photodetectors based on nanoparticles is seriously affected
by the quality of the film. The different film-preparation process also affects the performance
of the obtained photodetectors. As mentioned above, most of the Bi2O2Se samples produced
using the hydrothermal method are in powder form. In order to construct a photodetector,
the Bi2O2Se powder should be prepared as film [1,24,26,27]. A skillful membrane-preparation
process is required for the construction of high-performance optoelectronic devices [28,29].
However, few studies have focused on the impact of film-preparation processes on the final
device performance.

In this work, the Bi2O2Se nanosheets were prepared using a simple hydrothermal
method, with Bi(NO3)3·5H2O, N2H4·H2O, Se powder, and NaOH used as raw materials.
The morphology and composition were characterized using SEM, XPS, and XRD [16,30–35].
The obtained Bi2O2Se nanosheets were used to construct a photoconductive-type photode-
tector using a drop-coating method [23,25,36]. Considering the influence of film quality
on the performance of obtained devices, the size of the nanosheets and the drying process
were studied in detail. The high photocurrent can be achieved by ultrasonic-crushing the
nanosheets and drying them in a vacuum at high temperatures.

2. Materials and Methods
2.1. Materials

All chemicals were of analytical grade and were used as received without further pu-
rification. Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O, 99%) was purchased from Tianjin
Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). Hydrazine hydrate (N2H4·H2O,
80%) was provided by Tianjin Damao chemical reagent factory (Tianjin, China). Selenium
powder (Se, 99.9%) was provided by Shanghai Macklin Biochemical Co., Ltd. (Shanghai,
China). Sodium hydroxide (NaOH, 99%) was bought from Tianjin Hedong District red rock
reagent factory (Tianjin, China).

2.2. Synthesis of Bismuth Oxyselenide

The Bi2O2Se nanosheets were synthesized using a hydrothermal method. First, 2 mmol
of Bi(NO3)3·5H2O was dissolved in 10 mL of deionized water in beaker A and stirred for
0.5 h. Then, 220 µL of N2H4·H2O, 600 mg of NaOH, and 10 mL of deionized water were
mixed in beaker B and stirred to form a saturated alkaline solution. Then, 1 mmol of
Se powder was put into beaker B with ultrasonic treatment until the solution became a
transparent orange color. Then, the solutions in beaker A and beaker B were poured into a
50 mL Teflon vessel container and stirred for another 15 min. Then, the Teflon vessel was
sealed in a stainless-steel autoclave and placed in a furnace at a temperature of 80 ◦C for
6 h. After the reaction was completed and the instrument naturally cooled down to room
temperature, the product was washed several times with deionized water and ethanol via
centrifugation, and the Bi2O2Se nanoparticles were obtained. The schematic diagram of the
preparation process is shown in Figure 1.
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Figure 1. Schematic diagram of the preparation process of Bi2O2Se nanosheets using the hydrother-
mal method.

2.3. Characterization

The crystallinity and phase were measured using an X-ray diffraction (XRD DX-2700,
Hao Yuan, Dandong, China) pattern. The morphologies of the obtained samples were
characterized and investigated with scanning electron microscopy (SEM, SU8020, Hitachi,
Tokyo, Japan). X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, ThermoFisher,
Waltham, MA, USA) was used to analyze the chemical state of the element. UV-vis diffuse
reflectance spectra of the samples were obtained using a UV-vis spectrometer (F-7000,
Hitachi, Tokyo, Japan).

2.4. Construction of Photodetectors

First, 10 mg Bi2O2Se nanosheets were ultrasonically dispersed in 0.5 mL deionized wa-
ter for 20 min, and the Bi2O2Se dispersion was obtained. Then, 10 µL of Bi2O2Se dispersion
was dropwise coated on the glass substrate. After drying the drip-coating solution, two
silver pastes were dotted on the surface of the Bi2O2Se film, and the Bi2O2Se photodetector
was obtained. The effective illumination area of the photodetector is 2 × 10−4 cm2.

2.5. Photodetector Performance Test

The steady-state electrical performance of the Bi2O2Se hybrid photodetector was
measured using a probe station with a Keysight B2901A source meter as an external
power supply. A light-emitting diode (LED) lamp with a 780 nm center wavelength
(7.71 mW cm−2) was selected as the infrared light source. A DHC GCI-73 multifunctional
precision electronic timer and a DHC GCI-7103 M-B shutter were used to measure the
response (rise and decay) time of the photodetectors.

