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Abstract: This study proposes a modified optical design to improve the issue of autofocus accuracy
in existing optical systems. The proposed system uses lens offset to convert incident light into
non-parallel light, achieving a focus shift and avoiding severe deformation of the light spot near the
focal point of the objective lens. Based on triangulation theory and optical focusing theories such as
the centroid method, the proposed optical design improves the shortcomings of existing technology.
Experimental results demonstrate that the proposed optical autofocusing system has better autofocus
accuracy than traditional systems while also reducing the difficulty of image processing. In summary,
the proposed optical system is not only an effective autofocusing technology but also a highly valuable
optical inspection and industrial application technology. This system has broader application and
development opportunities for future research and practice.
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1. Introduction

The widespread application of optical measurement technology in areas such as auto-
mated engineering, quality control, and industrial inspection has become a crucial detection
method [1–5]. In the process of optical inspection, high-precision measurement and analysis
are indispensable, necessitating the use of highly precise optical systems. Particularly in
non-contact optical inspection methods, automatic focusing becomes crucial as focusing
drift during the image acquisition process can lead to blurry images, significantly affecting
the efficiency and accuracy of defect analysis. While manual focusing is a viable solution, its
inherent inaccuracy and time-consuming nature make automatic focusing a more practical
alternative. Therefore, automatic focusing is regarded as a potential solution to enhance
focusing accuracy and speed. To achieve this goal, the automation of autofocus has replaced
manual efforts, becoming a significant research direction in the field of non-contact optical
inspection. In this context, research on optical autofocus has gradually become a focal
point for researchers and technology companies. Challenges include the optimization
of hardware components and the application of advanced image processing techniques.
Despite making significant progress, the issue of spot distortion in close-range shooting
scenes remains a technical challenge. Even with advanced hardware and image processing
techniques, the spots detected by light sensors in these scenes may still undergo severe
deformation, thereby affecting the accuracy of automatic focusing. Autofocus systems,
crucial in modern camera technology, display a dichotomy between image-based autofocus
and optics-based autofocus. Image-based autofocus relies on the analysis of images cap-
tured by the camera’s CCD (charge coupled device) or CMOS (complementary metal-oxide
semiconductor) sensors [6–10]. These sensors calculate essential information for image
processing, encompassing parameters such as image sharpness and the spatial frequency
function of the image. By employing intricate functions, these parameters are computed
to derive the focus value, forming the foundation for automated autofocus determination.
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However, this autofocus method is characterized by a relatively slower speed due to the
necessity of continuous adjustment of the focus distance until optimal focusing is achieved.
Conversely, optics-based autofocus hinges on the shape of the light spot or variations in
light intensity detected by photosensors to ascertain the optimal focus distance [11–14].
Remarkably, this method boasts faster response speeds and higher accuracy in autofocusing
when compared to its image-based counterpart. Nevertheless, it’s crucial to acknowledge
that the optics-based autofocus method might be susceptible to environmental factors that
could potentially impact the accuracy of the focus, as indicated by some studies [15]. Cur-
rently, numerous researchers are dedicated to enhancing the accuracy of optical autofocus,
whether through improving hardware components [16,17] or employing advanced image
processing techniques [1,18–22]. Despite the beneficial aspects of various methods, it has
been observed that, regardless of the means used to improve autofocus accuracy, the light
spot detected by the light sensor may undergo significant distortion when the test object
is near the focus point. Such distortions not only complicate image processing but also
adversely affect autofocus precision, particularly in close proximity to the focus point.
Therefore, the objective of this study is to refine the existing autofocus architecture to allevi-
ate the issue of light spot distortion. This was validated through a series of experiments to
assess the effectiveness of the proposed approach. The new method not only enhances the
autofocus accuracy but also reduces the required image processing time, offering a more
feasible solution for overall system performance improvement.

