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Abstract: Floquet topological insulators (FTIs) have richer topological properties than static systems.
In this work, we designed different domain wall (DW) structures consisting of a Floquet photonic
lattice with opposite helical directions. We investigated the existence and types of edge states
in three shared coupling structures and the impact of these shared coupling structures on edge
states. When two opposite helical lattices share a straight waveguide array coupling, the edge states
are localized on the straight waveguide. When two opposite helical lattices share a clockwise (or
anticlockwise) helical waveguide array coupling, the DWs consist of zigzag and bearded edges, but
the positions of the zigzag and bearded edges of the shared clockwise waveguide array are different
from those of the shared anticlockwise waveguide array. The slope and transmission rate of the edge
states both vary with the degree of coupling between the shared waveguides. The characteristics of
these edge states, such as transmission speed and band gap width, are also affected by the incidence
angle, modulation phase factor, and helical radii, and the methods for controlling the edge states
in different shared coupling structures are provided. This will help deepen our understanding of
how topological structures influence the electronic and photonic properties of materials. This could
also lead to combining topology with metasurface-based structured light, which would highlight
many novel properties with great application potential for various fields, such as imaging, metrology,
communication, quantum information processing, and light–matter interaction.

Keywords: Floquet topological insulator; domain wall; shared coupling; topological edge state;
modulation phase factor

1. Introduction

Topological photonics provides a new method of light field regulation and pho-
ton control [1–3], and its topological edge states can realize the propagation of photon
immunity to material impurity defects [4–6]. Various photonic crystal structures and
schemes have been extensively reported on, such as two-dimensional (2D) photonic
crystals [7–10], 3D photonic crystals [11–15], ring resonators [16–20], metamaterials
and metasurfaces [21–25], optical waveguides [26–29], plasma nanoparticles [30], etc.
Recently, topological structures and edge states transmission have been widely stud-
ied based on photonic topological insulators. For instance, in the most recent study,
Guo et al. [25] introduced an improved irregular Floquet topological insulator and ob-
served photonic anomalous Floquet topological metasurfaces with pure orbital angular
momentum, offering valuable insights on topological structures. Wang et al. [31] un-
covered distinctive electromagnetic transmission properties originating from the Dirac
dispersion and multi-component spinor eigenmodes within topological photonic crys-
tals, which provided an unparalleled platform for controlling electromagnetic wave
propagation. This precise control of the interaction between matter and light is benefi-
cial for all-optical devices, optical information processing, quantum information, and
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computing [32], which is a thriving field and leading platform for exploring new types
of topological effects that are difficult to achieve in solid materials [33,34].

FTIs generally refer to the introduction of an artificially synthesized effective gauge
potential and effective magnetic field to replace the external magnetic field by adding
periodic time modulation [35,36]. This makes up for the defect that the optical integer
quantum Hall effect can only achieve robust transmission in the microwave band depending
on the response of the optical material to the magnetic field, and realizes robust transmission
in the optical frequency band [37,38]. Rechtsmanet et al. realized FTIs in a spiral waveguide
array experiment in the optical band, where the z axis of space is regarded as the time
axis, which is easier to adjust than periodic time modulation, providing a new idea for
exploring the Floquet phase [39,40]. They also used helical waveguides in photonic lattices
written by femtosecond lasers to break time-reversal symmetry (TRS) beyond the need for
magnetic fields. This experiment confirmed that periodic modulation can indeed induce
the band gap with unidirectional edge states, which can be used as a tool to customize or
completely break the TRS [41]. Due to the periodicity of the energy provided by Floquet’s
theorem [42–44], additional degrees of freedom were established in the FTIs, and previously
inaccessible and novel topological phenomena entered photonics [45–48]. However, most
research has been on the edge protection state between the Floquet structure and air, and
research on the topological protection state of interior DWs using the Floquet system has
rarely been reported [49–53].

