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Abstract: With the development of intelligent manufacturing, the production and assembly accuracy
of components in factories is increasing in line with growing demand. However, the traditional
manual quality inspection is inefficient, inaccurate, and costly. To this end, digital and optical imaging
techniques are used to achieve intelligent quality inspection. However, during the reconstruction
process, the high reflectivity of object materials affects the speed and accuracy of reconstruction results.
To overcome these problems, this study investigated the three-dimensional (3D) digital imaging
techniques based on line laser scanning. It advances a novel methodology for image segmentation,
underpinned by deep learning algorithms, to augment the precision of the reconstruction results
while simultaneously enhancing processing velocity. After the reconstruction phase, the research
assesses flatness tolerance using point cloud registration technology. Finally, we constructed a
measurement platform with a cost of less than CNY 100,000 (about USD 14,000) and obtained a
measurement accuracy of 30 microns.

Keywords: 3D measurement; line laser scanning; deep learning; digital imaging; flatness error

1. Introduction

With the growing demand for parts precision, quality control is integrated throughout
the product development process, from design to inspection. As the final step of prod-
uct development, measurement and inspection are significant to the performance of the
complex assembly. After the emergence of intelligent workshops, most of the workshop
technicians were assigned to work in quality inspection positions. For the development
of intelligence in manufacturing, many engineers and researchers have conducted related
research to solve the slow-speed and low-accuracy problems due to long hours of manual
inspection of products [1–6]. At present, intelligent measurement is mainly employed in
the fields of industry, machinery, medical treatment and digitization of cultural relics, and
the measurement methods for products are divided into contact and non-contact measure-
ments. In contact measurement, many scholars use coordinate measuring machines (CMM)
for product measurement. This highly accurate method can accomplish some measure-
ments with high requirements for specific tolerances. However, the measurement process
using this method relies on manual intervention. Nowadays, with the development of
measurement technology, researchers conducted the non-contacted measurement method
to overcome the disadvantages of the contacted measurement method, and the non-contact
measurement method has gradually been widely used in industry applications. Recon-
struction and measurement via optical methods have become popular methods recently.
The popular categories of optical measurement methods include laser-based measurement
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systems, photogrammetry, and fringe projection [7,8]. Many scholars have used optical
measurement methods for object two-dimensional (2D) defect detection [9]. Wang et al.
combined the laser infrared thermography method with deep learning to detect the defect
shape and size of carbon fiber-reinforced polymer [10]. It used a novel method to determine
the defect depth via the long-short-term memory recurrent neural network (LSTM-RNN)
model. Still, this method cannot obtain an accurate measurement result compared with the
traditional measurement method and does not obtain the width and length information.
Cao et al. reconstructed the 3D surface of the rail by using the structured light system
and analyzed the defect of the reconstruction data [11]. This study proposed using the
line laser scanning method to realize the rail surface defect inspection, but it only obtains
the 2D defect area information. Tao et al. used the grating structured light for the 3D
reconstruction of objects with a six-step phase unwrapping algorithm [12]. This study
used a cost-effective solution for 3D measurement. However, the photoelastic fringes are
influenced by the polycarbonate disk. Because the disk may be deformed after loading,
resulting in unwanted fringes. Its reconstruction speed and accuracy are not ideal. The
accuracy reached 60–80 mm. Li et al. used the mobile laser scanning method to estimate
and calculate the total leaf area [13]. This study solved the accuracy problem by controlling
the moving speed. Although the accuracy has been improved, the moving distance of this
study is too large, which is suitable for measuring large objects but not for high-precision
workpiece measurement.

In the defect detection and measurement research area, Chen et al. proposed a method
to identify and classify robotic weld joints by using line laser scanning light and deep
learning [14]. Xiao et al. classified welded joints as discontinuous and continuous by using
deep learning and point cloud data obtained from the line laser scanning method [15].
Due to exceeding the qualified height of the avalanche photodiode chips, the transistor
outline optical devices are always discarded. Liu et al. used the line laser scanning
approach to detect overflow silver from avalanche photodiode chips. They designed and
implemented an optical 3D slice intelligent measurement system utilizing the line laser
scanning method [16]. Although most of them can complete the 3D reconstruction and
3D measurement of the object, a common problem is that the measurement process is
highly reflective due to the light intensity caused by the object measurement material,
which brings complex noise and the accuracy of the measurement results of these studies is
greatly affected [17,18].

