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Abstract: A terahertz (THz) metamaterial design mechanism based on a stacked chip is proposed.
Unlike the traditional sandwich-type metamaterial design mechanism based on the “resonant layer–
dielectric layer–ground layer” structure, it adopts a stacked design of upper and lower metamaterial
chips to achieve a new structure based on the “dielectric layer–resonant layer–air layer–ground
layer” structure. This could break through the thickness limitations and construct an ultra-thin
metamaterial upper chip. To verify the effectiveness of this method, we applied it to the field
of THz perfect absorbers. We designed, simulated, and prepared a terahertz stacked chip-based
perfect absorber with an upper-chip thickness less than 1/800 of the wavelength. Then, a reflective
spectroscopy system based on a vector network analyzer is built to test the absorption performance.
The measured results show that it has an absorptivity of 98.4% at 0.222 THz, which is in good
agreement with simulations.

Keywords: terahertz; metamaterials; stacked chip; absorber

1. Introduction

Terahertz (THz) waves are the electromagnetic waves with a frequency of 0.1 THz~10 THz,
also known as the “terahertz gap” in the electromagnetic spectrum. It is considered to be
the core frequency band of the next generation of high-frequency electronics and commu-
nication technology, but there is a lack of materials in nature that can directly modulate
terahertz waves. Fortunately, owing to the emergence of metamaterials, it will be pos-
sible to overcome this problem [1–5]. Metamaterials, artificial micro-structure periodic
arrays, could provide unprecedented abilities to manipulate electromagnetic waves by
changing the periodic units’ geometric structures and dimensions. Many outstanding
achievements or applications based on metamaterials have been proposed, including
artificial magnetic material [6], negative refraction [7], the super-lens [8], the cloak [9],
the perfect absorber [10,11], and the modulator [12,13]. Currently, the thickness of most
metamaterial absorbers is typically between a fraction and a hundredth of the operating
wavelength (≥1/100 wavelength) [14–22]. Although it is already very thin, researchers
have been pursuing ultra-thin thickness in some special THz applications, such as sens-
ing [23,24], imaging lenses [25,26], and absorption [27,28]. This is because they can achieve
a higher sensitivity, smaller volume, and higher absorption performance. However, the
traditional THz metamaterials are based on the sandwich structure mechanism of the
“resonant layer–dielectric layer–ground layer” structure [29–32], or the full dielectric struc-
ture mechanism [33–36]. The above mechanisms require the design and processing of
the electric resonance structure, magnetic resonance structure, and support structure of
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metamaterials as a whole, fundamentally limiting the further reduction in the thickness of
the core structure of metamaterial components.

Therefore, to solve this problem, we propose a terahertz metamaterial design mecha-
nism based on a stacked chip. A structure based on the “dielectric layer–resonant layer–air
layer–ground layer” structure has been formed by designing the upper and lower metama-
terial chips separately and then stacking them. With the help of the “air layer”, the resonant
layer and auxiliary support structure layer of the metamaterial have been separated, al-
lowing for the breakthrough of thickness limitations and the construction of an ultra-thin
metamaterial upper chip. In addition, to verify the effectiveness of this method, we applied
it to the study of perfect absorbers. Through a literature research, it can be found that
many terahertz metamaterial absorbers, in order to achieve excellent absorptivity (greater
than 90%), typically have a thickness between 1/2 and 1/100 of the wavelength [17–21].
A further reduction in the thickness would result in a rapid decline in the absorption. To
overcome this contradiction, we designed and prepared a terahertz perfect absorber based
on a stacked chip, with an upper chip thickness less than 1/800 of the wavelength. Then,
we build a reflective spectroscopy system based on a vector network analyzer to test the
absorption performance. The measurement results indicate that the absorption rate can
reach 98.4% at 0.222 THz under the condition of ultra-thin thickness.

2. Design and Principle

Figure 1 depicts the schematic diagram of the composition of stacked chip-based
terahertz metamaterials, which designs the upper chip and the lower chip separately,
and then stacks them together to form a stacked chip. The upper chip performs core
functions and can be combined with other technologies to form sensors, imaging detectors,
modulators, and so on. The lower chip implements the functions of auxiliary regulation
and support substrate.
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Figure 1. Schematic diagram of the composition of stacked chip-based terahertz metamaterials.
(a) Upper chip application diagram; (b) Lower chip application diagram; (c) Stacked Chip Schematic.