Commonly, a highly robust topological transmission mode can exist at DWs between
topological materials with different valley Chern numbers [54,55], which relates to valleys
in classical waves, such as the valley Hall effect and valley edge transmission [56–58]. Due
to the protection of valley topological properties without the influence of valley scattering,
the edge state has a better propagation ability to resist bending and defect scattering [59–62].
The topological edge modes of Chern photonic TIs and spin photonic TIs can be formed at
the interface between non-trivial and trivial lattices, whereas valley edge modes only exist
on the DWs between two valley TIs with opposite valley Chern numbers [63,64]. Inspired
by the valley Hall effect, we studied the edge states on different dynamic DWs in this
work, combining the Floquet system in a way that is similar to valley Hall edge states. The
traditional DW of the valley Hall effect is static, whereas the DWs in this work are dynamic
and period driven.

In a limited number of research reports that utilized Floquet systems to investigate the
topologically protected states of internal DWs (for example, Ref. [49]), authors reported that
two honeycomb arrays with opposite helicity were resonance-coupled to the edge states at
the interface by additional weak longitudinal refractive index modulation (with a period
greater than the helical period). In Ref. [52], we also reported a helical lattice structure at
the Zigzag–Zigzag (ZZ) interface with an ideal topological DW, composed of two helical
waveguide arrays with opposite helicity. We discovered two topologically protected edge
states with opposite group velocities at the DW of the ZZ interface, demonstrating the
capability of the ZZ interfaces between helical honeycomb lattices with opposite helicities
to support novel linear and nonlinear topological edge states. In this work, different from
the conventional ideal ZZ DW structures previously reported, we designed a new structure
by introducing straight waveguide arrays, clockwise waveguide arrays, and anticlockwise
waveguide arrays into the ZZ DW configuration, facilitating shared coupling between
the waveguides on both sides and additional waveguides in the middle. We investigated
the impact of this shared coupling structure on the traditional ZZ DW structure and its
associated edge states. Ultimately, we identified three different DW types and various
robust edge states under three different DW structures and studied their characteristics.
When two opposite helical lattices shared the straight waveguide array coupling, the edge
states were localized on the straight waveguide. When two opposite helical lattices shared
the clockwise (or anticlockwise) helical waveguide array coupling, the DWs consisted of
zigzag and bearded edges, and the edge states in all three structures exhibited robustness
and were immune to defects of any position or type.
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2. Model and Method

The new composite Floquet topology is shown in Figure 1a, where the left waveguide
array (xm,n < 0) is a clockwise spiral, the right waveguide array (xm,n > 0) is an anticlock-
wise spiral, and the middle intersection (xm,n = 0) is a straight waveguide array. Here,
Figure 1a only shows a straight waveguide array in the middle intersection as an example,
and the clockwise (or anticlockwise) waveguide array is not shown.
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Figure 1. (a) A 3D structure diagram of two opposite helical lattices sharing a straight waveguide array
coupling. (b) Dynamic changes of the DW at different periods of (c). (c) Supercell of structure in (a).
(d) The dispersion curve of the structure in (a). The parameters are R = 0.3, ϕ = 0. All quantities are
plotted in dimensionless units.

The paraxial propagation of light in photonic lattices is described by the Schrödinger-
type equation [39]:

i∂zψ(x, y, z) +∇2ψ(x, y, z)/(2k0) + (k0∆n(x, y, z)/n0)ψ(x, y, z) = 0, (1)

where the lattice background potential n0 = 1.45, k0 = 2πn0/λ is the wavenumber in the
ambient medium, and the beam wavelength λ = 544 nm, ∆n(x, y, z) is the lattice potential.
The normalized two-dimensional paraxial approximate equation is [39]:

i∂Zψ(X, Y, Z) +∇2ψ(X, Y, Z)/2 + V(X, Y, Z)ψ(X, Y, Z) = 0, (2)