To deal with the problem of high reflection during the measurement process, some
related research has also been performed in recent years. He et al. reconstructed the object
by using a dual monocular structured light system to obtain different angle object images
and performed a fusion of images to compensate for the reflective area [19]. Zhu proposed
a method based on enhanced polarization and Gray-Code fringe structured light to recon-
struct high dynamic range objects [20]. Karami et al. proposed a fusion method to replace
the low spatial frequencies of photometric stereo with the corresponding photogrammetric
frequencies to correct the low frequencies based on the Fourier domain [21]. These studies
captured lots of images and used the image fusion method to deal with the reflective
problem and realize the 3D reconstruction and measurement. However, this method needs
to capture many images and spend time fusing the images captured in different conditions.
Pei et al. proposed a hybrid approach to reconstructing objects via fringe projection pro-
filometry and photometric stereo technology to obtain the data used in the deep neural
network to estimate the normal map of the object surface to obtain the full intact point
cloud [22]. This study can obtain submillimeter-level measurement results, but it needs to
perform the phase unwrapping, which is time-consuming. He proposed a laser tracking
frame-to-frame method to solve the reflective problem and reconstruct the transparent
object [23]. Wu used the grating fringe structured light to encode the unsaturated luminance
of the pre-projected multiple grating fringe patterns, so that each position of the measured
object and the image pixel position are guaranteed to be unsaturated grayscale values, and
it can avoid the object reflection phenomenon during the measurement process [24]. The
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above studies determined which pixel points to keep by setting the threshold with the help
of the camera model and the parameters of the specific camera pixel size or generating
different luminance of the projected images. Although these methods are feasible, they
rely on a priori values to determine the threshold range, and the threshold range can
influence the measurement accuracy. Li et al. proposed a post-processing-based approach
to reconstruct three-dimensional shapes [25]. They obtained a complete reconstruction of
the object by projecting the grating fringe patterns which do not overlap onto the surface of
the measured object, ignored part of the reflective region, processed only the non-reflective
region, and then performed a 3D point cloud matching after the rough reconstruction of
the object contour by the moiré profilometry. So, this measurement loses shape detail in the
reflective areas.

Based on the above current state of research, the methods in the field of dealing with
the reflection problem can be summarized in the following three categories: (1) adjusting
the luminance to ensure the grey values of the pixel points in the acquired image are not
overexposed; (2) acquiring images from different angles and then performing multi-angle
reconstruction of the object shape; and (3) adjusting the exposure for multiple exposures and
then subjecting the images to a fusion operation to obtain an image that is not overexposed
for reconstruction. These methods require capturing multiple images or adjusting the
luminance and light intake. The process is cumbersome and time-consuming, and it cannot
satisfy the real industrial assembly line that only captures images once. So, this study
proposed an image segmentation method based on deep learning to solve the reflection
effects during the measurement process of one image instead of multiple images.

Also, many scholars have conducted research in the field of flatness detection. The
standard method to measure flatness is to obtain every point on the measured object with
the help of mechanical precision instruments. Vanrusselt [26] and Pathak [27] majorly
reviewed contact flatness measurement methods, and they thought the flatness results via
contact measurement are always affected by the used artefact error. The contact measure-
ment has another disadvantage. It is not only slow but also requires manual assistance to
complete the measurement. Xiao et al. [28] analyzed and performed compensations for
the thin-walled valve body parts’ surface flatness by using the contact measurement with
the help of the wireless touch-trigger probe installed on the three-axis vertical machine.
Wang [29] proposed a way to obtain the circular saw flatness by using the point laser
displacement sensor. Although it can extract the point cloud of the measured object via
the non-contact measurement method, the efficiency of the measurement is slow, and he
just compared the experiment results with the contact measurement result. Liu et al. [30]
proposed a flatness error evaluation method using the Marine predator algorithm, which
aimed to reduce the calculation time effectively, and he compared it with the particle swarm
optimization algorithm and other common plane fitting methods. However, this method
cannot be applied to parts with complex surface texture. This study proposed using point
cloud registration to obtain the measured workpiece flatness error to determine whether
the workpiece manufacturing qualified according to the specific tolerance. Generally, the
average measurement accuracy can reach 70–130 microns above these studies.

To better fit the actual measurement scenario and obtain faster and higher accuracy
measurement results, this study focused on the reflection of the object and the overall
flatness error assessment according to the designed computer-aided design (CAD) model
by using the line laser scanning reconstruction system.

The rest of this paper is organized as follows. Section 2 constructs the principle of line
laser 3D reconstruction. Section 3 describes the calibration process of the line laser system
and proposes a method to reduce the time spent in the step motor sliding system calibration
process. Section 4 constructs the approach to solve the reflective scattering region on the
specific reflective material objects with the line laser turned on. It also compares the image
difference method with the proposed deep learning-based image segmentation approach,
hence improving the structure of the neural network to obtain more accurate laser region
segmentation results. Section 5 constructs an overall flatness error assessment method. At
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the end of the paper, the proposed and improved method is verified through experiments
in Section 6, and, finally, the conclusions are given through the experimental results in
Section 7.