The design flow chart of the stacked chip-based THz metamaterials can be shown in
Figure 2. The first thing to be determined is the specific application of the designed meta-
material chip, such as THz sensors, imaging lenses, absorbers, etc. Different applications
correspond to different structures. Therefore, the second step is to select the initial material
of the metamaterial chip and determine the initial unit structure based on the specific
application and technical specifications. It should be noted that the designed terahertz
metamaterial chip is composed of a stack of upper and lower layers of chips, with the
upper chip achieving core functions and the lower chip achieving auxiliary regulation func-
tions. Therefore, the third step is to divide the structure, design the upper and lower chip
structures separately, and model them in electromagnetic simulation software. It should be
mentioned that an air cavity layer will be formed between the two chips. The fourth step is
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combining the upper and lower chips to establish an initial stacked terahertz metamaterial
chip model.
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After that, the initial model should be simulated and analyzed based on the applica-
tion requirements. The structural and dimensional parameters are gradually optimized
according to the simulation results. Then, determine whether the design indicators (such
as absorption rate, sensitivity, etc.) are met. If the indicators are not met, return to continue
modifying and optimizing the relevant parameters. If the indicators are met, proceed to
the fifth step of “fabrication”. In this step, semiconductor-based processes (such as coating,
lithography, and etching) are typically used to fabricate the upper chip and the lower
chip separately. Then, the chips are stacked. The sixth step is to test the performance
parameters of the stacked chip using a THz-TDS (terahertz-time domain spectrometer) or
high-frequency vector network analyzer. If the test results do not meet the design specifica-
tions, it is necessary to redesign and optimize the structure, re-model and simulate, repeat
the optimization steps, and reprocess the test chip until the design specifications are met.
The left side in Figure 2 is a flow chart of the entire design process, and the right side in
Figure 2 is a schematic diagram of the key design process.
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In order to further explain the design ideas of the stacked metamaterial chip, we
take the design of classic square-ring metamaterial as an example, and, respectively, give
the model schematic diagrams based on the traditional sandwich design idea and the
stacked chip-based design idea, as shown in Figure 3. Among them, Figure 3a is a side-
view schematic of a metamaterial chip based on the traditional sandwich design concept,
which is composed of a metal resonant layer, a dielectric layer, and a metal ground layer.
The entire chip is an inseparable whole. Figure 3b depicts a side-view diagram of the
metamaterial chip based on the design idea of the stacked chip. It can be seen that the
upper chip and the lower chip are stacked, the upper chip is composed of a dielectric
layer and a metal resonance layer, and the lower chip is composed of a metal layer and
an air layer. The entire metamaterial chip adopts a separate design. Compared with the
traditional structure, the dielectric layer and the metal resonant layer of the new structure
are placed in reverse position. In addition, the upper chip is used as the core structure,
and the performance parameters of the chip can be adjusted by designing the upper chip.
Besides, some electromagnetic parameters, such as the operating frequency and resonance
intensity, can also be adjusted by designing gaps in the air layer.
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Figure 3c depicts the three-dimensional schematic of the metamaterial chip based on
the traditional sandwich design concept. It can be seen that the thickness of this type of
metamaterial structure is limited by the dielectric layer between the resonant layer and
the metal ground layer, and it is difficult to further reduce the thickness without ensuring
the same performance. In situations where ultra-thin thickness (such as highly sensitive
sensors, ultra-thin imaging lenses, and ultra-thin absorbers) is required, it will be difficult
to achieve optimal performance. Figure 3d shows the three-dimensional diagram of the
metamaterial chip based on the design idea of the stacked chip. It can be seen that by
stacking the upper and lower chips, a new structure based on the “dielectric layer–resonant
layer–air layer–ground layer” structure is achieved. The upper chip (dielectric layer and
resonant layer) performs the core functions, while the lower chip (air layer and ground
layer) performs auxiliary adjustment functions. Based on this design, the thickness of the
upper chip can be reduced to the greatest extent under the premise of ensuring the optimal
performance of the metamaterial chip.