To break the inversion symmetry of the system, longitudinal helical modulation
X′ = X− (R sin(ΩZ)), Y′ = Y− (−R cos(ΩZ)) is added to the Z direction of the waveg-
uide, where Ω = 2π/Z is the helical frequency, the actual helix pitch is Z = 1 cm, and
R is the helical radius. The paraxial approximate equation corresponding to the helical
waveguide arrays can be obtained as:

i∂Zψ = −(∇+ iθ(Z))2ψ/2−
(

R2Ω2/2
)

ψ−Vψ, (3)
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where ψ = ψ(X′, Y′, Z), θ(Z) = RΩ[sin(ΩZ), cos(ΩZ)] is equivalent to the vector potential
of space circular polarization, and the lattice potential function with helical modulation
is [51]:

V(x, y, Z) =



∑
m,n

Aw exp
(
− [x−R sin(ΩZ)−xm,n ]

2+[y+RΩ cos(ΩZ)−ym,n ]
2

ω2
w

)
(xm,n < 0),

∑
m,n

Aw exp
(
− [x±R sin(ΩZ)−xm,n ]

2+[y+RΩ cos(ΩZ)−ym,n ]
2

ω2
w

)
∑

m,n
Aw exp

(
− [x+R sin(ΩZ+ϕ)−xm,n ]

2+[y+RΩ cos(ΩZ)−ym,n ]
2

ω2
w

) (xm,n = 0),

(xm,n > 0).

(4)

where Aw = 30 is the amplitude of the potential, ωw = 0.2a/
√

3 is the beam width radius
of the Gaussian model, a is the lattice constant after normalization, (xm,n, ym,n) indicates
that the coordinate position of the lattice waveguide is arranged in a honeycomb structure,
and ϕ is the anticlockwise helical modulation phase factor. It is worth noting that when the
shared waveguide is a straight waveguide array, R = 0 when xm,n = 0 in Equation (4). To
calculate the dimensional parameters for fs-written structures, photorefractive crystals, or
some other system, the cross-sections of each elliptic waveguide were 11 mm for the long
axis and 4 mm for the small axis. The helical waveguides were arranged in a honeycomb
structure with the nearest neighbor spacing of 15 mm [39]. From Figure 1b, we can see that
the DW is dynamic at different propagation distances in one period T because the lattices
on both sides of the interface at x = 0 rotate in opposite directions. According to the tight
binding approximation, the system Hamiltonian can be described as [51,52,65,66]:

H = ta ·
N

∑
m=1

(|m, B〉〈m, A|+ h.c.) + tb ·
N−1

∑
m=1

(|m + 1, B〉〈m, A|+ h.c.), (5)

where ta is the coupling coefficient within the single cell and tb is the coupling coefficient
between the single cell; |m, B〉 and 〈m, A| represent waveguide states in the mth single
cell of the supercell and N is the number of a single cell. Thus, the coupling coefficient
matrix between shared waveguides is constructed based on the synthesis principle of
the potential field of the periodic variation of helical waveguides and potential field of
shared waveguides.

3. Results and Discussion

First, we constructed the supercell of the lattice (see Figure 1a), depicted in Figure 1c,
where the middle intersection was a straight waveguide (red circle) and the red arrows
indicate the direction of the rotation of the waveguide on both sides. In our calculations,
N = 120, that is, the supercell contained 120 unit cells. The dispersion curves corresponding
to the structure in Figure 1a can be seen in Figure 1d. The edge states had a non−zero
group velocity and were strictly located in the gap between the bulk Bloch band (black
line) of the lattice. The blue and red lines are related to the two edge states on the DW
in Figure 1c, respectively. The levels in the gaps shown in green in Figure 1d correspond
to the modes at the outer boundary of the supercell in Figure 1c, which were two nearly
degenerate modes and had no effect on the edge states of the DW.