2. The Principle of Line Laser Scanning Reconstruction System

The line laser scanning reconstruction system consists of five components: a line laser
emitter device, an industrial camera, a stepper motor slide device, a signal control board
and a personal computer to perform image processing technology. The schematic diagram
is shown in Figure 1. The line laser emitter device projects the line laser light on the surface
of the measured objects. The industrial camera is used as an acquisition device to capture
and store the line laser stripes images that are deformed by the height modulation of the
object on the personal computer. The signal control board is used to receive electrical
signals from the PC and then control the movement of the stepper motor slide by the high-
and low-frequency cycles of the electrical signals. The stepper motor slide device is used to
place objects and complete dynamic scanning of objects. The personal computer is used for
completing algorithm and software development of line laser scanning 3D reconstruction,
including the synchronous acquisition of the industrial camera and the stepper motor slide
module, the system calibration module, the imaging module, etc.
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Before scanning the object, the industrial camera should be calibrated, and the fol-
lowing work is finishing the calibration of the stepper motor slide device. In addition,
it is necessary to turn on the line laser emitter device to capture the image through the
industrial camera and complete the centerline extraction to complete the light plane fitting
to determine the relative position relationship between the industrial camera and the line
laser emitter device and determine the reference plane for object reconstruction. After com-
pleting the above work, the acquisition work of 3D reconstruction of the object can start, and
each scanned acquisition image moving through the stepper motor slide device is obtained.
A rigid transformation is performed through the mapping model of the small-aperture
imaging model and the camera imaging-related coordinates. With the above-calibrated
parameters, the centerline of the line laser stripe in the acquired scanned image is extracted.
The pixel points corresponding to the extracted centerline are converted to coordinates.
Then, the transformed point data are spliced according to the calibration information of the
motion of the stepper motor slide device to complete the 3D reconstruction result of the
measured object. Figure 2 shows the overall flowchart of the 3D reconstruction by the line
laser scanning method.
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3. The Process of the System Calibration and Light Plane Fitting

There are three steps in the line laser scanning system calibration process, i.e., indus-
trial camera calibration, stepper motor slide device calibration and line laser plane fitting.

3.1. Industrial Camera Calibration

Four coordinate systems are involved with the following mapping relationship in
Figure 3 between the camera imaging and real-world position. Due to the unavoidable
errors in the processing and assembly of the industrial camera optical lens and CMOS
sensor, the imaging of the camera will be aberrated due to these factors, leading to the
deviation of its actual imaging point and the theoretical corresponding imaging point
position. Therefore, the aberrations need to be eliminated by utilizing camera calibration.
At the same time, the parameters of the camera imaging model are obtained, which reveal
the mapping relationship between the real object and the pixel coordinate system. Then,
the 3D coordinate conversion can be completed using the calibration parameters.
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In Figure 3, The world coordinate system (Ow-XwYwZw) refers to the coordinate
position of the object in real space. Each calibrated image has its coordinate system. The
camera coordinate system (Oc-XcYcZc) takes the center of the optical lens as the origin,
and it can complete the conversion between itself and the world coordinate system by
rotation and translation. The image coordinate system (Oxy-xy) is a projection of the image
onto the image plane in the camera coordinate system, and it only needs to establish
two-dimensional imaging coordinates. The pixel coordinate system (Ouv-uv) is built on the
pixel points on the captured image. The imaging sensor does not guarantee keeping the
vertical installation with the camera’s optical axis, so it will produce the angular mapping
relationship of coordinates, which needs to be realized by affine transformation. According
to the camera image mapping, the relationship is expressed in Equation (1), where the
parameters Pi and Po are the internal and external reference matrices obtained from the
camera calibration, respectively.

Zc

u
v
1

 = [Pi|0]Po


Xw
Yw
Zw
1

 =


f

dx
− cot ω

dx
u0 0

0 f
dy sin ω v0 0

0 0 1 0

[R3∗3 T3∗1
→

03∗3 1

]
Xw
Yw
Zw
1

 (1)

However, the actual situation is that due to the design of the optical lens and non-linear
factors such as industrial camera CMOS optical sensor position installation, it will lead to
deviations in the imaging. The captured image produced the aberration phenomenon of
internal concave and external convexity. To further improve the accuracy of calibration
results, the elimination of radial distortion was researched [31], and the true mapping
relationship equation was obtained as the following equation:{

m = x(1 + k1r2 + k2r4 + k3r6)
n = y(1 + k1r2 + k2r4 + k3r6)

(2)

where (x,y) is the ideal coordinate, (m,n) is the radial distortion coordinate, k1, k2, and k3
are Taylor expansion coefficients, and Odx and Ody are the distortion center coordinates,
respectively. The internal and external parameters of the camera can be obtained by
identifying the feature points of the calibrated target object.

3.2. Improved Stepper Motor Slide Calibration

Since the line laser dynamic scanning can only acquire the reconstruction data of one
laser stripe at a time, the motion device needs to be calibrated for direction and distance.