The above design method may increase the design complexity and time, but it also
has unique advantages, which are as follows:

(1) The upper chip and the lower chip are designed separately, making the design
more flexible;
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(2) The stacking of the upper and lower chips can make the upper chip very thin (<1/800
wavelength), achieving some characteristics that, with traditional terahertz metamate-
rials, are difficult to achieve.

For example, it can be used to construct ultra-thin upper-chip structures, and then
combined with MEMS (micro-electro-mechanical systems) technology to construct terahertz
sensors, achieving a higher sensitivity. To verify this viewpoint, we compared it with
traditional metamaterial structures. Figure 4a shows a schematic diagram of the stacked
metamaterial, while Figure 4b is a schematic diagram of a metamaterial using a traditional
sandwich design structure. Although both schemes can achieve the perfect absorption of
terahertz, due to the fact that the thickness of the upper chip of stacked metamaterials is
only 1/10 of that of traditional metamaterials, the temperature rise is faster after absorbing
electromagnetic waves of the same energy (1 mW). We simulated the time-temperature
curves of two structures under terahertz radiation using the EM thermal coupling module of
CST STUDIO SUITE. The specific simulation method is as follows: Firstly, electromagnetic
simulations are performed to calculate the heat loss distributions. During the simulation
process, the boundary conditions are set to unit cell in the x and y directions and open
(add space) in the z direction. The tetrahedral meshing and frequency domain solver
based on finite element method are used for simulation. Secondly, after obtaining the
heat loss distribution, thermal simulation is carried out. During the simulation process,
the background material is set to air and the background temperature is 293.15 k. The
boundary conditions are set to open in the x and y directions and open (add space) in the z
direction. The tetrahedral meshing and thermal transient solver are used for the simulation
to obtain the temperature distributions.
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As shown in Figure 4c, the upper chip of the stacked metamaterial can achieve a
higher temperature rise in a shorter time. The higher the temperature rise, the greater the
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degree of mechanical deformation. If we add pressure-sensitive materials in the area with
the greatest deformation and read the voltage changes through a voltage probe, we can
construct a highly sensitive terahertz detector, as shown in Figure 4d. In addition, the
stacked metamaterial design will increase the repetition frequency of the detector. The main
reasons are as follows: (1) After the metamaterial chip heats up, there are two main ways to
cool down; one is to transfer heat through air, and the other is to transfer heat through the
chip’s own material. Because the metal resonant layer is a series of discontinuous periodic
unit structures, its heat transfer must be carried out through the air and dielectric layers,
so the main consideration is the heat transfer of air, the dielectric layer, and the metal
ground. It is known that the thermal conductivity of air is about 0.026 W/m·K, the thermal
conductivity of the dielectric layer’s silicon nitride material is about 140 W/m·K, and the
thermal conductivity of gold is about 317 W/m·K, so the thermal conductivity of air is
almost negligible, and the chips are mainly located in the dielectric layer and metal ground
for heat conduction and cooling. (2) The thermal resistance of traditional metamaterials
and stacked metamaterials can be calculated for quantitative analysis. As is well known,
thermal resistance is the ability of a material to hinder heat conduction. The larger the
thermal resistance of a thermal conductive material, the stronger its resistance to heat
conduction and the less likely it is to cool down. On the contrary, the smaller the thermal
resistance, the easier it is to cool down. The calculation formula for thermal resistance R is
as follows:

R =
d

k·s (1)

Here, d is the thickness of the material, k represents the thermal conductivity of the
material, and S is the cross-sectional area in the direction of the heat flow rate. This is
because stacked metamaterials consist of an upper chip and a lower chip, and the upper chip
has only a very thin dielectric layer on it. Therefore, the main method of heat conduction
and cooling is achieved through the dielectric layer. Assuming that the thickness of the
upper chip dielectric layer is about 1/10 of that of the traditional metamaterials, the
thermal resistance of stacked metamaterials will be less than 1/10 of the thermal resistance
of traditional metamaterials. Therefore, heat conduction is faster and cooling is faster,
which effectively improves the repetition frequency of the detector. In summary, the
design mechanism based on stacked chip breaks through design limitations and minimizes
the thickness of the upper chip, laying the foundation for the research of ultra-thin and
high-performance metamaterial chips.

