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Abstract: We present a study of multicore fiber (MCF) crosstalk using the coupled mode theory.
We derived a general closed-form simulation formula for the crosstalk of MCF under random
perturbations, which includes both the average crosstalk and the crosstalk statistical distribution.
From this general formula, we further derived simple analytical expressions for the average crosstalk
under the assumption of exponential distribution of fiber segment lengths. We show that the analytical
expressions approximate very well the results for other distributions, such as Dirac and Gaussian, and
thus they can be used as a general analytical approach for estimating the average crosstalk. Results
from numerical simulations of average crosstalk are shown to be in full correspondence with analytic
results. We also performed numerical simulations of crosstalk statistical distributions generated from
our general closed-form simulation formula and find that these agree well with the χ2-distribution
function with four degrees of freedom. Finally, we conducted crosstalk measurements under different
bending deployment conditions, and the measured crosstalk distributions and average crosstalk are
found to be in agreement with the modeling results.

Keywords: multicore fiber; crosstalk; coupled mode theory; crosstalk measurement

1. Introduction

Multicore fibers (MCFs) have been an active research area for increasing optical fiber
capacity [1–4]. Uncoupled MCFs have been studied extensively and now are moving
towards practical deployments. For uncoupled MCF, crosstalk between cores is one of
the most important transmission impairments. Because of weak coupling between the
cores, the crosstalk is sensitive to deployment conditions, such as bending and twisting,
and perturbations due to environment changes. A significant amount of work has already
been done to analyze MCF crosstalk [5–14]. These analyses are based on either the coupled
mode theory (CMT) [5–9,12–14] or the coupled power theory (CPT) [7,10,11]. For practical
MCF transmission systems, the average crosstalk and the crosstalk statistical distribution
are two important aspects for system engineering. For the average power coupling, the
CPT is sufficient for predicting the average intensity crosstalk. Specifically, an analytical
expression for average crosstalk was derived using the CPT [11]. However, the CMT
analysis is used more often to get crosstalk statistical distributions [5,6,12–14]. In Ref. [5],
the role of random perturbations in crosstalk of MCFs was analyzed and the impact was
shown to be qualitatively different depending on long-length gradual variations or short-
length variations. Ref. [6] developed an approximation model and derived a statistical
distribution of crosstalk and a relationship between the fiber parameters and the average
crosstalk. In Ref. [12], a crosstalk theory that accounts for intra-core polarization coupling
spatial dynamics was developed, which showed that random polarization-mode coupling
plays a critical role in explaining the observed incoherent crosstalk in weakly coupled MCFs.
In general, statistical analyses require numerical simulations with a large ensemble size.

Simple analytical expressions are desired for estimating crosstalk related to fiber
design parameters and deployment conditions. In Ref. [6], an analytical expression for
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homogenous MCFs under bending conditions was derived, which showed that the average
crosstalk was linearly proportional to the bending radius. In Ref. [8], analytical expressions
for both homogeneous and heterogeneous MCFs under straight deployment conditions
were derived using the CMT, which indicated that the perturbation correlation length
played an important role. In Ref. [13], a closed-form expression was proposed for evaluat-
ing the average inter-core crosstalk power in weakly coupled MCFs with perturbations,
which generalized the expression reported in [11] by considering the z-dependence of
the propagation constants induced by bending and twisting in a more rigorous way. In
Ref. [14], a semi-analytical model for crosstalk estimation in MCFs based on the CMT was
derived with bending and twisting perturbations. However, there is still a need to obtain
simple statistical formulas and analytical expressions based on the CMT to understand the
impact of crosstalk for practical applications.

In this paper, we present a theoretical and experimental study of MCF crosstalk by
expanding the approach presented in Refs. [8,9] and provide details on modeling, and ana-
lytical and numerical simulation results, as well as new experimental results. We describe a
detailed process on modeling MCF crosstalk using a novel numerical simulation method
based on the CMT by treating an MCF as concatenated segments with a random segment
length distribution. We derive a general closed-form simulation formula for the crosstalk
of MCFs under random perturbations, which contains a term for the average crosstalk and
a term for the crosstalk distribution. From the general closed-form simulation formula,
we derive a simple analytical expression for the average crosstalk, which is compared
and agrees with the analytical expression presented in Ref. [11]. Numerical simulations
using the general closed-form simulation formula show that the crosstalk distribution
follows a χ2-function, and average crosstalk results agree with results from various analy-
ses [6,8,11,13]. We also measure crosstalk under two different bending conditions and a
straight condition, which shows that crosstalk distributions and average crosstalk agree
with our modeling results.

The paper is organized as follows. In Section 2, we describe the MCF model and
derive a general closed-form simulation formula for simulating MCFs under random per-
turbations using the CMT, which can describe both the average crosstalk and the crosstalk
statistical distribution. In Section 3, we analyze the average crosstalk under different statis-
tical distributions and derive analytical expressions. In Section 4, we perform numerical
simulations and compare with analytical expressions for crosstalk. In Section 5, we present
experimental characterizations of crosstalk under different bending deployment conditions
to provide validations of our theoretical model. In Section 6, we further discuss some
unique aspects of our modeling and experimental results, as well as potential directions of
expanding our model for future studies. Finally, in Section 7, we present our conclusions.

2. General Crosstalk Formulation Using CMT

The theoretical analysis follows the approach presented in Ref. [8] using the CMT. It is well
known that for a uniform coupled two-core fiber without random perturbations, the power
exchanges periodically between the two cores, which does not reflect experimental results of
actual MCFs, in which measured crosstalk was much lower and accumulated linearly along
the fiber length [10] due to random perturbations. Figure 1 shows a schematic of a two-core
fiber with random perturbations, such as bending, twisting, and other index variations. Under
random perturbations, the phases and polarizations of electrical fields in the two cores will
change randomly along the fiber, and the coupled mode equations for a uniform fiber cannot be
applied directly. To analyze the crosstalk under random perturbations, the fiber is divided into
N uniform segments with lengths ∆L1, ∆L2, . . . , ∆LN. To represent the random perturbation
effects, we assume that the length of each segment is not necessarily the same, but can vary, and
has a certain distribution, such as uniform, Gaussian, or exponential distribution. It is assumed
that in each uniform segment, the electrical fields have constant phases and polarizations so
that we can apply the CMT to each segment of the two cores. Optical power P0 is launched
into Core 1. In each uniform segment, a small amount of power is coupled to Core 2. For the
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two-core case, using the CMT, the amplitude Am of the electric field Em of the mode in core m
within j-th uniform segment is described by the following coupled mode equations [15]:

dAmj

dz
= −i

2

∑
n=1

κmnj Anjexp
(
i∆βmnjz

)
m = 1, 2 ; j = 1, 2, . . . N (1)

where m and n denote the core number, j is the segment number, κmnj is the mode coupling
coefficient between the two cores, and ∆βmnj is the difference in propagation constants of
the two cores:

∆βmnj = βmj − βnj (2a)
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Figure 1. Schematic of mode coupling in a two-core fiber that is divided into N uncorrelated
uniform segments.