3. Results and Discussion

Figure 2a shows the XRD pattern of the Bi2O2Se nanopowders. Two peaks, at 31.8◦

and 32.5◦, can be observed, which are related to the preferred orientation on the (103) and
(110) planes, respectively. Further, other peaks, at 23.9◦, 43.7◦, 46.6◦, 53.1◦, 56.2◦, 57.9◦,
68.1◦, and 77.4◦, correspond to the (101), (114), (200), (116), (213), (109), (208), and (310)
planes of the tetragonal Bi2O2Se (JCPDS No. 73-1316), respectively. The lattice constants
are a = 3.891 Å, b = 3.891 Å, and c = 12.213 Å, and the grain size is about 9 nm, which
was calculated using the Scherrer equation [18,21,22,25,37]. No obvious impurity peak
could be found in the XRD pattern, implying that the obtained sample is Bi2O2Se, and that
it has distinguished crystallinity. Figure 2b and c show the SEM images of the obtained
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Bi2O2Se. It can be observed that the Bi2O2Se nanoparticles are composed of many tiny
nanosheets. [18,22] After statistical analysis, the average size of the nanosheets was about
180 nm, as shown in Figure 2d.
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columnar statistical chart of the nanosheets sizes corresponding to (c).

Figure 3 shows low-resolution SEM images of Bi2O2Se nanosheets, with the corre-
sponding EDS elemental mapping of Bi, O, and Se. As illustrated in Figure 3b–d, the
distribution of elements Bi, O, and Se is uniform, and the shape is consistent with the
SEM image [5,14,25]. The corresponding elemental analysis data are shown in Figure S1
and Table S1 (as seen in Supplementary Materials). It was found that the element ratio
between Bi and Se is about 2:1. The oxygen content of the samples was difficult to accurately
measure due to the influence of the adsorbed CO2, H2O, O2, and organics.
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Figure 4a displays the survey XPS of the Bi2O2Se nanosheets. The Bi, O, and Se signal
can be observed clearly. Figure 3b–d show the fine spectra of elements Bi, O, and Se. In
Figure 4b, Bi 4f7/2 and Bi 4f5/2 peaks, located at 158.4 and 163.7 eV, can be found, which
are related to the Bi–Se bond [5]. The two higher peaks, at 159.1 and 164.5 eV, correspond
to the Bi–O bond [23,25]. The O 1s spectrum (Figure 4c) comprises four peaks (529.5, 530.5,
532.2, and 534.3 eV) [20,23]. The peaks at 529.5 and 530.5 eV correlate to the Bi–O bond in
the lattice and on the surface [25]. The peak at 532.2 eV corresponds to the signal of oxygen
vacancies [13]. The peak at 534.3 eV may be caused by the adsorbed organics on the surface
of the sample [21,38,39]. Based on the Se 3d spectra in Figure 4d, the two fitted Lorenz
peaks at 52.7 and 53.6 eV are within the plausible chemical shift range of the Se 3d core
level of Bi2O2Se, and correspond to Se 3d5/2 and Se 3d3/2, respectively [23,25].
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The obtained Bi2O2Se nanosheets were used to construct a photoconductive-type
photodetector, which was composed of the Bi2O2Se film and two silver pastes. The I-−V
curve and I-−t curve were tested using a two-probe system on the probe station, with a
Keysight B2901A source meter as an external power supply. The I-−V curve is shown in
Figure 5a. The dark current of the Bi2O2Se film photodetector is less than 0.1 nA when the
bias is 15 V. Under 780 nm infrared light illumination, its photocurrent can reach 0.35 nA,
demonstrating a significant infrared-light response property. In addition, from the I-−t
curve shown in Figure 5b, it can be observed that the light-response characteristics are
relatively stable and reproducible at 15 V bias. The stable dark current was about 0.025 nA
and the photocurrent was 0.35 nA. The on/off ratio was about 10. The response speed of
the obtained photodetector was also very fast.
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Figure 5. (a) I-−V curve and (b) I-−t curve of the photodetector based on Bi2O2Se film with the
applied voltage at 15 V.