3. Application for Perfect Absorption

To demonstrate the effectiveness of the metamaterial design mechanism, we apply it to
the terahertz perfect absorption field. As is well known, the thickness and absorption have
always been two conflicting key parameters in designing a high-performance absorber.
However, in the case of perfect absorption, the thinner the thickness, the more advanta-
geous it is to improve the response performance and reduce the power consumption of
terahertz components. Therefore, we will design an ultra-thin (upper chip) terahertz perfect
absorption chip based on the stacked structure.

According to the proposed design process, we first determine the application field as
the perfect absorption of terahertz waves, and then determine the initial structure of the
metamaterial periodic unit. This structure can be based on classical resonant structures and
gradually expanded from simple to complex. In this article, the initial structure chosen is a
classical square ring combined with a pair of resonant arms. The upper chip uses SiNx as the
dielectric layer and gold as the resonance layer, which plays the core absorption role. When
the terahertz wave illuminates the upper chip, the resonant layer generates resonance, and
performs the efficient absorption of terahertz energy under the joint action of the dielectric
layer. The lower chip serves as an auxiliary regulation chip, using gold as the ground layer
and leaving an air layer in the middle. By adjusting the size of the air layer, the absorption
rate and frequency of the absorption chip can be further adjusted. Then, establish a model
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in the electromagnetic simulation software HFSS 19.0 and conduct the simulation. Based on
the simulation results, the chip is iteratively optimized until it meets the required indicators.
Figure 5a depicts the simulation model. Figure 5b shows the structure of a unit of the
terahertz metamaterial absorption chip, with a size of 315 µm × 425 µm. Figure 5c shows
the side view of the chip. It can be seen that the upper chip uses 1.2 µm SiNx as the
dielectric layer and 0.5 µm gold as the resonance layer, so the thickness of the upper chip
is only 1.7 µm (about 1/800 of the wavelength). The lower chip uses 0.5 µm gold as the
metal ground layer and silicon as the substrate. The upper and lower chips are combined
by gold–gold bonding to complete the stack. The three-dimensional diagram of the bonded
chip is shown in Figure 5d.
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Next, it is necessary to further optimize and analyze the size parameters of the estab-
lished model. As shown in Figure 6, the gap g between the ring and the resonant arms
and the width w_leg of the resonant arms were simulated by the parametric scanning of
the absorption spectrum. The influence of these two parameters on the performance of
the absorber was analyzed, and the optimal absorption spectrum and optimized overall
structure size were obtained according to the simulation results.

Figure 6a depicts the influence of the gap g between the resonant square ring and
the resonant arm on the absorption frequency of the metamaterial absorption chip. It can
be seen from the simulation results that when the gap increases from 6 µm to 12 µm, the
absorption frequency of the stacked metamaterial absorption chip moves from 0.218 THz
to 0.224 THz. Figure 6b shows the effect of the resonant arm width w_leg on the absorption
frequency of the metamaterial absorption chip, where the absorption frequency of the meta-
material absorption chip moves from 0.225 THz to 0.216 THz when the width increases
from 14 µm to 20 µm. Finally, we selected the desired 0.220 THz as the optimal absorption
frequency point, and the S parameters and absorption curve obtained after parameter
optimization are shown in Figure 6c. The absorptivity exceeds 99% at 0.22 THz and exceeds
80% at 0.21–0.23 THz. The specific dimensions of the optimized structural unit are shown
in Figure 6d. It could be concluded from the simulation results that the THz metama-
terial absorber designed based on the stacked chip scheme has nearly 100% absorption
performance when the thickness of upper chip is less than 1/800 of the wavelength.
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The equivalent circuit model of the metamaterial can be used to analyze the absorption
mechanism of the chip. The absorber is composed of a stacked upper chip and lower chip,
so it can be equivalent to two resonant circuits, as shown in Figure 7a,b. Among them,
Figure 7a represents the resonant circuit of the upper chip. Its metal square ring and double
arms structure generates equivalent capacitance C1, C2; equivalent inductance L1, L2; and
equivalent resistance R1, R2. Figure 7b shows the resonant circuit formed by stacking the
upper and lower chips. The resonant structure of the upper chip and the metal ground of
the lower chip can be equivalent to capacitance C3 and C4. The current generated by the
resonant structure of the upper chip is reversed from the induced current generated by the
metal ground, resulting in an equivalent inductance L3. When the terahertz wave irradiates
the metamaterial chip, it will cause strong resonance at the resonant frequency point
and generate strong resonant currents. They are mainly dissipated in equivalent resistors
R1 and R2, converting energy into heat, so electromagnetic waves can be absorbed perfectly.