2. Traditional Optics-Based Autofocusing System with Centroid Method
2.1. Principle of Traditional Autofocusing System with Centroid Method

Figure 1 depicts a schematic of the light spots in a conventional optics-based autofo-
cusing system utilizing the centroid method under different defocusing conditions. Here, d
represents the diameter of the laser source, and δ represents the defocusing distance of the
test object. First, a parallel laser beam passes through the knife, resulting in a semi-circular
shaped light spot. The semi-circular incident beam then passes through a lens with a focal
length of f1, and focuses on the surface of the test object. If the test sample is positioned
at the focus point of the objective lens, the reflected light from the object passes through
the lens and sensor, ultimately forming an ideally infinitesimal light spot on the sensor.
However, if the test sample is not positioned at the focal point, defocusing occurs, and the
light spot observed on the sensor will exhibit varying shapes based on the magnitude and
direction of defocusing.
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The position of the test sample affects the variation of the light spot reflected on the
sensor. Specifically, whether it is located at the front focal point, focal point, or back focal
point. When the test sample is positioned further away from the focal point, the semicircular
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light spot will increase in size, indicating that the center of the light spot is moving farther
away from the baseline. Figure 2 shows that the light spots inside and outside the focal
point are inverted and oriented in opposite directions. The displacement of the center of
gravity of the light spot from the baseline, along with changes in its size and distance, can
serve as a basis for determining the direction and distance of defocusing [23,24].
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2.2. Structure of Traditional Autofocusing Method with Centroid Method

Figure 3 shows the optical path diagram of the traditional optics-based autofocusing
structure with the centroid method [23,24]. A straight laser beam is directed downward,
and a knife is placed on the optical axis of the system at a suitable distance, causing the
sharp edge of the knife to produce a semi-circular beam. The semi-circular beam passes
through a mirror and is directed towards the objective lens by a beam splitter, which focuses
the beam onto the sample. The incident light will reflect or scatter depending on the surface
material of the test object, and the reflected beam will follow the original path back. The
beam splitter is used to redirect the reflected light 90◦ before focusing the semi-circular
beam onto a sensor. The information about the reflected light spot received by the sensor
is used to determine the focusing condition of the test object. However, environmental
disturbances and unstable laser sources can cause the light beam’s shape to deviate from
a perfect circle, resulting in an elliptical shape. As a result, when using the knife-edge
centroid method to calculate the defocus distance near the focus, a greater amount of error
may occur due to the significant distortion of the returned light beam.
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3. Proposed Autofocusing Structure and Prototype Model
3.1. Structure of Proposed Autofocusing System