Noting that κ11j = κ22j = 0, ∆β11j = ∆β22j = 0, to simplify the notations, we define
κj = κ12j = κ21j, ∆β j = β2j − β1j. The difference in propagation constants ∆β j is sensitive
to external random perturbations. To consider the random perturbation effect, we write
∆β j in the following form

∆β j = ∆β0 + ∆βpj (2b)

which contains a constant term ∆β0 due to the core designs without any external perturba-
tions, and a term ∆βpj due to random perturbations.

With the initial conditions of A10 = A0 and A20 = 0 and the assumption of low crosstalk
(A11 = A10), by solving the coupled mode equations, the amplitude of the electric field in
Core 2 at the end of each uniform segment can be obtained [15]:

A2j = iA0ei 1
2 ∆β0∆Lj ei 1

2 ∆βpj∆Lj
κj

gj
sin
(

gj∆Lj
)

j = 1, 2, . . . N (3a)

and the electric field can be written as

E2j = A2jcosϕj
→
x0 + A2jsinϕj

→
y0 j = 1, 2, . . . N (3b)

where

g2
j = κ2

j +

(∆β j

2

)2

, (4)

ϕj is the polarization angle with respect to the x-axis, and
→
x0 and

→
y0 are unit vectors in the

x and y directions. The term ∆βpj causes random phase changes in the field amplitude
A2j
(
∆Lj

)
. Furthermore, the polarization state is sensitive to external perturbations, which

causes the polarization angle of the electric field to rotate randomly in each section. For
simplicity, we assume that segment lengths represent distances beyond which the phase
and polarization become uncorrelated due to random perturbations, and thus consider
the segments to have an E-field with a random phase and polarization that are uniformly
distributed in the [0, 2π] interval. The total power is calculated based on the vector electric
field at the end of the fiber, E = ∑N

j=1 E2j (see Appendix A for more details):
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P2(L) = A2
0

N
∑

j=1

[(
κj
gj

)2
sin2(gj∆Lj

)]
+A2

0

N
∑

j, k = 1
j 6= k

[
ei 1

2 ∆β0(∆Lj−∆Lk)ei 1
2 (∆βpj∆Lj−∆βpk∆Lk) κjκk

gjgk
sin
(

gj∆Lj
)

sin(gk∆Lk)cos(ϕjk)
]

(5)

where ϕjk is the angle between the electric field polarizations of segments j and k. In
general, the uniform segment lengths for the phase and polarization may be different. For
example, the polarization varies over longer segment lengths than the phase. In this case,
the segment lengths are determined by the phase, and the polarization state can be treated
unchanged over several segments in the simulation.

The crosstalk is given by X = P2/P1,

X =
N
∑

j=1

[(
κj
gj

)2
sin2(gj∆Lj

)]
+

N
∑

j,k=1
j 6=k

[
ei 1

2 ∆β0(∆Lj−∆Lk)ei 1
2 (∆βpj∆Lj−∆βpk∆Lk)

(
κj
gj

κk
gk

)
sin
(

gj∆Lj
)
sin(gk∆Lk)cos

(
ϕjk

)] (6)

The above formulation is valid when the propagation constants do not change in each
segment length ∆L. Therefore, it applies when the MCF is deployed with a constant bend
radius Rb and a small twist rate α, such that ∆L� lα, where lα = 2π/α is the twist period.
This condition is satisfied when the correlation length is short and the fiber twist rate is low,
which, in practice, is the case for most fiber deployments. If this condition is not met, i.e.,
∆L > lα, a numerical integration over each segment for the exponential term in Equation (1)
can be used to obtain the amplitude A2j

(
∆Lj

)
. In Section 4, we will illustrate an example of

numerical integration for the exponential term when the twist period is short.
Equation (6) shows that, for a fiber with random perturbations, the crosstalk depends

on the statistical distributions of the length, phase, and polarization of the uniform segments.
As a result, the crosstalk also has a statistical distribution. Because the power is proportional
to the square of the electric field, the crosstalk follows the χ2-square distribution as reported
in earlier studies [6,16–18]. The crosstalk distribution depends on fiber uniformity due to
manufacturing, deployment conditions, such as bends, twists, and thermal and mechanical
stress effects. Thus, the fiber deployment condition will change the distribution and shift
the average crosstalk value. For the purposes of transmission system engineering, the
average crosstalk is an important parameter to determine the average system penalty,
and the crosstalk distribution is used to provide an extra margin for a certain outage
probability. Since the average power can be added incoherently, the average crosstalk
value can be evaluated by the first simulation term only in Equation (6). The average
crosstalk is related to the fiber segment distribution, the coupling coefficient, and the phase
mismatch between the cores. Although the average crosstalk can be evaluated through
numerical calculations of the first term of Equation (6), it would be more convenient to
derive analytical expressions for the average crosstalk.