Most of the traditional motion platform calibration methods are performed with the
help of high-precision standard 3D target objects with characteristic points. However, due
to the high price of these targets, it is too expensive to use them only for calibration in the
measurement process, which makes the budget too high, and the number of characteristic
points is limited. Therefore, some scholars also performed the calibration task of motion
stages using target feature points of 2D targets. They completed the calibration data of the
motion platform by detecting the displacement distance of the upper left corner point or the
center corner point of the checkerboard calibration board several times. This approach first
requires multiple movements, which makes the calibration process complicated. Secondly,
they are only calibrated based on a specific single corner point on the 2D targets, so the
accuracy of the data obtained is not accurate enough.

This study proposed an improved calibration method based on motion vectors and
mean values to address these problems. By detecting all the corner points of the 2D
chessboard grid at once, this method ensures calibration accuracy and saves time by
completing the calibration in one operation. Figure 4 shows the improved stepper motor
slide device calibration algorithm proposed in this study.
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The motion vector-based calibration method detects the target feature points of the
two sets of images. After judging their displacement differences, the pixel coordinates of
the feature points at two different locations are converted to the same coordinate system
according to the previous camera calibration parameters. Finally, the world coordinates
of the two are differenced according to the three directional axes by Equation (3). The
unit move distance calibration is calculated from the moving displacement and the camera
frame rate according to Equation (4), where the parameter (X0, Y0, Z0) is the world coor-
dinates converted from feature points acquired before moving, (Xm, Ym, Zm) is the world
coordinates obtained from feature point conversion after moving, and n represents the
number of images acquired by the camera in one second, which is also the camera frame
rate. The obtained calibration result provides the conditions for the subsequent point cloud
splicing operation.

→
δ =

Xm
Ym
Zm

−
X0

Y0
Z0

 (3)

→
u =

→
δ

n
(4)

3.3. Light Plane Fitting

The light plane fitting has two purposes. The first is to determine the relative position
relationship between the line laser emitter device and the industrial camera, and the
second is to determine the reference plane for the 3D reconstruction of the object under
measurement. That means the subsequent reconstruction is performed on the light plane
equation obtained from the fitting.

The light plane fitting is a two-step operation. First, the centerline of the line laser
stripe needs to be extracted. This is because the intensity of the light conforms to a Gaussian
model distribution under the ideal condition, and the centerline is the brightest, contains
the most information, and is the most accurate. The second step is to fit the line laser light
plane equation according to the pixels extracted from the centerline of the line laser stripes
projected on the calibration plate in different positions. Figure 5 shows the schematic
diagram of the light plane fitting.

The most commonly used line laser extraction methods include the extreme value
method, the Steger algorithm based on normal vector calculation, the directional template
algorithm and the grey centroid algorithm. The extreme value method and the grey centroid
algorithm have the advantage of less computation time, but the centerline extraction
accuracy is low. The Steger algorithm can yield high-accuracy extraction results, but it takes
a long time to calculate due to the Hessian matrix, which consists of second derivatives. The
directional template algorithm requires convolution of the pixel points with the template,
which is also time-consuming.
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Figure 5. The process of the light plane fitting schematic diagram. (a) The partial images of different
positions on the chessboard with the line laser emitter turned on. (b) The result of the light plane
fitting schematic diagram. The red lines on the light plane represent the extracted centerlines in
different positions.

Many scholars have conducted line laser centerline extraction algorithms in recent
years. This study used a hybrid improved line laser centerline extraction algorithm pro-
posed by Mao et al. [32]. The algorithm combines the skeleton thinning algorithm and the
grey centroid algorithm. It improved the speed of the thinning operation for the original
skeleton thinning algorithm. A high-power weighted grey centroid method was enhanced
based on the grey centroid algorithm to ensure accuracy. This algorithm is not as fast as the
grey centroid algorithm, but it considers the speed and precision of line laser centerline
extraction. Figure 6 is the result of line laser centerline extraction.

Photonics 2023, 10, x FOR PEER REVIEW 8 of 23 
 

 

takes a long time to calculate due to the Hessian matrix, which consists of second deriva-

tives. The directional template algorithm requires convolution of the pixel points with the 

template, which is also time-consuming. 

(a) (b)
 

Figure 5. The process of the light plane fitting schematic diagram. (a) The partial images of different 

positions on the chessboard with the line laser emitter turned on. (b) The result of the light plane 

fitting schematic diagram. The red lines on the light plane represent the extracted centerlines in 

different positions. 

Many scholars have conducted line laser centerline extraction algorithms in recent 

years. This study used a hybrid improved line laser centerline extraction algorithm pro-

posed by Mao et al. [32]. The algorithm combines the skeleton thinning algorithm and the 

grey centroid algorithm. It improved the speed of the thinning operation for the original 

skeleton thinning algorithm. A high-power weighted grey centroid method was enhanced 

based on the grey centroid algorithm to ensure accuracy. This algorithm is not as fast as 

the grey centroid algorithm, but it considers the speed and precision of line laser center-

line extraction. Figure 6 is the result of line laser centerline extraction. 