Figure 4 illustrates the basic autofocusing structure proposed in this study. As shown,
the optical path architecture of the autofocus system utilizes a 658-nanometer laser diode
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(HL6501MG, Thorlabs, Newton, NJ, USA) as the light source for focus detection. The reason
for choosing a laser diode is its compact and lightweight nature, along with the ability
to change output power rapidly within a short timeframe, making them easy to control
and adjust. An adjustable offset lens (A220TM, Thorlabs) is placed after the laser, enabling
modification of the beam’s parallelism. The modified beam passes through a knife-edge
positioned on the optical axis of the system, transforming the originally circular beam
into a semi-circular shape. The semi-circular beam then passes through a beam splitter
and is reflected off a 45◦ red reflective filter towards a focusing lens. Finally, the beam is
focused onto the sample (PFR10-P01, Thorlabs, a smooth-surfaced silver mirror) through
the objective lens (40×, Olympus, Westborough, MA, USA). It is important to note that
in the diagram, f1 denotes the focus of the objective lens, while f2 represents the point
where the beam is ultimately converged. Since the incident light entering the objective
lens is not parallel, the light’s focus does not align with the focus of the objective lens. The
reflected light retraces its path to the 45◦ red reflective filter and is reflected towards the
beam splitter. The beam splitter then redirects the light 90◦ and passes it through a pair of
convex lenses (LB1676-A, Thorlabs), which focus the semi-circular light spot onto CCD1
(acA5472-5gc, Basler, Ahrensburg, Germany). Ultimately, the out-of-focus position signal
is fed back to the motor (UPL-120, PI, a step motor with axial motion range of 13 mm
and 0.05 µm positioning repeatability, Massachusetts, USA) through image processing
algorithm software, thereby completing the autofocus system. The purpose of the coaxial
visual real-time imaging system is to capture an image of the test object and verify whether
the system has achieved focus. It operates similarly to a microscope and consists of coaxial
vision (1-60255, Navita, Sao Paulo, Brazil), an image sensor which is same as CCD1, and an
objective lens. The objective lens is shared with the autofocusing optical path.
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The conventional method of focusing involves aligning the coaxial vision with the
focus point and adjusting the focus path to achieve the smallest spot size, which is more
intuitive. However, this method has a drawback: the spot is accurate only at the focus
point and becomes heavily distorted before and after the focus point, leading to challenges
in image processing and calculation. In this study, we addressed this issue by modifying
the conventional focusing method. Instead of aligning the coaxial vision with the focus
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point where the focus path has the smallest spot size, we selected a section of the spot that
forms a clear and uniform half-circle, where changes in focus can be easily observed, as the
reference for focusing, as shown in Figure 5.
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In comparison to the conventional approach (Figure 3), the system proposed in this
study (Figure 4) achieves the ability to shift the focus point and mitigate the issue of severe
distortion during measurement or image processing through the adjustment of an offset
lens. Furthermore, this adjustment enables us to attain a more distinctly visible semi-
circular spot, which displays clear variations. This not only reduces the complexities of
image processing but also enhances the overall system accuracy. Additionally, employing
a coaxial vision system allows for real-time observation of the focusing condition of the
sample, confirming whether the sample is properly focused or not. The light spots obtained
by the CCD at the focus before (left side) and after shifting (right side) are shown in
Figure 6. It is evident that the light spot after shifting exhibits a distinct semi-circular
contour, providing further evidence that shifting can prevent severe distortion of the light
spot. The RMS radii of the light spot before and after focus shifting are 4.37 µm and
127.53 µm, respectively, while the peak irradiances are 45.8 W/cm2 and 0.23698 W/cm2,
respectively. The centroid distance will be presented in Section 4. It is important to note
that changes in the light spot on the focal point indirectly result in a reduction of the focus
range. This means that as the distance from the focal point increases, the light spot captured
by the CCD will quickly exceed the CCD’s reception range. The method proposed in this
study, despite sacrificing the focus range to some extent, significantly enhances the focusing
accuracy near the focal point. Furthermore, as mentioned earlier, the proposed system is
designed for measuring smooth surfaces and can be applied in both the industrial and
medical fields.
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3.2. Experimental Prototype and Procedure of Proposed Autofocusing System

Figure 7 shows a photo of the experimental prototype, while Figure 8 displays the
spots obtained at various defocus distances before and after shifting the focus point. Based
on Figure 8, it is apparent that the spots acquired before shifting the focus point lack a
distinct shape, and the distortion of the spots close to the focus point is inconsistent. This
leads to increased random error in the system. In contrast, the spots obtained after shifting
the focus point exhibit a clear semi-circular shape with minimal variation and error across
multiple experiments. These advantages decrease the preprocessing steps and simplify
image processing, enabling a wider range of threshold values for binarization, thereby
enhancing overall accuracy.
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Conducted in a controlled laboratory environment, the experiment involves a system-
atic procedure. Initially, the sample (PFR10-P01—25 mm × 36 mm protected silver mirror)
is placed on a movable platform. Utilizing coaxial vision, the platform is finely adjusted
to ensure precise alignment with the focal point. Subsequently, the platform undergoes
translation within a defocus range spanning from −600 µm to 600 µm, with each step set at
50 µm, resulting in a total of 25 data sets. To scrutinize the impact in the vicinity of the focal
point, a more detailed experiment is conducted. This focused investigation specifically
concentrates on a narrower defocus distance, ranging from −60 µm to 60 µm, with each
step at 5 µm. This refined approach generates an additional 25 data sets. Following this, a
corrective measure is introduced by shifting an offset lens by 1.5 mm. This strategic adjust-
ment simultaneously redirects the focus away from the region of severe distortion while
maintaining the spot size within the CCD sensor range. The preceding experimental steps
are then meticulously replicated. Following the experimental replication, each spot image
undergoes additional image processing. This includes operations such as dilation, erosion,
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opening operation, closing operation, binarization, and Gaussian filtering. This sequence
of processing steps enhances precision, enabling the extraction of specific features and
information with increased accuracy. Upon completing image processing, the defocusing
distance value is derived by calculating the distance from the centroid of the spot to the
semi-circular axis. The calculated results are promptly integrated into the experimental
setup, providing real-time feedback to the platform. This feedback mechanism achieves the
desired effect of automatic focusing, contributing to the overall efficiency and reliability of
the experimental process. The entire experimental protocol is reiterated five times, resulting
in a robust dataset comprising a total of 500 data sets. This iterative approach not only
reinforces the consistency of the results but also facilitates statistical analyses, enhancing
the scientific validity of the study.