3. Analytical Expressions for Average Crosstalk
3.1. Derivation of Analytical Expressions

The average crosstalk is obtained by taking the average of Equation (6) over the
random phase due to the random change in ∆βj and ∆βk and over the random polarization
angle ϕjk. Because the phases and polarizations are correlated within each segment, and
uncorrelated between segments, the second term of Equation (6) averages to zero. This
can also be understood by examining the random phase changes due to ∆βj and ∆βk and
the random polarization changes due to ϕjk in the second term of Equation (6). These
random changes in phases and polarizations cause the crosstalk to have a distribution
around an average value that is determined by the first term in Equation (6). Since the first
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term in Equation (6) does not depend on the polarization angle, the average crosstalk X is
calculated over ∆β:

X =

〈
N
∑

j=1

[(
κj
gj

)2
sin2(gj∆Lj

)]〉
∆β

= L
Lc

〈
∑N

j=1

[(
κj
gj

)2
sin2(gj∆Lj)

]
N

〉
∆β

= L
Lc

〈〈(
κ
g

)2
sin2(g∆L)

〉
∆L

〉
∆β

(7)

where 〈 f 〉p denotes the average of a function f over a parameter p, Lc is the correlation
length, which is assumed to correspond to the average segment length, and L = NLc is the
total fiber length. In the final form of Equation (7), the discrete average is replaced by the
continuous function average, and κj and gj are treated as continuous variables κ and g. To
further simplify the derivation process and our numerical simulations, we assume that
the coupling coefficient κ does not change along the fiber. Because the effect of coupling
coefficient variation on crosstalk is expected to be much smaller than that due to the random
phase changes in practical fibers, this simplification does not affect the main conclusions
from our analyses.

We evaluate first the average crosstalk over the fiber segment length ∆L. To examine
the effects of the segment length distribution on the average crosstalk, we consider the
following three statistical distributions for the segment length ∆L:

fs(∆L) =


δ(∆L− Lc) Dirac
1
Lc

exp
(
−∆L

Lc

)
Exponential

1√
2πσ

exp
(
− (∆L−Lc)

2

2σ2

)
Gaussian

(8)

where σ is the standard distribution for Gaussian distribution. Note that Equation (8) is
for the length segment distribution, which is different from the autocorrelation function in
Refs. [7,10]. The average crosstalk for the three distributions becomes (See Appendix B):

〈X〉∆L =

(
κ

g

)2 L
Lc

sin2(g∆L) =


κ2L sin2(gLc)

g2Lc
Dirac

2κ2LLc
1+4g2L2

c
Exponential

κ2LLc

[
1−cos(2gLc)e−2σ2g2 ]

2g2L2
c

Gaussian

(9)

In the case of fiber deployment with bends, g depends on the bending radius and
twist angle, based on the definition in Equation (4) for g,

g2 = κ2 +

(
∆β

2

)2
(10)

Figure 2 shows a two-core fiber under a bend. Using the equivalent index model of
bent fiber [6], the propagation constants for the two cores and their difference are:

β1 = β0,1

(
1 +

r1

Rb
cos(θ1)

)
(11a)

β2 = β1 = β0,1

(
1 +

r1

Rb
cos(θ1)

)
(11b)

∆β = β2 − β1 = ∆β0 +

(
β0,2

r2

Rb
cos(θ2)− β0,1

r1

Rb
cos(θ1)

)
(11c)
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where, ∆β0 = β0,2 − β0,1, (r1, θ1) and (r2, θ2) are local coordinates of the centers of the
two cores and Rb is the bending radius. In general, ∆β0 is much smaller than β0,1 and β0,2,
using the approximation β0,1 ≈ β0,2 ≈ β0 we can write β0,2 = β0,1 + ∆β0 ≈ β0 + ∆β0.
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Using the relationship r2 cos(θ2)− r1 cos(θ1) = Dcos(θ) (see Figure 2), we can derive

∆β = β0
D
Rb

cos(θ) + ∆β0 + ∆β0
r2

Rb
cos(θ2) (12)

Here, D is the distance between the cores. We see that the last term in the definition of ∆β
is much smaller than the other terms, and we ignore this term in our subsequent calculation.

Since ∆β depends on the bending angle θ, the average of crosstalk over ∆β is evaluated
over θ. In a deployment fiber, twisting is present and the bending angle changes with
the fiber twist so that θ = αz, where α is the twist rate and z is the distance along the
fiber. The final average crosstalk is evaluated by taking the average of Equation (9) over a
twist period,

X = 〈〈X〉∆L〉θ =
1

2π

∫ 2π

0
〈X〉∆Ldθ =

α

2π

∫ 2π/α

0
〈X〉∆Ldz (13)

We see that the average crosstalk over a twist period is independent of the twist rate α.
To simplify the notations, we define the following parameters

a = κLc, b =
β0D
2Rb

Lc, c =
∆β0

2
Lc (14)

where a, b, and c represent the phase changes due to mode coupling, fiber bending, and
core mismatch between the two cores. We can change Equation (13) to

X = κ2LLc f (a, b, c) (15)

where

f (a, b, c) =
1

2π

∫ 2π

0
h(a, b, c)dθ (16)

The integrand function h(a, b, c) has the following form

h(a, b, c) =


sin2(G)

G2 Dirac
2

1+4G2 Exponential
1−cos(2G) exp(−2Σ2G2)

2G2 Gaussian

(17)
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where
G2 = a2 + (b cos(θ) + c)2 (18)

G is the total phase factor due to mode coupling, fiber bending, and core mismatch
between the two cores. Here, the standard deviation Σ = σ/Lc is normalized to the unit of
the correlation length Lc.

Equation (17) shows how the crosstalk changes for the three distributions of ∆L for the
case when the fiber is straight without bending, corresponding to the formulas described
in Ref. [8]. From Equation (17), we can see that for the Dirac distribution, the crosstalk
oscillates with G following a sinc function. For the exponential distribution, the crosstalk is
the moving average over an oscillation period of the sinc function for the Dirac distribution.
Furthermore, we can see that the crosstalk in the Dirac distribution and the exponential
distribution are the limits of the crosstalk of the Gaussian distribution depending on Σ
and G. When ΣG � 1, the crosstalk of Gaussian distribution is close to that of exponential
distribution. When ΣG � 1, the crosstalk of Gaussian distribution is close to that of Dirac
distribution. Figure 3 plots the function h versus the parameter G for the three distributions.
For the Gaussian distribution, we plot two curves with Σ = 0.1 and 2, respectively. It can
be seen clearly that function h in the exponential distribution is the average of the Dirac
distribution. Furthermore, for the Gaussian distribution, when Σ = 2, the h is very close to
that for exponential distribution. When Σ = 0.1 and G < 13, the function h is similar to
that for the Dirac function, exhibiting oscillations. When Σ = 0.1 and G > 13, the function
h is similar to that for the exponential function.
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For the exponential distribution, we will show that we can obtain an analytical formula
for the average crosstalk as a function of the bending angle. For the other two distributions,
we will analyze the asymptotic behavior and show that the average crosstalk is very close to
that of the exponential distribution. Therefore, we can apply the analytical formula derived
from the exponential distribution as a general formula for calculating the average crosstalk.