Figure 2a shows the supercell when the middle intersection is a clockwise helical
waveguide array. The related edge state dispersion curve can be found in Figure 2b, where
the blue and red lines correspond to the blue and red edge states on the DW of Figure 2a,
respectively. The blue line represents the zigzag edge of the clockwise helix lattice on the
left (xm,n ≤ 0), whereas the red line represents the bearded edge of the anticlockwise helix
lattice on the right (xm,n > 0).
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Figure 2c shows the supercell when the middle intersection is an anticlockwise helical
waveguide array. The corresponding edge state dispersion curve can be found in Figure 2d,
where the blue and red lines correspond to the blue and red edge states on the DW of
Figure 2c, respectively. The red line is the bearded edge of the clockwise helix lattice on the
left (xm,n < 0), and the blue line is the zigzag edge of the anticlockwise helix lattice on the
right (xm,n ≥ 0).

The gap Chern number Cgap can be used to predict the existence of edge states in com-
posite arrays; it provides a direct way to check whether a given system has edge states and
is robust to various forms of impurities [39,54,67]. Generally, the Chern number of a two-

band system can be expressed as C =

[
s

k∈FBZ

→
d·[(∂kx

→
d )× (∂ky

→
d )]/d3 · dkxdky

]
/(4π) ;

the equivalent Hamiltonian of the system is
→

He f f (k) =
→

d(k) · →σ + d0(k), where
→

d(k) =
[
dx(k), dy(k), dz(k)

]
, the Pauli matrix vector is

→
σ = [σx, σy, σz], and d0(k) is the

energy constant term associated with kx and ky [40]. When two opposite helical lattices
share a straight waveguide array coupling, the straight waveguide does not change the
topological properties of the helical waveguide lattice. Therefore, the gap Chern number
of the clockwise helical lattice sharing a straight waveguide array is CL

gap = 1; the gap
Chern number of the anticlockwise helical lattice is CR

gap = −1. The gap Chern number
on both sides is discontinuous, so that topological edge states occur on the DWs, and the
corresponding Chern number is Cv1 =

∣∣∣CR
gap − CL

gap

∣∣∣= 2 . Similarly, in the case of sharing a
clockwise (or anticlockwise) helix waveguide array, the Chern number of the edge states
on the DW is Cv2 = 2, which is consistent with the number of edge states in the dispersion
curves (Figures 1d and 2b,d).

Ke et al. [68] verified that non-uniform distortions could induce overall energy transfer,
generate a pseudo-magnetic field, and produce well-defined Landau levels. Pseudo-
magnetic fields in the opposite direction could lead to magnetic plasmon snake states
at the center of the band, forming pure magnetic plasmon valley currents. Similarly,
Huang et al. [69] observed that in a simplified tight-binding model, quantized electron
conductivity remained robust under significant disorder strength. Thus, in this work,
we discuss the impact of strain on the bandgap and edge states in a shared coupling
structure. The helical modulation phase factor ϕ was introduced in anticlockwise helical
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waveguides to simulate strain. Here, we only show the case of a straight waveguide array
in the middle intersection. We found that the band gap width significantly decreased
at ϕ = π/4 in Figure 3a, compared with Figure 1d. In addition, when the phase factor
was 0 ≤ ϕ ≤ π/2, the band gap width decreased with an increase in the phase factor, as
shown in Figure 3b. The introduction of the phase modulation factor, i.e., strain, leads to
structural asymmetry. It affects the coupling coefficients between the waveguides, thereby
influencing the bandgap width and edge state transmission characteristics. In addition to
adjusting the phase modulation factor, we explored the impact of varying R of the spiral
waveguide on the properties of the edge states. To reduce the helical radius to R = 0.2,
we found that the band gap width significantly decreased compared with Figure 1d, as
shown in Figure 3c. Further, when R > 0.35, the waveguides on both sides of the DW
overlapped when rotating, which was not considered. When 0 ≤ R ≤ 0.35, the band gap
width increased with an increase in the waveguide helical radius, as shown in Figure 3d.
The positions of the waveguides at the junction dynamically changed depending on the
different shared waveguide coupling structures. Therefore, when calculating DW spacing
and considering DW characteristics, we chose different spiral radii R to account for these
dynamic variations. For the shared direct waveguide coupling structure, the position of the
direct waveguide at the junction (x = 0) remained fixed. After calculating DW spacing and
considering DW characteristics, the optimal spiral radius R for the shared direct coupling
structure was chosen to be 0.3, as it provided the best coupling effect. However, when
sharing clockwise (or anticlockwise) waveguide coupling, the positions of the clockwise
(or anticlockwise) spiral waveguides at the junction (x = 0) also dynamically changed. For
this configuration, the spiral radius R of 0.35 was selected, as it provided the best coupling
effect and edge state characteristics.
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We further verified the existence and properties of the DW edge states by simulating
beam propagation on our lattice structures. We launched an elongated Gaussian beam
G(x, y, 0) = A0 exp