Considering that the size of the nanosheets can influence the photodetection perfor-
mance of the Bi2O2Se film, ultrasonic crushing treatments were carried out to reduce the
size of the nanosheets. An SEM image of the Bi2O2Se nanosheets after ultrasonic crushing
treatment is shown in Figure 6. As shown in Figure 6a–c, the size of the nanosheets reduced
significantly. After statistical analysis, the average size of the nanosheets was about 60 nm,
as shown in Figure 6d. Figure 7 shows the photographs and SEM images of the Bi2O2Se film
prepared using the drop-coating method with untreated and treated Bi2O2Se nanosheets.
For the film corresponding to the untreated Bi2O2Se nanosheets (Figure 7a), cracks on the
film are clearly visible, which would limit the transmission of electrons between electrodes.
The rough surface and large gaps can also be observed in the SEM images, as shown in
Figure 7c,e. The film prepared using the treated Bi2O2Se nanosheets was relatively uniform
and dense. No obvious cracks can be observed, as shown in Figure 7b. From the SEM
images shown in Figure 7d,f, the smooth surface of the film can be observed.
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The obtained Bi2O2Se films were also used to construct a photodetector. Figure 8
shows the performance comparison of the photodetector based on the untreated and treated
Bi2O2Se nanosheets. After reproducing the photodetector base on untreated Bi2O2Se
nanosheets, the stable dark current was 0.05 nA and the photocurrent was 0.18 nA, with an
on/off ratio of about 3. The performance of the photodetector based on treated Bi2O2Se
nanosheets displayed a significant improvement. The stable dark current was 0.2 nA and
the photocurrent was 1.4 nA. The increase in photocurrent was about an order of magni-
tude. These results demonstrate that the size of the nanosheets can indeed influence the
performance of the photodetector based on Bi2O2Se film. The improvement in performance
may be caused by the change in the compactness of the Bi2O2Se film. The smaller the size
of the nanosheets, the denser the film, leading to a higher dark current and photocurrent.

Besides the size of the nanosheets, the drying condition also affects the density of the
film. Subsequently, the film was dried in the air and in a vacuum at 150 ◦C, respectively.
Figure 9 shows the comparison of the photodetectors based on Bi2O2Se film when dried
at 150 ◦C in the air and in a vacuum, respectively. Figure 9a,c show the I-−V curve and
I-−t curve of the device dried in air, respectively. It can be observed that its photocurrent
is slightly higher than the dark current at different biases. At 15 V bias, the stable dark
current is about 0.02 nA, while the stable photocurrent is about 0.10 nA, with an on/off
ratio of 5. Compared to the device dried in the air, the device dried in a vacuum exhibits
superior photodetection performance. Figure 9b,d show the I-−V curve and I-−t curve of
the photodetector dried in a vacuum. The photocurrent of this device is obviously larger
than the dark current at the same bias (shown in Figure 9b). The stable dark current at
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15 V bias is about 0.75 nA, and the photocurrent is about 3.0 nA. Both the dark current and
photocurrent are improved, which was caused by an increase in the density of the film. The
on/off ratio is about 4. Although the on/off ratio decreases, the photocurrent has increased
by nearly 30 times. For comparison, the devices based on the Bi2O2Se film that were dried
at 60 ◦C in the air and in a vacuum were also prepared and tested. The results are shown in
Figure S2 (as seen in Supplementary Materials). The I-−V curves of these devices are very
similar. The stable dark currents for the device dried in the air and in a vacuum are 0.07 and
0.02 nA, respectively. The corresponding photocurrents are 0.23 and 0.16 nA, respectively.
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Figure 9. The performance comparison of the photodetectors based on Bi2O2Se film dried at 150 ◦C
(a,c) in the air and (b,d) in a vacuum.