For the exponential distribution, the function f (a, b, c) is given by

f (a, b, c) =
2
π

∫ π

0

dθ

A2 + (B cos(θ) + C)2 (19)

where
A2 = 1 + 4a2, B = 2b, C = 2c (20)

The integral can be computed as the ratio of the sum of the square roots of the complex
number and its conjugate to its magnitude times a constant factor

∫ π

0

dθ

A2 + (B cos(θ) + C)2 =
π

2

√
Z +
√

Z
A|Z| (21)
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where Z is a complex number defined as

Z = A2 + B2 − C2 + 2iAC (22)

Using the formula for the square root of a complex number (see Appendix C), the
function f (a, b, c) takes the following form:

f (a, b, c) =
√

2
√
|Z|+ Re(Z)
A|Z| (23)

The average crosstalk for the case of exponential distribution can be computed analyti-
cally using Equations (14), (15), (20), and (23). We can show that Equation (15) is equivalent
to Equation (16) in Ref. [11] if the parameter a = κLc in the parameter G is equivalent to null
(see Appendix D). Therefore, our analytical expressions are more general than analytical
expressions in Ref. [11]. Because the parameter a is generally very small, both analytical
expressions are expected to give the same results. However, for a homogeneous MCF
without bending, b = 0 and c = 0, our analytical expression is still valid and reduced to the
same expression Equation (9) in Ref. [8] for exponential distribution.

Next, we show that we can derive simpler formulas from the analytical equations
under certain conditions, which allow us to understand better the crosstalk variation. For
the homogeneous case c = 0, the Formula (23) simplifies to:

f (a, b, 0) =
2

A
√

A2 + B2
(24)

By substituting A and B into Equation (24), and assuming a� 1, which is satisfied by
weakly coupled MCF, we get a general crosstalk formula for the homogeneous MCF,

X =
2κ2LLc√

1 +
(

β0D
Rb

Lc

)2
(25)

which is equal to Equation (23) in Ref. [11]. Equation (25) shows that the crosstalk for
homogeneous MCF depends on both the bending radius and the correlation length. If
b� 1, the average crosstalk from Equation (25) becomes

X = 2κ2 RbL
β0D

(26)

matching the formula from Hayashi et al. [6]. This formula is valid for a bend radius
Rb � β0DLc. In this case, the crosstalk is determined by the bending radius only, as shown
in Equation (26). For a large bending radius when Rb � β0DLc, the crosstalk is determined
by the correlation length only, the same as Equation (20) in Ref. [11], as shown below:

X = 2κ2LLc (27)

Figure 4 plots the crosstalk as a function of Rb using Equation (25) for various Lc. The
parameters used in Figure 4 are:

λ = 1550 nm, ne f f = 1.447,
κ = 0.007532 m−1, L = 2 m, D = 45 µm

where neff is the effective refractive index of the mode in each core. The crosstalk calculated
using Equation (26) corresponds to the curve of Lc = ∞, which is a not a realistic case. For
shorter Lc, the approximation of Equation (26) is good only for small Rb, around tenths
of millimeters. For large Rb, the crosstalk is determined by the correlation length as in
Equation (27).
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For heterogeneous MCF, for the case of a�1, b�1 and |c| � b, we can simplify
Equation (23) and derive

X = 2κ2 RbL
β0D

(28)

which is the same as Equation (27) in Ref. [19]. Equation (28) is identical to Equation (26)
for the homogeneous core design. This result indicates that when the bending-induced
phase mismatch dominates, the crosstalk is proportional to the bend radius for both the
homogeneous and heterogeneous MCF. For heterogeneous MCF, the Formula (28) is valid
for bend radii smaller than a critical value Rc. By setting |b| ≈ |c|, we can get the same
critical bend radius expression as derived in Ref. [11]

Rc =
β0

∆β0
D (29)

Equation (29) shows that the critical radius Rc is inversely proportional to the phase
∆β0 mismatch between the two cores. For a bending radius much less than the critical bend-
ing radius Rc, the crosstalk is determined by the bending radius, as shown in Equation (28).
For a bending radius much larger than the critical bending radius Rc, or |b| � |c| and
|c| � a, the crosstalk becomes [11]:

X = 2
κ2

∆β2
0

L
Lc

(30)

In this case, the crosstalk is inversely proportional to the correlation length and the
phase mismatch squared.

3.2. Comparison of Average Crosstalk for Different Statistical Distributions

In the following, we compare the average crosstalk for the three distributions. For the
exponential distribution, the crosstalk is calculated using the analytical expression for func-
tion f in Equation (23). For the Dirac and Gaussian distributions, the function f is evaluated
via numerical integration of Equation (16). We compute the average crosstalk for all three
distributions and correlation lengths Lc = 0.005, 0.5 m. The standard deviation for the
Gaussian distribution is set to σ = Lc. We use the following parameters in our calculations:

λ = 1550 nm, ne f f = 1.44, ∆ne f f = 0.046%,
κ = 0.742 m−1, L = 2 m, D = 30 µm
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where ∆ne f f is the effective refractive index difference between the two cores, which can be
used to determine the phase mismatch ∆β0 between the two cores.