We simulated the electric field distribution of the upper chip and found that the
resonant electric field is mainly distributed between the square ring and the resonant arm,
consistent with the equivalent circuit, as shown in Figure 7c. Meanwhile, by simulating the
electric field distributions of the lower chip and the stacked chip, it can be seen that the
reverse induced electric field generated by the metal ground of the lower chip is consistent
with the position of the upper chip, as shown in Figure 7d,e. At the same time, the resonant
electric field is mainly concentrated near the double resonant arms of the upper chip, and
the resonant electric field of the upper chip is obviously stronger than that of the lower chip.
Therefore, the upper chip can perform the core function, and the lower chip can perform
the auxiliary regulation.
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4. Test and Analysis

According to the proposed design process, the next step is to prepare and test the
designed metamaterial absorption chip, and then analyze whether the test results meet the
design indicators.

Figure 8 presents the fabrication process of the stacked metamaterial absorber, in-
cluding the upper and lower chip processes. In the upper chip process, a silicon wafer
is selected for the double-sided polishing firstly as shown in Figure 8a. The polishing
technology is used to ensure the uniformity of the back ICP silicon etching. Then, the
double-sided SiNx deposition is performed on the upper chip. Thirdly, the upper chip
is photolithographed and etched to form a patterned silicon nitride thin film framework
structure. Fourthly, the upper chip is photolithographed, coated with gold film, and lifted
off to form a patterned metal structure. Fifthly, the dry etching (ICP) technology was used
to etch the silicon substrate of the upper chip. Then, the silicon substrate of the upper chip
is further etched using wet etching technology until it is completely removed.
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Meanwhile, as shown in Figure 8b, a silicon wafer is selected for double-sided polish-
ing. Then, the lower chip is photolithographed and etched to form a cavity with a depth of
35.8 µm. Next, the lower chip is coated to form a metal film plate with a thickness of 500 nm.
Finally, the upper and lower chips are bonded together using bonding technology to form
a stacked metamaterial chip as shown in Figure 8c. Besides, we give a comparison between
this processing method and the traditional metamaterial processing method. It can be seen
that although the process of traditional metamaterial absorbers is simpler and faster, the
proposed stacked metamaterials can achieve ultra-thin chip thickness.

We compare the advantages and disadvantages of the processing of laminated meta-
materials with those of conventional metamaterial processing methods, as shown in Table 1.

The prepared chip is shown in Figure 9, where Figure 9a is the photo of the absorption
chip, and Figure 9b depicts the micrograph of the 3 × 3 units taken with a microscope.
The overall size of the chip is 2.2 cm × 2.8 cm, with 50 × 50 = 2500 absorber unit cells.

Next, test the spectral characteristics of the processed chip and obtain the absorption
performance through the results. What need to be tested are the reflection spectrum and
the transmission spectrum, and then the calculation formula for the absorption spectrum
can be expressed as

A(ω) = 1− R(ω)− T(ω) = 1− |S11|2 − |S21|2 (2)

here, R(ω) stands for reflection, T(ω) is the transmission. It should be mentioned that S11
and S21 are the S parameters of metamaterial chips, representing the reflection and transmis-
sion performance of the chip, respectively. Among them, R(ω)=|S11|2 and T(ω)= |S21|2.
Since the lower chip of the designed stacked metamaterial terahertz absorber contains a
metal ground layer, the terahertz wave cannot penetrate, so the transmittance T(ω) = 0.
After simplification, the calculation formula for the absorption spectrum is

A(ω) = 1− R(ω) = 1− |S11|2 (3)
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Table 1. Comparison of processing methods.