(
− x2/ω2

x − y2/ω2
y

)
exp(ikyy) into the DW, where A0 = 1, ωx = 1a,

ωy = 5a, and ky ∈ [0 : 2π/a] is the ky coordinate point in the Brillouin zone. In this work,
the lattice size of Lx = 22a, Ly = 30

√
3a was used for the three structural transmissions.

To facilitate the observation of DW transmission characteristics, the transmission images
presented in the paper were designed to highlight the DW, with dimensions consistently set
at Lx = 10a, Ly = 30

√
3a. Firstly, the transport phenomena on the DW of the two opposite

helical lattices sharing the straight waveguide array coupling are discussed. The lattice
incidence location, x0 = 0, y0 = 24a, is shown in Figure 4(a1,c1).
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straight waveguide in one direction and does not get dispersed into the lattice when 
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Figure 4. The transmission of a topological edge state at different propagation distances on the DW
of the two opposite helical lattices sharing the straight waveguide array coupling. The normalized
wave number changes from (a1–a5) kya = π/3 to (b1–b4) kya = 5π/3 when R = 0.3, ϕ = 0. The
modulation phase factor varies from (c1–c5) ϕ = π/7 to (d1–d4) ϕ = π/4 when kya = π/3 and
R = 0.3. The input beam is launched into the central boundary of the lattice, as shown in (a1,c1). All
quantities are plotted in dimensionless units.

From Figure 4(a1–a5,b1–b4), we find that the beam locally transmits stably on the
straight waveguide in one direction and does not get dispersed into the lattice when
kya = π/3 and kya = 5π/3. Additionally, their transmission speed is different. When we
introduce the phase factor into the anticlockwise helical modulation factor for transmission
at kya = π/3, the transmission results are shown in Figure 4(c1–c5,d1–d4) with ϕ = π/7
and ϕ = π/4, respectively. Obviously, when the phase factor increases in the range of
0 ≤ ϕ ≤ π/2, the transmission speed of the edge states slows down, and the transmission
stability deteriorates because their band gap width gets narrower, as depicted in Figure 3b.
For the shared straight waveguide coupling structure, due to the simultaneous coupling
of the left clockwise waveguide and the right anticlockwise waveguide with the straight
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waveguide, the control of the DW edge state characteristics becomes more flexible through
phase factor modulation. In other words, introducing phase factors in either clockwise
or anticlockwise waveguides can adjust the edge states, and simultaneously changing
the phase modulation factors of clockwise and anticlockwise spiral waveguides can also
influence the DW edge states. Similarly, the transmission verifies the influence of the
control of the spiral radius R on the edge state. When comparing Figure 5(a1–a4) with
Figure 4(a2–a5), we also find that the transmission stability of the edge state deteriorates at
R = 0.2 due to the narrowing of the band gap width, as shown in Figure 3d.
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Figure 5. (a1–a4) The helix radius changes to R = 0.2 with kya = π/3 and ϕ = 0. (b1–f4) Introduces
defects of various sizes, positions, and types within DWs with R = 0.3, ϕ = 0 and kya = π/3.
(b1–d2) Excludes anticlockwise waveguides with different sizes of defects on the DW, where the
defect length size is: (b1–b3) 2

√
3a, (c1,c2) 3

√
3a, and (d1,d2) 4

√
3a. (e1,e2) Defects have different

positions, and one anticlockwise and one clockwise waveguide are simultaneously excluded on the
DW. (f1–f4) Creating a 150◦ twisted surface DW defect. The incident beam parameters and position
are the same as in Figure 4(a1,c1). All quantities are plotted in dimensionless units.