Figure 5 shows the average crosstalk for the two correlation lengths. We see that the
average crosstalk for the exponential distribution is very close to the other two distributions
for a wide range of bending radii and two correlation lengths, Lc. The critical radius Rc,
calculated using Equation (29), is 65 mm, corresponding to the peak crosstalk. Again, the
crosstalk of the exponential distribution is the average of the Dirac distribution. For the
Gaussian distribution, the crosstalk is very close to the exponential distribution. The results
show that the analytical formula that uses Equation (23) derived from the exponential
distribution is a very good approximation of the average crosstalk for the Dirac and
Gaussian distributions. Therefore, the statistical distribution inside a fiber segment length
does not influence that much the average crosstalk, and we can employ the analytical
formula for the average crosstalk in all three statistical distribution cases.
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3.3. Comparison with the Results in the Literature for the Heterogeneous Case

In this section, we compare our analytical formulas of Equations (17) and (25) with the
results that were reported in Ref. [11]. We use the same parameters as in in Section 3.2 to
compute the crosstalk for the correlation lengths Lc = 500, 100, 50, 10, 5, 0.5, 0.05, 0.01 mm.

Our results for the above parameters are shown in Figure 6, which agree with the
results from Figure 5 reported by Koshiba et al. [11]. The critical bending radius is calculated
using Equation (29), which is 65 mm. The results of using the analytical formula support
the statement that our analytical expressions are equivalent to Ref. [11], as shown in
Appendix D.
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0.1 mm, and 0.01 mm.
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4. Numerical Simulations and Comparisons with Analytical Expressions

Equation (6) for the crosstalk lends itself to a numerical evaluation based on statistical
distributions of random perturbations. For a given MCF core design, geometry, length,
and deployment condition, we generate 104 random realizations of the fiber (sufficient
to achieve converged numerical results), in which phase and polarization perturbations
occur between fiber uniform segments ∆Lj and ∆Lj+1, with lengths distributed according
to a correlation-scale dependent function. In the following simulations we use statistical
distributions of ∆L defined in Equation (8), to implement correlation-scale dependent
function. Figure 7 shows crosstalk distributions evaluated for a 1 km long two-core
homogeneous MCF with core spacing D = 45 µm, coupling coefficient κ = 0.007532 m−1,
Gaussian distribution with Lc = 0.04 m, and λ = 1.55 µm. The numerical model is based on
Equation (5) for the total coupled power, which is computed based on the simulation of
vector E-field contributions, given by Equation (3b), from each segment to the total E-field
in the coupled core. Therefore, the simulated crosstalk accounts for both components
of the E-field polarization. The numerical results for bend radii of 75 mm and 500 mm,
representative of deployment on a shipping spool and in a fiber cable, are compared with
analytic solutions [6] given by a χ2-distribution function with four degrees of freedom,
indicating good agreement between the two approaches.
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Figure 7. Probability density functions of two-core homogeneous MCF, computed numerically (his-
tograms) and analytically [6] (line) for deployments with bend radii (a) Rb = 75 mm and (b) 500 mm.

The dependence of average crosstalk on the bend radius is shown in Figure 8a for
the same MCF parameters as in Figure 7, comparing results from numerical simulation
with those predicted by numerical evaluation of Equations (15) and (16), as well as analytic
expressions for Rb

−1 = 0 from [8] and for Rb
−1 > 0 from [11]. In the case of Gaussian

distribution function fs(∆L), numerical results match well the straight fiber crosstalk value
predicted by the expression specified in [8]. Good agreement between all methods is
also seen for bend radii extending to Rb ≈ 5 m, matching in this range the estimate
based on analytic formula in [6] for average crosstalk at small bend radii. Numerical
simulations for the case of exponential distribution of segment lengths are found to be in
full correspondence with the analytic result from Equation (12) of [11] for all bend radii.
In the case of Dirac distribution ∆L = Lc, the crosstalk obtained from Equation (15) closely
matches the corresponding result from numerical simulations, including the asymptotic
value at Rb

−1 = 0. Similar to the average crosstalk, at small bend radii there is also a good
agreement between the corresponding probability density functions simulated assuming
different statistical distributions of ∆L (Figure 8b), as concluded also in Section 3.2, which
are modeled well by a χ2-distribution function.
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Figure 8. (a) Average crosstalk dependence on the bend radius, computed numerically and based on
analytic approaches of M. Koshiba et al. 2012 [11], M. Li et al. 2015 [8] and Equation (15); (b) simulated
crosstalk probability density functions for homogeneous MCF at Rb = 500 mm in comparison to the
χ2-distribution function.

The impact of correlation length parameter Lc on the average crosstalk is shown in
Figure 9 for the case of straight deployment of MCF with the same parameters as discussed
above, and for the case with a larger mode coupling coefficient (κ = 0.012 m−1), representing
a change of core design. Numerical results from statistical simulations and from analytic
expression in [8] are found to be in very good agreement.
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Figure 9. Average crosstalk dependence on the correlation length scale Lc, computed numerically and
based on analytic expression from [8] for the case of (a) Gaussian and (b) exponential distribution of
uniform segment lengths.

Crosstalk distributions for heterogenous core MCF with the same parameters as
in Figure 7, but a difference of ∆neff = 5 × 10−4 in the effective refractive index of the
modes of two cores, are shown in Figure 10. The average crosstalk for large bend radii
deployment, Rb = 500 mm, is reduced significantly compared to homogeneous MCF,
while for Rb = 75 mm, the stronger coupling due to tighter bends leads to a smaller
difference between heterogenous and homogeneous core configurations. In both cases, the
numerically computed crosstalk distributions are approximated well by a χ2-distribution
fit to simulation data.
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Figure 10. Probability density functions of two-core heterogenous MCF (neff = 5 × 10−4), computed
numerically for deployments with bend radii (a) Rb = 75 mm and (b) 500 mm. Dashed lines show the
fit of χ2-distribution function with four degrees of freedom to numerical data.

A comparison of the average crosstalk computed from numerical simulations and
predicted by Equations (15) and (16) for heterogenous MCF is shown in Figure 11. For
bend radii Rb < 1 m, the average crosstalk and probability density function are practically
independent of the distribution function assumed for ∆L, and for all bend radii the analytic
solutions are confirmed by the numerical simulations. The average crosstalk in the Rb

−1 = 0
limit also does not depend significantly on the assumption of either exponential or Gaussian
distribution functions; however, it can differ significantly for the case of constant ∆L, due
to oscillatory dependence of the crosstalk on the bend radius.
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Figure 11. (a) Average crosstalk dependence on the bend radius computed analytically according
to M. Koshiba et al. 2012 [11], M. Li et al. 2015 [8], numerically and based on Equation (15), for
heterogeneous cores with ∆neff = 5 × 10−4; (b) simulated crosstalk probability density functions for
heterogeneous MCF at Rb = 500 mm in comparison to the χ2-distribution function.