4. Experimental Results of Proposed System
4.1. Experimental Results

To understand the effect of spot shift on accuracy, we conducted two sets of experi-
ments under lab conditions using the traditional centroid method and the improved system
proposed in this study. The distance between each defocus position was 50 µm, and we
repeated the experiments five times. We obtained two sets of data, which are shown in
Figures 9 and 10. The horizontal axis represents the defocus distance, while the vertical
axis represents the number of pixels on the CCD. The red line connects the average values
obtained from each measurement point after five experiments, while the blue lines repre-
sent the error bars for each measurement point across the five experiments. Based on the
principles of geometric optics and triangulation, the centroid distance of the spot, which is
the distance between the centroid and the centerline, exhibits a linear relationship with the
defocus distance [23,24]. From Figures 9 and 10, it can be observed that there is minimal
disparity in the trends of defocus distance and inter-center distance before and after the
focus shift. The R-squared values for the two datasets are 0.99 and 1, indicating a high
level of fit. The repeatability of focus positions before and after the focus shift are 3.4 pixels
and 2.3 pixels, respectively, with the maximum repeatability error occurring at a defocus
distance of 50 µm.
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The aforementioned data confirm the experiment’s accuracy; however, they fall short
of fully illustrating the impact of the severely deformed region near the focus on experi-
mental errors. Therefore, we conducted a more detailed experimental study on the defocus
area near the focus point. Figures 11 and 12 present the data obtained using the traditional
centroid method and the proposed improved system in this study, respectively. The hori-
zontal and vertical axes represent the defocus distance and the number of pixel grids on the
CCD, respectively. Similarly, the red line connects the average values obtained from each
measurement point after five experiments, while the blue lines represent the error bars for
each measurement point across the five experiments. It is important to note that, in this
experiment, we adjusted the defocus interval to 5 µm, providing finer granularity compared
to the previous experiment. This adjustment allowed us to observe enhanced accuracy,
particularly in the vicinity of the focus point. The R-squared values for the two datasets
are 0.984 and 0.999, with repeatability values of 3.92 pixels and 1.14 pixels, respectively.
As anticipated, the data obtained before the focus shift did not exhibit significant varia-
tions. However, when we reduced the defocus interval and narrowed the defocus range,
the impact of severe spot deformation became clearly observable. This further validates
the effectiveness of the proposed improved system in addressing spot distortion, thereby
enhancing the system’s reliability and precision.
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Figures 13–16 show the autofocus accuracy before and after the focus shift at different
defocus distances, with defocus intervals of 50 µm and 5 µm, respectively. Figures 13 and 14
illustrate that, under consistent image processing techniques and in the presence of similar
environmental disturbances, the maximum errors before and after the focus shift within the
extended defocus range are approximately −7.1 µm to 3.7 µm and −3.7 µm to 3.7 µm, re-
spectively. The corresponding repeatability values are 6.3 µm and 3.8 µm. Figures 15 and 16
show the relationship between defocus distance and error within a shorter defocus range.
The maximum errors for the two datasets are approximately −11.1 µm to 8.0 µm and
−2.3 µm to 1.8 µm, with corresponding repeatability values of 7.3 µm and 3.8 µm, re-
spectively. Consequently, the outcomes of this study carry both scholarly and practical
importance. They not only hold academic value but also offer practical applicability in
the realms of high-precision measurement and image processing. The uniqueness of our
method lies in its relative simplicity compared to other precision improvement systems, as it
only requires the use of an offset lens without the need for additional expensive equipment.
To integrate our method into existing autofocus systems, you simply need to add the offset
lens and employ a specially designed mechanism to secure the lens, ensuring it remains
stable and unaffected by random movements or vibrations. However, the robustness of this
mechanism is crucial for the reliability of the system. In practical applications, the reliability
and stability of the mechanism often determine whether our autofocus system can provide
high precision performance under various environmental conditions, ensuring that the lens
is not disturbed by external factors such as vibration or impact. Such an integration method
not only saves costs but also enables higher focusing precision in practical applications,
which is a significant advantage of our approach.