 

Figure 6. The result of the line laser centerline extraction. 

Then, the light plane equation listed as the following Equation (5) is fitted by the 

least-squares method to find the light plane equation based on the results of the extracted 

line laser centerline with different positions and finally obtain the parameters of the light 

plane. 

0AX BY CZ D+ + + =  (5) 

Figure 6. The result of the line laser centerline extraction.

Then, the light plane equation listed as the following Equation (5) is fitted by the least-
squares method to find the light plane equation based on the results of the extracted line
laser centerline with different positions and finally obtain the parameters of the light plane.

AX + BY + CZ + D = 0 (5)

4. Removing the Reflection Affected by the Object Material

After the calibration of the system is completed, the calibration parameters of the cam-
era and the light plane fitting parameters required for the 3D reconstruction are obtained.
Then, according to these parameters, the next step is to scan and reconstruct the object.



Photonics 2023, 10, 1333 9 of 23

Although 3D reconstruction and measurement of objects can be accomplished on some
dark plastic objects, on reflective objects of special materials such as metals, the line laser
stripe is reflective and scattered, leading to inaccurate reconstruction of objects. Thus, this
study was conducted to solve the problems caused by reflection and scattering.

4.1. Traditional Method

The image difference method is used in highlight image processing to make it easier
to deal with overexposure problems and minimize the number of image acquisitions.
This algorithm mainly calculates the corresponding grey value difference between the
foreground image and the background image, as shown in the following Equation (6),
where Gfore is the grey value of the specific pixel in the foreground image, Gback is the grey
value of the particular pixel in the background image, and Gdiff is the difference grey value
of the corresponding pixel in the foreground image and the background image. The noise
of the other light sources without the line laser stripe can be eliminated by highlighting the
regional location of the line laser stripe using this algorithm.

Gdi f f = G f ore − Gback (6)

This study also used the image difference method in the 3D measurement of objects
made of glass. After the image difference operation, to speed up the line laser centerline
extraction and avoid the pixel-by-pixel calculation of the whole image, the edge detection
operator is applied to extract the edges of the line laser stripe.

Although the influence of other noise can be removed, there is still a scattering phe-
nomenon at the edge of the obtained line laser stripe due to the color and material of the
measured object surface, and the result is shown in Figure 7, which also affects the recon-
struction accuracy. Although this algorithm can reduce the number of images acquired
compared to the multiple exposure method and the photometric stereo method, it still
requires one acquisition for the foreground image and one for the background image (with
the laser turned on and off, respectively). This does not meet the needs of a real assembly
line for 3D measurement in one process.
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Figure 7. The image difference method result. (a) The foreground image with the line laser emitter
turned on. (b) The background image with the line laser emitter turned off. (c) The result of the
image difference method. The red circles represent the reflective areas.

4.2. A Novel Image Segmentation Method Based on Deep Learning

To further ensure that the speed and accuracy of the line laser centerline extraction
is not affected by the reflection and scattering phenomenon, it is necessary to determine
the real area of the line laser stripe. This study proposed a method based on deep learning
image segmentation to determine the line laser centerline extraction region to reduce the
effect of reflection and scattering and the time of centerline extraction.

Deep learning requires a certain amount of data to train the model. During the
scanning of the measured object, many images were collected in this study. Figure 8 shows
the schematic diagram of the captured data.
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Figure 8. Partial image acquisition by line laser scanning.

Due to the specificity of the measured object and the collected data, no publicly
available dataset can be applied in this study, so the data enhancement operation was
performed on the collected image data. Common image enhancement methods such as the
gamma transform method, the logarithmic transform algorithm, the global image histogram
equalization method, the restricted contrast adaptive histogram equalization method and
the Laplace enhancement method are performed to expand the dataset. Figure 9 shows the
schematic diagram of the data generated by different enhancement algorithms.

After the data enhancement was completed, the dataset was annotated. The annotation
was divided into three categories: the real laser line, the reflective scattering artifact, and
the ambient light. The schematic diagram of the labelled result is shown in Figure 10 below.

Regarding selecting deep learning network models, the training model is currently
divided into Vision Transformer models and convolutional neural networks. Vision Trans-
former models can learn image features well compared to the traditional convolutional
neural network which divides the image into multiple patches to learn the features in the
patches and the global features between the patches [33,34]. However, the Transformer
models require a larger number of datasets than the convolutional neural network to obtain
a good result of training parameters and models. Although image enhancement algorithms
expand the dataset, this study used the convolutional neural network as the training model,
considering the limited number of datasets.