As we discussed earlier in Section 2, Equation (1) is derived assuming that the differ-
ence in propagation constants of the cores is constant over the segment length ∆L. Therefore,
it applies when the MCF is deployed with a constant bend radius Rb and a small twist
rate α, such that ∆L� lα, where lα = 2π/α is the twist period. To evaluate the accuracy
of this approximation we consider MCF parameters and deployment conditions for the
case “Perfectly homogeneous MCF” presented in Figure 1 of Ref. [13]. The dashed line in
Figure 12 is evaluated using numerical simulations based on the Equation (3a) assuming
averaging over the twist period, as described in the manuscript. It is seen to be in good
agreement with the corresponding result labeled “dashed line: estimate by expression pro-
posed in [18]” as presented in Figure 1 of Ref. [13]. We verified the solution in this regime by
numerically integrating Equation (1) over each segment length ∆L with an integration step
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size much less than ∆L and Rb. The result is shown by the open red symbols that coincide
with the dashed line (only a few points common to both cases are shown for clarity).

Figure 12. Average crosstalk for “ideal homogeneous” MCF parameters from Figure 1 of [13]. Dashed
line: computed via numerical simulations based on Equation (3a) assuming averaging over the twist
period. Open red circles: computed numerically by integrating Equation (1) over each segment length
∆L with an integration step ∆z much smaller than ∆L and Rb, and assuming averaging over the twist
period. Filled red circles: computed numerically by integrating Equation (1) modified to include the
accumulated phase ∆θ(z) that includes the variation due to the twist with period of 0.134 m.

In the case when the twist period is comparable to the segment length, or the cor-
relation length, the more general form of Equation (1) with the accumulated phase (e.g.,
as described by Equation (1a,b) in Ref. [13]) should be used. The approach presented
in the manuscript can be applied in this case by replacing the crosstalk amplitude given
by Equation (3a) at the end of the segment of length ∆L, by the amplitude found by the
integration of the more general form of Equation (1) with the accumulated phase. We
evaluated this approach by numerically integrating Equation (1) modified to include the
accumulated phase that includes the variation due to the twist. The result is shown in
Figure 12 by red solid circles, which reproduce the corresponding oscillatory curve shown
by a solid line (and square symbols) in Figure 1 of Ref. [13].

5. Experimental Characterization of MCF Crosstalk Statistical Distributions

Experimental characterization of crosstalk has been reported in various papers, see
e.g., [9,16,18,20]. In Ref. [16], a method was developed to measure the extremely low
crosstalk of MCF statistically. In Ref. [19], the statistical behavior of the inter-core crosstalk
power in weakly coupled MCFs with multiple interfering cores was experimentally as-
sessed. In Ref. [9], it was shown that a crosstalk statistical distribution can be characterized
with different types of perturbations, such as thermal, mechanical, or wavelength scanning,
to yield the same result. In current research we use the wavelength scanning technique to
compare crosstalk for MCF deployed under three different bending conditions: a shipping
reel with radius of 75 mm, a measurement reel with radius of 185 mm, and a straight line.

Figure 13 shows a schematic of the experimental setup. An external cavity laser,
tunable in the range of 1520–1570 nm, is used as light source. The MCF used in our
experiments is a two-core fiber with a homogeneous core design. The core refractive index
profile is similar to the standard single-mode fiber (SMF) design. Each core is Germanium
doped with a step relative refractive index of 0.34%, and a core diameter of 8.5 µm. The core
spacing is about 44 µm. The cladding is pure silica with a diameter of 125 µm (Figure 14a).
The coupling coefficient is estimated to be 0.01052 1/m, calculated from the fiber design.
Although the fiber is designed as a homogeneous two-core fiber, fluctuations can happen
in fiber manufacturing to cause the two cores to be slightly different, which leads to slightly
different parameters in the two cores. We estimated the mismatch in ∆β0 and found that the
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value was much smaller than the coupling coefficient κ, which means that the parameter
c = ∆β0/2·Lc can be ignored in our model. Therefore, the fiber can be considered as a
homogeneous fiber in our theoretical analysis to compare with experimental data. The
light is coupled into one core of MCF through a 2 m standard SMF bonded by UV-curing
adhesive with lateral offset (Figure 14b). The light output from another core of the MCF
is sent to the power meter through another 2 m standard SMF bonded with lateral offset.
Crosstalk power variation in time is detected by a power meter with a 10 ms sampling
interval, while continuous mode-hop-free linear scanning of the laser wavelength within
10 or 50 nm interval is performed.
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Figure 14. Images of cleaved end face of two-core MCF (a) and bonded with lateral offset standard
single-mode and MCF (b).

We first measured crosstalk with 1540 m of fiber wound on shipping and measurement
reels and compared the crosstalk distributions and the average crosstalk. We then measured
the crosstalk of fiber under a straight deployment condition, where the fiber has two straight
~50 m sections with a ~1 m radius U-turn in the middle. Due to the space limitation, we
used only 100 m for this measurement. The fiber was attached in several locations to the
floor by scotch tape along the walls of a 50 m corridor. To compare with the fiber under a
bending condition, we also measured the same 100 m fiber wound on a shipping reel. The
measurement results allow us to analyze crosstalk scaling with both the bending radius
and the fiber length.

In the case of 1540 m length of MCF wound on shipping and measurement reels,
we found fast variations of crosstalk power over time during laser wavelength scanning
within 10 nm intervals, as shown in Figure 15, that correspond to instantaneous crosstalk
variations, as observed in previous papers (see e.g., [16,21]). Furthermore, we observed an
increase of the average crosstalk for the larger diameter measurement reel.