The enhanced system proposed in this study introduces innovations with potential
applications in various related industries, including the semiconductor industry, laser
processing, and even automatic focusing in medical engineering. The extension of these
application possibilities not only enhances the practicality of our method but also broadens
its scope, making it more versatile. Firstly, the semiconductor industry is a critical field
that demands highly precise optical systems to ensure the accuracy of manufacturing and
inspection processes for semiconductor components. Our enhanced system can be applied
to automatic focusing in semiconductor manufacturing, improving production efficiency
and ensuring component quality. Secondly, laser processing is another field where high-
precision automatic focusing is essential, encompassing various laser applications ranging
from cutting to engraving. Our system can provide more accurate automatic focusing in
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these applications, ensuring optimal processing results and enabling more efficient laser
processing in industrial settings. Furthermore, the field of medical engineering can also
benefit from our system. Automatic focusing plays a pivotal role in medical imaging
equipment and surgical robotics. Our method can enhance the precision of these devices,
assisting medical professionals in achieving more accurate diagnoses and treatments, ulti-
mately improving the quality of healthcare. In summary, the enhanced system proposed
in our study offers a wide range of potential applications, spanning multiple industries,
and brings innovation and benefits to various applications. The expansion of these po-
tential application areas makes our method more relevant and versatile, opening up new
possibilities across various sectors.

Photonics 2023, 10, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 13. Error for each defocus interval of 50 µm before spot shift (traditional method). Red line 

represents the average values obtained from experiments and blue line represents the error bars. 

 

Figure 14. Error for each defocus interval of 50 µm after spot shift (proposed method). Red line 

represents the average values obtained from experiments and blue line represents the error bars. 

 

Figure 13. Error for each defocus interval of 50 µm before spot shift (traditional method). Red line
represents the average values obtained from experiments and blue line represents the error bars.

Photonics 2023, 10, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 13. Error for each defocus interval of 50 µm before spot shift (traditional method). Red line 

represents the average values obtained from experiments and blue line represents the error bars. 

 

Figure 14. Error for each defocus interval of 50 µm after spot shift (proposed method). Red line 

represents the average values obtained from experiments and blue line represents the error bars. 

 

Figure 14. Error for each defocus interval of 50 µm after spot shift (proposed method). Red line
represents the average values obtained from experiments and blue line represents the error bars.



Photonics 2023, 10, 1329 11 of 13

Photonics 2023, 10, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 13. Error for each defocus interval of 50 µm before spot shift (traditional method). Red line 

represents the average values obtained from experiments and blue line represents the error bars. 

 

Figure 14. Error for each defocus interval of 50 µm after spot shift (proposed method). Red line 

represents the average values obtained from experiments and blue line represents the error bars. 

 

Figure 15. Error for each defocus interval of 5 µm before spot shift (traditional method). Red line
represents the average values obtained from experiments and blue line represents the error bars.

Photonics 2023, 10, x FOR PEER REVIEW 11 of 13 
 

 

Figure 15. Error for each defocus interval of 5 µm before spot shift (traditional method). Red line 

represents the average values obtained from experiments and blue line represents the error bars. 

 

Figure 16. Error for each defocus interval of 5 µm after spot shift (proposed method). Red line 

represents the average values obtained from experiments and blue line represents the error bars. 