To validate the robustness of the edge states in DW within the shared straight waveg-
uide coupling structure, we introduced various defects of different sizes, positions, and
types. Firstly, we discussed the influence of defect size on the robustness of DW edge
states. By removing one anticlockwise spiral waveguide within the DW, we created a
defect of length size Dy = 2

√
3a, as shown in Figure 5(b1). The results revealed that

the edge states within the DW can pass through the defect stably without dispersion, as
depicted in Figure 5(b2,b3). Subsequently, we increased the size of the defect by removing
two consecutive anticlockwise spiral waveguides within the DW, constructing a defect of
length size Dy = 3

√
3a, as shown in the illustration in Figure 5(c1). In this scenario, the

edge states within the DW remained stable while passing through the defect, as seen in
Figure 5(c1,c2). However, when the defect length size reached Dy = 4

√
3a, as shown in
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the illustration in Figure 5(d1), there was some slight scattering, and with larger defect
length sizes, dispersion effects became more pronounced. Therefore, in the shared straight
waveguide coupling structure, the length of the defect should be less than Dy = 4

√
3a for

the system in this work (Lx = 22a, Ly = 30
√

3a). Secondly, we discussed the impact of the
defect position on the robustness of edge states. As shown in the illustration in Figure 5(e1),
we simultaneously removed one anticlockwise waveguide and one clockwise waveguide
within the DW. The results indicated that the light beam could pass through the defect
stably without scattering. This suggests that in the shared straight waveguide coupling
structure, edge states exhibit robustness to defects at any position. Lastly, we explored the
effect of the defect type on the robustness of edge states. When 16

√
3a < Ly ≤ 19a, we

gradually shifted the lattice to the right by the length of Lx = a each time, creating a 150◦

twisted surface DW defect, as shown in Figure 5(f1), where the scale is Lx = 7a, Ly = 30
√

3a.
The transmission results showed that the light beam could stably pass through the 150◦ DW
defect without dispersion, confirming the robustness of edge states when in the presence of
such twisted defects within the shared straight waveguide coupling structure. In summary,
for the shared straight waveguide coupling structure, it is crucial to consider defect size
as excessively large defects can cause dispersion in the transmission of edge states. The
position of the defects can be random, and any waveguide can be randomly removed from
the DW. The type of defect, such as a 150◦ twist, does not compromise the stability of the
edge states. These findings demonstrate the robustness of the edge states in the shared
straight waveguide coupling structure.

Similarly, the transport phenomena on the DW of the two opposite helical lattices
sharing the clockwise (or anticlockwise) helical waveguide array coupling are discussed, as
shown in Figures 6 and 7. Firstly, for the shared clockwise waveguide coupling structure,
the unidirectional and stable transmission of beams on the DW is driven by zigzag edge
states on the left of the DW and bearded edge states on the right of the DW (see blue and
red lines in Figure 2a), at kya = 2π/3 and kya = π in Figure 6(a1–a5,b1–b4). As the slope of
the dispersion curve is proportional to the transmission group velocity, and the zigzag edge
state on the left of the DW has a higher group velocity than the bearded edge state on the
right of the DW (as seen in Figure 2b), the zigzag edge state with a higher group velocity
drives the bearded edge state with a lower group velocity to be transported together.

The transmission results for when kya = π/3 are shown in Figure 6(c1–c5). The
DW does not drive the transmission effectively because the edge state only corresponds
to the bearded edge states of the anticlockwise helix lattice on the right (red lines in
Figure 2a,b), its slope is close to the flat band, and the transverse group velocity is too small
to independently drive transport.