The ConvNeXt [35] model drew on the Swin-Transformer model’s network structure
advantages. ConvNeXt adjusted the stacking block ratio to close to that of the Transformer
model, adjusted the original ResNeXt [36] convolutional kernel size, and then introduced
the MobileNet [37] depth-wise convolution to achieve the effect of Swin-Transformer
self-attentive mechanism for interaction and fusion of feature information in spatial di-
mensions. In addition, ConvNeXt increased the size of the convolution kernel perceptual
field according to the size of Swin-Transformer convolutional kernel size, and the inverse
bottleneck structure of MobileNetV2 [38] was introduced to reduce the computation. Due
to the above improvements, the training result of ConvNeXt is beyond that of Transformer.
Figure 11 shows the comparison diagram schematic of ConvNeXt, Swin-Transformer and
ResNeXt blocks.
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Figure 9. The images are generated by image enhancement algorithms. (a) The image is the original
captured by the industrial camera. (b) The image is generated by the global image histogram equaliza-
tion method. (c) The image is generated by the gamma transform method. (d) The image is generated
by the Laplace enhancement method. (e) The image is generated by the logarithmic transform method.
(f) The image is generated by the restricted contrast adaptive histogram equalization method.
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Figure 10. Data-labeling schematic diagram. (a) The image of the label software and the labeled
image. (b)The image of the labeled result generated by the labeled image.
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Figure 11. The structure of the Swin-Transformer, ResNeXt and ConvNeXt Block.

During the experiment, further improvements were made to optimize the original
ConvNeXt to improve the accuracy of the segmentation of the line laser stripe further. In
this study, the projection area of the line laser stripe is placed in the middle of the field
of view to make the industrial camera capture the field of view conform to the imaging
range of objects of different heights. Then, the position of the line laser stripe has certain
spatial information.

To make the convolutional neural network notice the spatial location feature infor-
mation of the image, this study introduced the convolutional block attention module
(CBAM) [39] in the original ConvNeXt network. This module learns the features from the
image channel and the image space, respectively, so that it can notice the color, brightness,
position and other features of the image. Moreover, to enable the network model to learn
the features of the image faster in as few iterative epochs as possible, this study introduced
the dilated convolution kernel, which was proposed in DeepLab [40], into the convolution
kernel of ConvNeXt and CBAM. It can control the resolution of the response better when
calculating the feature response by expanding the convolution kernel and expanding the
perceptual field of the convolution kernel to integrate more feature information without in-
creasing the number of parameters and computational effort. Figure 12 shows the improved
network structure model of this study.
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5. An Overall Flatness Inspection of the Measured Object

After solving the reflection and scattering problem, the reconstruction of the measure-
ment object by line laser scanning is improved. The flatness of the tolerance feature in the
industrial manufacturing and assembly process determines whether the product conforms
to the designed standard parts model and whether it is within the designed tolerance range.

Flatness error is the variation between the actual surface being measured and its
ideal surface. When measuring flatness, two ideal planes must be determined, and these
superior planes should be tangent to the high or low point of the measured surface. These
two places are the locations where the two ideal planes are located, respectively. Fig-
ure 13 represents the flatness error schematic, where the red color indicates the actual
measurement plane, and the two upper and lower rectangles indicate the intersecting ideal
position reference planes.
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The existing flatness error measurement methods usually require high-precision optics
and auxiliary equipment. However, there are shortcomings in the traditional flatness error
measurement methods. First of all, the measurement needs to be completed with the
help of high-precision manufacturing instruments, and the cost of measurement is high.
Secondly, some methods measure points by contacting points or along the linear direction,
so the speed and efficiency of measurement are very slow, and the operation is complicated.
Also, the determination of flatness error by determining the farthest point of the actual
measurement object surface through manual selection cannot guarantee the accuracy of the
farthest point selection. Finally, the flatness error is judged by a few characteristic points,
which makes the measurement accuracy inaccurate.

Therefore, this study proposed a method to register the scanned point cloud results
of the measured object with the CAD model of the standard part designed by computer
vision to complete the flatness error evaluation. Instead of determining the flatness error
only by multiple feature points, this method takes into account the flatness error of the
whole surface of the measured object.