The enhanced system proposed in this study introduces innovations with potential 

applications in various related industries, including the semiconductor industry, laser 

processing, and even automatic focusing in medical engineering. The extension of these 

application possibilities not only enhances the practicality of our method but also broad-

ens its scope, making it more versatile. Firstly, the semiconductor industry is a critical field 

that demands highly precise optical systems to ensure the accuracy of manufacturing and 

inspection processes for semiconductor components. Our enhanced system can be applied 

to automatic focusing in semiconductor manufacturing, improving production efficiency 

and ensuring component quality. Secondly, laser processing is another field where high-

precision automatic focusing is essential, encompassing various laser applications ranging 

from cutting to engraving. Our system can provide more accurate automatic focusing in 

these applications, ensuring optimal processing results and enabling more efficient laser 

processing in industrial settings. Furthermore, the field of medical engineering can also 

benefit from our system. Automatic focusing plays a pivotal role in medical imaging 

equipment and surgical robotics. Our method can enhance the precision of these devices, 

assisting medical professionals in achieving more accurate diagnoses and treatments, ul-

timately improving the quality of healthcare. In summary, the enhanced system proposed 

in our study offers a wide range of potential applications, spanning multiple industries, 

and brings innovation and benefits to various applications. The expansion of these poten-

tial application areas makes our method more relevant and versatile, opening up new 

possibilities across various sectors. 

4.2. Discussion 

The primary source of error before the focus shift arises from the severe deformation 

of the spot, making it challenging to discern the semi-elliptical characteristics of the spot. 

Figure 13 highlights that regions with larger error bars are predominantly located near 

the focus point. On the other hand, the error after the focus shift primarily emerges from 

the divergence of spot energy, resulting in increased interference from ambient light. Fig-

ure 14 indicates that areas with larger error bars are more prevalent when dealing with 

negative defocus distances, as these positions exhibit larger and more divergent spot char-

acteristics. In comparison to Figure 13, Figure 15 reveals larger errors and more prominent 

error bars, reaffirming the impact of the deformed region near the focus point on the 

Figure 16. Error for each defocus interval of 5 µm after spot shift (proposed method). Red line
represents the average values obtained from experiments and blue line represents the error bars.

4.2. Discussion

The primary source of error before the focus shift arises from the severe deformation
of the spot, making it challenging to discern the semi-elliptical characteristics of the spot.
Figure 13 highlights that regions with larger error bars are predominantly located near the
focus point. On the other hand, the error after the focus shift primarily emerges from the
divergence of spot energy, resulting in increased interference from ambient light. Figure 14
indicates that areas with larger error bars are more prevalent when dealing with negative
defocus distances, as these positions exhibit larger and more divergent spot characteristics.
In comparison to Figure 13, Figure 15 reveals larger errors and more prominent error
bars, reaffirming the impact of the deformed region near the focus point on the precision
and repeatability of the autofocus system. Conversely, Figure 16 demonstrates that a
significant improvement in error and repeatability occurs after the focus shift. These results
validate that, when the defocus distance is close, the traditional structure presents higher
errors, underscoring the challenge of reduced accuracy due to severe spot deformation
near the focus point. Impressively, this challenge is effectively addressed through the use
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of a sole offset lens, achieving accuracy within 3 µm without the need for supplementary
compensation systems or costly optics. Furthermore, compared to previous research [19],
this system introduces improvements that specifically focus on the region near the focal
point, utilizing a pre-established knife-edge centroid method. In prior studies, the issue of
light spot deformation had not been addressed; however, in the course of our research, we
further tackled this previously unmentioned concern. This can be seen as a significant step
forward in our progress.

5. Conclusions

In conclusion, this research introduces a state-of-the-art autofocus system character-
ized by an innovative optical design aimed at achieving precise focus shift and minimizing
spot deformation near the focal point. The experimental findings underscore the supe-
riority of this system over conventional centroid methods, demonstrating a remarkable
autofocus accuracy of 3 µm. Beyond its immediate application in autofocus technology,
this advancement holds significant promise for enhancing optical inspection processes and
finding valuable utility in diverse industrial applications. Moreover, the inherent versatility
of this improved system allows seamless integration into existing setups, eliminating the
need for expensive equipment, and rendering it a practical and efficient solution. The
potential impact extends far beyond the realm of autofocus, offering tangible advantages to
a spectrum of industries. The semiconductor sector stands to benefit from heightened pre-
cision, while laser processing could capitalize on the system’s enhanced capabilities. Even
within the realm of medical engineering, automated focusing could experience notable
improvements, further showcasing the breadth of applicability and innovation introduced
by the proposed enhanced autofocus system. This research makes a substantial contribution
to the advancement of diverse fields, driving technological progress and enhancing product
quality and efficiency.
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