The drying temperature also affects the density of the film, leading to the change in
photodetection performance. The ultrasonic-crushing-treated Bi2O2Se nanosheets were also



Photonics 2023, 10, 1187 9 of 13

dried in a vacuum at different temperatures, and corresponding devices were constructed
and tested. Figure 10 shows the I-−V curves and I-−t curves of the devices dried at 60, 90,
120, and 150 ◦C. As we expected, the dark current and photocurrent were both increased
with the increase in dried temperatures, as shown in Figure 10a,b. The photocurrent of all
four devices at 15 V bias is 0.2, 0.35, 1.0 and 13 nA, respectively. From the I-t curves of these
devices (Figure 10c,d), it can be observed that the stable photocurrents of all four devices are
0.08, 0.23, 1.5, and 13 nA, respectively. The stable dark current is 0.01, 0.04, 0.4 and 4.5 nA,
respectively. Therefore, the on/off ratios are eight, six, four, and three, respectively. As the
drying temperature increases, the dark current and photocurrent increases synchronously,
while the on/off ratio decreases. Bi2O2Se film, dried at a higher temperature (180 ◦C) in
a vacuum, was also prepared and used to construct a photodetector. Its photodetection
properties are shown in Figure 11. The dark current and photocurrent are 45 and 85 nA,
with an on/off ratio of less than two.
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Figure 11. (a) I-−V curve and (b) I-−t curve of the device based on Bi2O2Se film, dried at 180 ◦C in a
vacuum, with the light source of 780 nm of near-infrared light.

For the device dried at 180 ◦C in a vacuum, more detailed tests were carried out. The
obtained results are shown in Figure 12. Figure 12a shows the I-−V curves of the device
under different wavelengths of illumination (from 254 nm to 1200 nm). The photocurrent
under 780 nm of light illumination is the highest. Figure 12b displays the corresponding
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I-−t curves of the device. The device exhibits a stable photo response under different
wavelengths of illumination when the light is turned on. Figure 12c shows the I-−t curve
for a single cycle under 780 nm of illumination. The rise and decay times are 100 and 500 ms,
respectively, demonstrating its rapid response speed. To further evaluate the performance
of the photodetector, the responsivity (R) and specific detectivity (D*) were calculated
according to the following formulas [40–42]:

R =
(

Iphoto − Idark

)
/P·S (1)

D∗ = R(S/2eIdark)
1/2 (2)

where Iphoto is the current under light illumination, Idark is the current in the dark, P is the
laser power density, S is the active light area, and e is the electron charge. The responsivity
and detectivity of the device are shown in Figure 12d. It is obvious that the obtained
Bi2O2Se film photodetector exhibits significant near-infrared-light response characteristics.
Moreover, the highest responsivity was 110 mA/W at 780 nm, with the highest detectivity
being 6 × 109 Jones, which is four times higher than that at near the UV region.
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of illumination, (d) The responsivity and the detectivity.

4. Conclusions

In summary, Bi2O2Se nanosheets were prepared using a hydrothermal method with
Bi(NO3)3·5H2O, N2H4·H2O, NaOH, and Se powder as raw materials. The morphologies,
composition, and crystallinity were characterized with SEM, XPS, and XRD. The obtained
Bi2O2Se nanosheets were prepared into a film using the drop-coating method. The Bi2O2Se
film was used to construct a photoconductive detector. Considering that the quality of
the film plays an important role in the performance of the photodetector, the size of the
nanosheets and the parameters of the film-preparation process were adjusted to study their
influence on the performance of the devices. After the ultrasonic crashing treatment, the
size of the nanosheets decreased, leading to increases in the density and continuity of the
film. Furthermore, the photodetector based on the treated Bi2O2Se nanosheets exhibits
superior photodetection performance than that of untreated Bi2O2Se nanosheets, with the
photocurrent increasing from 0.18 nA to 1.4 nA. After adopting the vacuum-drying method,
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the photocurrent of the device can further increase to 3.0 nA. Meanwhile, the temperature
of the drying process also affects the performance of the devices. The photocurrent and
dark current of the devices increased synchronously with the drying temperatures, leading
to a decrease in the on/off ratio. For the device based on the Bi2O2Se film dried in a vacuum
at 180 ◦C, the responsivity and detectivity can reach 28 mA/W and 4 × 109 Jones under
780 nm light illumination. The obtained results can provide a foundation for the fabrication
of photodetectors based on Bi2O2Se film on a large scale.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/photonics10111187/s1, Figure S1: The EDX spectra show
the stoichiometric ratio of Bi2O2Se sample; Table S1: The quantitative results for Bi2O2Se sample;
Figure S2: The performance comparison of the photodetectors based on the Bi2O2Se film dried at
60 ◦C, (a,c) in the air and (b,d) in a vacuum.
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