The transmission results for when kya = 4π/3 are shown in Figure 6(d1–d4). The edge
state significantly disperses. The bearded edge state of the corresponding anticlockwise
helical lattice on the right (red line in Figure 2b) cannot drive the transport independently.
In addition, the corresponding zigzag edge state of the clockwise helical lattice on the
left (blue line in Figure 2b) can be transported, but the zigzag edge state is close to the
bulk band, resulting in dispersion. Moreover, the group velocity of the zigzag edge state
decreases, which cannot effectively drive the bearded edge state transport. Thus, transport
is driven only on the zigzag edge of the clockwise helical waveguide on the left, as shown in
Figure 6(d3). Secondly, for the shared anticlockwise waveguide coupling structure, which
is shown in Figure 7, the transport results are similar to what is shown in Figure 6, with the
only difference being the positions of the corresponding zigzag edge states and bearded
edge states. When kya = 4π/3, the beam only drives the transmission at the zigzag edge of
the anticlockwise helical waveguide on the right (Figure 7(d3)), which is different from that
on the DW of the shared clockwise waveguide coupling structure (Figure 6(d3)).



Photonics 2023, 10, 1220 10 of 14Photonics 2023, 10, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. The transport phenomena on the DW of the two opposite helical lattices sharing the clock-
wise helical waveguide array coupling with (a) 2 / 3yk a π= , (b) yk a π= , (c) / 3yk a π= , and (d) 

4 / 3yk a π=  at 0.35, 0R ϕ= = . All quantities are plotted in dimensionless units. 

 

Figure 6. The transport phenomena on the DW of the two opposite helical lattices sharing the
clockwise helical waveguide array coupling with (a) kya = 2π/3, (b) kya = π, (c) kya = π/3, and
(d) kya = 4π/3 at R = 0.35, ϕ = 0. All quantities are plotted in dimensionless units.

Analogous to the results from introducing defects in the DW for the shared straight
waveguide coupling structure, for the shared clockwise (or anticlockwise) waveguide
coupling structure, only the defect size needs to be considered. Introducing defects at
random positions within the DW will still maintain the stability of the edge states. Moreover,
for the shared clockwise waveguide coupling structure, during transmission, the left zigzag
edge state drives the right bearded edge state. Therefore, introducing phase factors in the
anticlockwise waveguide can more effectively control the DW edge states. Similarly, for
the shared anticlockwise waveguide coupling structure, it is more effective to control the
DW edge states by introducing phase factors in the clockwise waveguide.

This study used MATLAB for simulations, which were run on a Lenovo laptop.
The laptop was equipped with an Intel Core i7-8550U (1.8 GHz/L3 8M, Santa Clara,
CA, USA) processor 8 GB of DDR4 memory, a 1 TB hard drive, and an independent
AMD Radeon RX 550 graphics card, Santa Clara, CA, USA. The computation times for
calculating the dispersion structures of the shared straight, clockwise, and anticlockwise
waveguide coupling structures were 9.3639, 9.5509, and 9.4742 s, respectively. In the
shared straight waveguide coupling structure, the computation time for simulating 20 T
of transmission was 126.6588 s. In the shared clockwise/anticlockwise waveguide cou-
pling structure, the computation time for simulating 40 T of transmission was 291.8945
and 288.3710 s, respectively.
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4. Conclusions

Three kinds of FTI DW structures were designed in this study, composed of opposite
helical waveguides and straight, clockwise, and anticlockwise shared waveguides. Based
on the tight binding theory model, we investigated the existence, types, and robustness
of the edge states in these structures. Our results showed that the structure coupled by
two opposite helical waveguides sharing the middle node waveguide array did not affect
the overall topological invariant of the system. The existence type of the edge states
varied with the shared coupling structure, and the transmission rate of the edge states
varied with the degree of coupling between the shared waveguides. The edge states in all
three structure types exhibited robustness and were immune to defects of any position or
type. The properties of the edge states could be regulated by modulating the phase factor
and helical radii. The methods for controlling the edge states in different shared coupling
structures are provided. This may help deepen our understanding of how topological
structures influence the electronic and photonic properties of materials, inspiring the design
and development of novel topological devices.
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