Type Processing
Time

Processing
Complexity Thickness

Stacked metamaterial Long High Ultra-thin (upper chip)
Traditional metamaterial Short Low Thick
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After that, we built a reflective spectroscopy system based on a vector network analyzer
to test the S parameters of the processed absorption chip. Figure 10a shows the block
diagram of the test of the reflectance spectroscopy system. Port 1 of the vector network
analyzer is connected to a collimated antenna, and the emitted terahertz wave is focused by
a lens and then radiated to a chip or reflector plate, where a symmetrical focusing lens at
the other end receives and focuses the reflected terahertz wave, which is then transmitted
by the collimated antenna to port 2 of the vector network analyzer.
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In order to accurately measure the S parameter, two steps are needed. The first step
is to measure an object with near 100% reflectivity (gold plane reflector) as calibration to
obtain the S-parameter Sca. The second step is to keep the test system unchanged, replace
the gold reflector with the metamaterial chip as a sample for data measurement, and obtain
Ssa. Considering the loss of the environment (e.g., air), the two S parameters need to
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subtract, and the final S parameter is S = Ssa − Sca. Finally, the absorption spectrum can be
calculated by Formula 2, and the obtained actual absorption spectrum of the metamaterial
chip is shown in Figure 10b.

It can be seen from Figure 10b that the peak optimal absorption frequency of the
chip is 0.222 THz, and the measured absorption at this frequency is 98.4%, which is
close to perfect absorption. The absorptivity exceeds 95% in the entire frequency band
0.215–0.230 THz. This experimental result shows a bias of 2 GHz in the optimal absorption
frequency compared to the simulation result, mainly because there are inaccuracies in the
processing, and the structural dimensions of the metamaterial absorber are not exactly the
same as the simulation result. The actual processed sample size is slightly smaller than the
simulation size, resulting in a decrease in the equivalent capacitance and inductance of the
resonant structure of the upper chip in the electromagnetic field, thus shifting the resonant
frequency towards high frequencies. Despite these objective errors, they do not affect the
practical application of the chip. From the experimental results, we still achieved the goal
of maintaining high absorption at a specific frequency with an upper chip’s thickness of
only about 1/800 of the wavelength.

In addition, we surveyed the recent literature on ultra-thin THz metamaterial ab-
sorbers. Then, five representative papers were selected and compared with our work, as
shown in Table 2. It can be concluded that the stacked chip metamaterial absorber has high
absorptivity and the thinnest functional layer (upper chip) thickness.

Table 2. Comparison between the proposed work and existing works.

Structure Type Frequency Absorptivity Thickness Reference

1
Metal

Dielectric
Ground

4.46 THz >80% λ/80 [18]

2
Metal

Dielectric
Ground

2.3 THz 90% λ/3 [19]

3
Metal

Dielectric
Ground

0.8–1.2 THz 90% λ/5 [20]

4
Metal

Dielectric
Ground

3.8 THz 95% λ/60 [21]

5
Metal

Dielectric
Ground

3.1 THz 90% λ/30 [22]

6 Stacked
Chip 0.22 THz 98% λ/800 (upper chip) Our work

5. Conclusions

In summary, a novel terahertz metamaterials design mechanism based on a stacked
chip is demonstrated. By taking advantage of the design that separates the upper and lower
chips to achieve a new structure based on the “dielectric layer–resonant layer–air layer–
ground layer” structure, the upper chip’s thickness of the metamaterial can be reduced to
less than 1/800 of the wavelength. To verify the proposed design, we have applied it to
the field of THz perfect absorption. We designed, fabricated, and demonstrated an ultra-
thin THz metamaterial perfect absorber whose optimal absorption frequency is 0.22 THz.
Then, a reflective spectroscopy measurement system based on the vector network analyzer
was built to test the absorption of the sample. The tested results agreed with the simulation
results. Considering the unparalleled ultra-thin thickness and excellent performance, we
believe that the THz metamaterials and its design mechanism based on a stacked chip
can serve as a promising platform to develop advanced devices for a wider range of THz



Photonics 2023, 10, 1226 13 of 14

applications, especially in fields such as THz high-sensitivity sensing, compact meta-lenses,
and perfect absorption.
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