The CAD model data are preprocessed in point cloud registration to extract geometric
information. Then, sampling is performed to generate a dense point grid to obtain the point
cloud data of the standard CAD model. The measured point cloud must be downsampled
to retain its general features to match the standard CAD point cloud. The downsampling
can further reduce the number of point cloud registration processes and improve the speed
of point cloud registration. This study used the grid average downsampling algorithm
to implement point cloud downsampling. This algorithm first divides point clouds into
very small grids to contain some points. These points are averaged or weighted to obtain a
point, replacing all the original grid points. Figure 14 is the result after downsampling the
schematic diagram.
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During the registration process, this study chose the Fast Point Feature Histogram
(FPFH) algorithm [41] for rough registration to bring two far-apart point cloud data closer.
FPFH is an algorithm used to describe features in point cloud data. Firstly, it finds the k
nearest neighbor points to the point in the point cloud. It calculates the normal directions
of points in its neighborhood for each point and their relative positions to the center
point. The normal direction and relative position are then converted into a histogram to
represent the neighborhood’s points distribution. The histogram features of each point
are merged with the features of other points in its neighborhood to describe the geometric
structure information of the entire neighborhood comprehensively. The combined features
are normalized to facilitate comparison and matching between different areas. Then, this
study used the Iterative Closest Point (ICP) algorithm [42] for point cloud registration. The
principle of the ICP algorithm is to rigidly transform one piece of point cloud data to match
another piece of point cloud in space by rotation and translation, which is more similar to
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the principle of industrial camera calibration to obtain the external parameters in this study.
The transformation of the point cloud can be carried out by Equation (7),xi

′

yi
′

zi
′

 =

1 0 0
0 cosα sinα

0 −sinα cosα

cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

 cosγ sinγ 0
−sinγ cosγ 0
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xi
yi
zi

+
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 (7)

where, the parameters α, β, γ are the angle of rotation corresponding to the X, Y, Z axis,
respectively, and tx, ty, tz are the translation distance corresponding to the X, Y, Z axis, (xi

′,
yi
′, zi
′) is the coordinate of the point cloud to be registered, (xi, yi, zi) is the target point

cloud coordinate.
The rotation parameters and translation parameters corresponding to each axis are

estimated through iterations until the loss function reaches the minimum value, and the
parameters corresponding to the minimum value are used as the transformation parameters
for point cloud registration to complete the point cloud transformation and point cloud
registration. After point cloud registration, a threshold value is set by the production
flatness tolerance according to the measured object, and the measured object larger than
the threshold value is designated as an unqualified object.

6. Experiments

In this section, a 3D measurement platform based on line laser scanning is built in
this study. The equipment parameters applied to this platform are given in the following
Table 1. The experiments in this section include system calibration and light plane fitting,
reflection and scattering segmentation, and different object measurement and flatness error
determination.

Table 1. The device of this study uses the line laser scanning method.

Devices Parameters

Industrial Camera MV-CA050-11UM
Resolution: 2048 × 2448

Line Laser Emitter Device 650nm 1mw red line laser

Stepper Motor Slide Device Minimum movement unit:0.03 mm
Slide size:120 × 100 mm

Auxiliary Light Blue coaxial light source

6.1. System Calibration and Light Plane Fitting

This study first generated the chessboard grid pattern used for camera calibration,
as shown in the following Figure 15. The size of each cell in the chessboard grid is 5mm.
Then, the industrial camera captured the checkerboard grid with different poses and the
corner point detection was performed on the captured images. The error is calculated, and
the results of the internal and external parameters of the industrial camera are obtained by
reprojection. Figure 16 shows a schematic diagram of some of the acquired images. The
results of the camera calibration are presented in Table 2.

Then, the stepper motor slide device was calibrated by the improved calibration algo-
rithm proposed in this study. The calibration process is shown schematically in Figure 17.
The results of the calibration for the first 10 points are presented in Table 3. It can be
observed that the calibration method proposed in this study is more accurate than the
calibration algorithm through a single feature point.
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Table 2. The calibration result of the industrial camera.

Parameters Calibration Results

Principal Points [1208.2, 1007.2]
Focal Length [7824.0, 7836.5]

Radial distortion parameters [−0.0886, 1.6794]

Rotation Matrix
 0.09885 0.1486 0.0283
−0.1481 0.9888 −0.0185
−0.0307 0.0141 0.9994


Translation Matrix

−29.7415
−13.2232
338.7268
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represents detected corners in different row.

Table 3. The calibration result of the stepper motor slide device by using the improved calibration method.

Corresponding Corner X Axis (mm) Y Axis (mm) Z Axis (mm)

1 0.3094 0.0127 0.0054
2 0.3101 0.0128 0.0052
3 0.3108 0.0129 0.0051
4 0.3110 0.0131 0.0054
5 0.3122 0.0132 0.0053
6 0.3128 0.0133 0.0053
7 0.3135 0.0134 0.0053
8 0.3142 0.0135 0.0052
9 0.3102 0.0131 0.0045
10 0.3109 0.0131 0.0044

Average Distance 0.31151 0.01311 0.00511

Then, the light plane Equation (8) was obtained by fitting the extracted line laser
centerline by the least squares method in this study. The fitting light plane results are
shown in Figure 18.