Figure 16 shows statistical distributions of crosstalk (50,000 aggregate sampling points
for five different scans) for the 1540 m long fiber in both dB and linear scales. Compared
with the results for the fiber on the shipping reel, the measurement reel deployment
increases the average crosstalk by about 4.2 dB, but the distributions are very similar
following a χ2-distribution that was obtained from numerical simulations of the same
number of samples as in the experiment. In the model we used an exponential distribution
of segment lengths with Lc = 0.006 m, and a coupling coefficient that was 15% larger than
the theoretical coupling coefficient from the fiber design to obtain the best match to the
measured data. To quantify how well the modeled curves fit to the experimental data, we
evaluated the fitting quality parameter, delta, which is the absolute difference between
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simulated and measured crosstalk distributions, by computing the sum of absolute values
of the differences in frequency counts of the two discrete distributions of linear crosstalk,
normalized by the total number of samples. For the 1540 m long MCF sample deployed
on the shipping and measurement reels, the delta was computed to be 0.13 and 0.16,
respectively. We also computed the difference between the average crosstalk evaluated
from the model and experimental data. The absolute difference was found to be 0.6 dB and
0.3 dB for the shipping and measurement reels, respectively.
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Figure 16. Crosstalk statistical distribution functions for 1540 m long fiber: (a) shipping reel; (b) mea-
surement reel. Blue lines: modeled χ2-distributions.

For the 100-m-long fiber deployed on the shipping reel and under the straight condi-
tion, crosstalk power variations in similar scans are shown in Figure 17. We found that for
the fiber on the shipping reel, the power evolution over time was much slower than for the
longer fiber length as compared with Figure 15. A crosstalk statistical distribution could
be obtained from a single scan with 10,000 sampling points, but the distribution function
was not very smooth and there was about a 1.5 dB variation for the average crosstalk in
different scans. Thus, we repeated scans five times to get 50,000 aggregate sampling points
and squeezed fiber on a reel by palms between scans to get better randomization of the
data. For the straight fiber deployment, the average crosstalk was much higher and power
evolution over time was even much slower (see Figure 17). In this case, it was very difficult
to obtain a smooth crosstalk distribution even using repetitive scans. Thus, we performed
scans for several days and used 10 nm and 50 nm scan intervals (entire number of sampling
points is 320,000). The origin of a slower evolution of crosstalk over time (wavelength) for a
shorter fiber span and straight deployment condition is not clear so far, but we hypothesize
that it might be resulted from reduced perturbations due to fewer overlapping fiber layers
on the fiber reel, or less bending and twisting in the straight deportment condition. The
reduced perturbations to fiber could decrease random variations in phases and polarization
states with time, which result in a slower evolution of crosstalk.
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Figure 17. Crosstalk variations with laser wavelength scanning for straight and reeled fiber of a
100 m length.

Figure 18 shows the statistical distributions of crosstalk for the fiber of 100 m length
measured on the shipping reel and in the straight-line condition. Again, both distributions
follow a χ2-distribution (blue line at Figure 18). At the same time, sharp decay for high
crosstalk levels at Figure 18b may be conditioned by poor randomization of crosstalk
states, especially for 10 nm scan intervals. In Figure 18 for 100 m MCF, the same model
parameters were used to generate the simulation results as in Figure 16 for a 1540-m-long
sample, but with a coupling coefficient that was 20% smaller than a coupling coefficient
from the fiber design for a better match to the measured distributions. The variations in
the coupling coefficient used for fitting may be indicative of its length dependence due
to fiber parameter variations of the MCF parameters in practice. For a 20% fluctuation in
the coupling coefficient, the average crosstalk changes by about less than 1.9 dB, which
is small compared to the average crosstalk magnitude. We also calculated the fitting
quality parameter delta for the 100-m-long MCF sample on the shipping reel and straight
deployment, the delta was found to be 0.14 and 0.17, respectively. The absolute difference
in average crosstalk was found to be 0.6 dB and 1.1 dB for the shipping reel and the straight
condition, respectively.
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Figure 18. Crosstalk statistical distribution functions for 100 m fiber: (a) shipping reel; (b) straight
fiber. Blue lines: modeled χ2-distributions.

The normalized difference in frequency counts between simulated and measured
crosstalk distributions is between 0.13 and 0.17 for both 100 m and 1540 m MCF samples,
and for all deployment conditions considered in the experiment. While this metric does
not distinguish between differences near the average and tails of the statistical distribu-
tions, the relatively small (≤17%) difference and narrow range of variation of delta with
deployment conditions, as well as ≤1.1 dB difference in average crosstalk values, indi-
cates an overall level of agreement that makes the model useful for transmission system
engineering applications.

The average measured crosstalk in the straight deployment condition is −41.8 dB,
an increase of about 13 dB in comparison with the shipping reel (−54.5 dB). Compared
with the measurement result of 1540 m fiber on the shipping reel, we get −51.3 dB for
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100 m using the linear length scaling rule. The measured average crosstalk results can
be compared with the computed average crosstalk using Equation (26). To perform the
comparison, we normalized the measured average crosstalk with different fiber lengths to
1 km using the linear scaling rule. Using the coupling coefficient calculated from the fiber
design and the correlation length of 0.006 m used in the crosstalk distribution simulation,
we obtain the average crosstalk dependence on the bend radius shown in Figure 19. The
four measured crosstalk data points for bend radii of 75 mm, 185 mm, and infinity agree
well with the crosstalk calculated from Equation (26).
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6. Discussions

In this paper, a simple numerical simulation method is presented on crosstalk using
the CMT by treating an MCF as concatenated uncorrelated segments with a random
segment length distribution. This method is different from other approaches that have
been considered previously, such as the discrete changes model of crosstalk [21], and its
generalization to dual-polarization cases (DP-DCM) [22], which are derived based on
the crosstalk evaluated at discrete phase matching points These formulations have the
advantage of being computationally efficient, and, in the case of DP-DCM, also suitable for
modeling coherent and direct-detection MCF transmission systems. The current derivation,
on the other hand, is based on the direct integration of coupled mode amplitude equations
in each MCF segment with constant properties, requiring ~104 random fiber realizations for
numerical evaluation of crosstalk distribution, which is less than 107 that may be required
by other methods [18].