−0.058701X + 0.002176Y + 0.057126Z + 1 = 0 (8)

6.2. Reflection and Scattering Segmentation

In this study, the segmentation results of the original ConvNeXt, the network model
with the introduction of CBAM and dilated convolution kernel are compared in the seg-
mentation experiments of reflective and scattering regions using deep learning. This study
chooses mean intersection over union (mIoU) and mean accuracy (mAcc) as the evaluation
indexes for the two networks. Figure 19 is a schematic diagram of the comparison between
the segmentation results of ConvNeXt and the segmentation results of the improved net-
work of this study. Tables 4 and 5 show the validation results for two networks. They
demonstrate that the real line laser stripe region segmentation accuracy is improved, and
the reflective scattering region and ambient light region are also detected, but the accuracy
is not very high. This may be due to the irregular position of reflective scattering and
ambient light and the fact that the labelled area occupies too small of the image area.
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Table 4. The segmentation result of the ConvNeXt network model.

Categories Intersection over Union Accuracy

Real Laser 69.02% 78.27%
Reflection and Scattering 53.31% 58.52%

Ambient 49.91% 66.89%
Mean Value 57.41% 67.89%
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Table 5. The segmentation result of the improved network model proposed by this study.

Categories Intersection over Union Accuracy

Real Laser 71.03% 81.54%
Reflection and Scattering 53.47% 59.1%

Ambient 50.21% 67.42%
Mean Value 58.23% 69.35%

6.3. Objects Measurement and Flatness Error Determination

The subject was reconstructed and measured in 3D by different types of objects. The
first set of experiments was conducted to verify the overall accuracy of the reconstruction
by measuring a standard measuring block of 30× 10× 10 and a standard ball with a radius
of 5.99 mm and 8.99 mm, respectively. The measurement results are shown in the following
Figure 20. Tables 6 and 7 list three sets of measurement data. It can be concluded that the
error is controlled at about 30 µm.
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Figure 20. The result of the standard block and the standard ball. (a) The captured image of the
standard block. (b) The reconstruction and measurement result of the standard block. (c) The
captured image of the standard ball. (d) The reconstruction and measurement result of the standard
ball. The depth of blue represents the height of the object.

Table 6. The measurement result of the standard block.

Parameters Standard Value Measurement Result Mean Error

Length (mm) 30
29.936
29.941
29.925

0.666

Width (mm) 10
9.968
9.963
9.964

0.035

Height (mm) 10
9.971
9.968
9.971

0.03
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Table 7. The measurement result of the standard ball.

Parameter Standard Value Measurement Result Mean Error

Radius (mm)

5.99
5.996
5.988
5.898

0.029

8.99
8.95
8.962
8.959

0.033

The subsequent experiments were performed on different metal workpieces as well
as flatness inspection. Based on the tolerance range of the flatness of the specific metal
workpiece design, it was determined whether the error in the corresponding position of the
manufactured product was within the tolerance range of the flatness of the standard-design
CAD model. If the flatness tolerance threshold is exceeded, the product is judged to be
an unqualified product. Figure 21 shows the results of flatness inspection performed on
different metal workpieces.
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7. Conclusions

In this study, the 3D measurement of metal workpieces is investigated. Firstly, this
study proposed a motion vector-based mean value calibration method to address the prob-
lem of inaccuracy in calibrating the stepper motor slide device. The method proposed by
this study can simplify the calibration process and improve calibration accuracy through
experiments compared to the traditional single-corner motion calibration method. The cali-
bration result accuracy can improve by 6%. Then, this study proposed a processing method
based on deep learning image segmentation to reduce the effect of reflection and scattering
on the 3D reconstruction of the object. The feasibility of this method has been verified
through experiments, which can reduce the impact of reflection on measurement accuracy.
However, the segmentation accuracy using the original neural network architecture cannot
accurately segment the real laser line from the reflective and ambient light areas. This will
cause the extraction centerline area to be too wide, and the extraction results in a long
time and low accuracy. Therefore, this study introduced the CBAM to improve the neural
network’s attention to the image space and image channels to improve the segmentation
accuracy. The segmentation accuracy of the real line improves by 3%. Moreover, for the
problem of the high price of flatness error assessment, which requires high-precision in-
struments for measurement and the problem of flatness calculation by measuring certain
feature points of data without comparison and visualization with the designed model, a
method based on point cloud registration is proposed to judge the manufacturing metal
by measuring point clouds and CAD standard point clouds whether the manufacturing
workpiece meets the standard designed workpiece or not by the design tolerance of flatness
in different areas of specific parts. Compared with the flatness error measurement accuracy
mentioned in Section 1 (average accuracy reaches 70-130 microns), the average accuracy
of this study can reach 30–50 microns, and the measurement accuracy has been increased
by nearly 50%. Although the measurement accuracy has been improved, some factors are
in need of improvement. For example, the point cloud registration algorithm also brings
the matching error. In future work, we will continue to research and improve the point
cloud registration algorithm, thereby reducing errors to achieve a minimum measurement
accuracy of about 10 microns. Then, we will use lightweight models to deploy AI boards to
realize low-cost products.
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