This new simulation method allows us to derive a general closed-form simulation
formula Equation (6) for the crosstalk of MCFs under random perturbations, which contains
a term for the average crosstalk and a term for the crosstalk distribution. It is a simple
formula that is easy to use for simulating crosstalk numerically. In addition, it provides
physical insight about crosstalk behaviors. The first term does not depend on the random
phase and random polarization changes, which represents the average crosstalk. If one
is interested in the average crosstalk only, only the simple expression of the first terms
needs to be used to provide quick results. The second term depends on random phase and
polarization changes, which represents the statistical distribution of crosstalk. This term
can be used for fast numerical simulations of the statistical nature of crosstalk.

As we pointed out in Section 2, the closed-form simulation formula is valid for an MCF
deployed under a constant bend radius Rb and a small twist rate α, or a long twist period
lα, such that ∆L � lα. This condition is satisfied in many practical fiber deployments.
For example, when the fiber is wound on a shipping spool of 150 mm diameter, a typical
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condition for fiber measurements, the natural twist period is over 100 m. For the fiber
inside a cable, the twist period is a much longer 1 m for fiber reliability reasons. Therefore,
the condition of ∆L� lα is met by most practical applications.

We further study the crosstalk under three different statistical distribution of the
segment lengths. We show that the statistical distribution of segment length changes the
detailed average crosstalk behavior but does not affect the overall crosstalk trend. For the
exponential distribution of segment length, we derive a simple analytical expression for the
average crosstalk, which can be used for system engineering applications. Our analytical
expression is more general than that in Ref. [11], and agrees with the results of Ref. [11]
when parameter a = κLc is small compared to the parameters of b and c.

We provide detailed numerical simulations using the general closed-form simulation
formula and compare these with results from various analyses. The numerical simulation
results provide validation of our general closed-form simulation formula and show that it
can be applied to fibers with various perturbations.

We also measure crosstalk under two different bending conditions and a straight
condition. To the best of our knowledge, the crosstalk under the straight condition has not
been reported so far. The measured crosstalk distributions and average crosstalk provide
further validation to our modeling results.

In our analytical and numerical modeling, we assume that the coupling coefficient does
not vary along the fiber for simplicity. This assumption is supported by our experimental
data. The measurement results of the average crosstalk of different sections of the fiber
indicate 15% to 20% variations in the coupling coefficient. For a 20% fluctuation in the
coupling coefficient, the average crosstalk change is only about 1.9 dB, which is much
smaller compared to the average crosstalk magnitude of −30 dB or lower for weakly
coupled MCFs. Therefore, the assumption of constant coupling coefficient is a good
approximation for practical MCFs.

The model presented in this paper can be expanded for future studies. The two-core
model can be generalized to more interfering cores to evaluate their contributions to the
total crosstalk to one core. Furthermore, we can apply the model to practical cable structures
with certain twisting and bending diameters to study the effects of cabling on crosstalk. In
this paper, we analyze only the properties of crosstalk of MCF with a CW laser at its input.
For transmission systems, it is more interesting to evaluate the effects of crosstalk on signal
performance in coherent or direct-detection systems, as well as the impact of instantaneous
crosstalk on the outage probability of an optical communication system. The extension of
our crosstalk model to transmission systems will also be a subject for future study.

7. Conclusions

We have presented a study of MCF crosstalk using the CMT. We derived a general
closed-form simulation formula for the crosstalk of MCF under random perturbations.
This general formulation allows evaluations of both the average crosstalk and the crosstalk
statistical distribution. We analyzed the average crosstalk under three statistical distribu-
tions of fiber uniform segment lengths, constant, exponential, and Gaussian, and derived
simple analytical expressions for the average crosstalk. We also performed numerical
simulations for crosstalk statistical distributions using the general closed-form simulation
formula and showed that crosstalk distributions agree well with the χ2-distribution func-
tion with four degrees of freedom. Furthermore, the average crosstalk from numerical
simulations agrees with the approximation from the simple analytical expressions. Finally,
we conducted crosstalk measurements under different bending deployment conditions.
The results show that the measured crosstalk distributions and the average crosstalk agree
with our modeling results.
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Appendix A

The total electrical field in Core 2 is found by adding the electrical field from each
section, as shown in Equation (3b)

E =
N

∑
j=1

E2j =
N

∑
j=1

A2jcosϕj
→
x0 + A2jsinϕj

→
y0

The optical power is

P2 = E·E∗ =
(

N
∑

j=1
A2jcosϕj

→
x0 + A2jsinϕj

→
y0

)
·
(

N
∑

j=1
A∗2jcosϕj

→
x0 + A∗2jsinϕj

→
y0

)
=

N
∑

j=1
A2j A∗2jsin2 ϕj + A2j A∗2jcos2 ϕj +

N
∑

j,k=1
j 6=k

A2j A∗2kcosϕjcosϕk + A2j A∗2ksinϕjsinϕk

Using the trigonometry relationships:

sin2 ϕj + cos2 ϕj = 1

cos
(

ϕj − ϕk
)
= cosϕjcosϕk + sinϕjsinϕk

and defining ϕjk = ϕj − ϕk, we get

P2 =
N

∑
j=1

A2j A∗2j +
N

∑
j,k=1
j 6=k

A2j A∗2kcosϕjk

Substituting A2j according to Equation (3a), we get

P2(L) = A2
0

N
∑

j=1

[(
κj
gj

)2
sin2(gj∆Lj

)]
+A2

0

N
∑

j, k = 1
j 6= k

[
ei 1

2 ∆β0(∆Lj−∆Lk)ei 1
2 (∆βpj∆Lj−∆βpk∆Lk) κjκk

gjgk
sin
(

gj∆Lj
)

sin(gk∆Lk)cos(ϕjk)
]

Appendix B

For the Dirac distribution, the integral is obvious:

I = 〈sin 2(g∆L)〉 =
∫ ∞

0
sin2(g∆L)δ(∆L− Lc)d∆L = sin2(gLc)

For the exponential distribution, we need to compute the integral

I =
∫ ∞

0
sin2(g∆L)

1
Lc

exp
(
−∆L

Lc

)
d∆L
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Integration by parts once, we have

I = 2gLc

∫ ∞

0
sin(g∆L) cos(g∆L)

1
Lc

exp
(
−∆L

Lc

)
d∆L

Integration by parts one more time, we have

I = 2g2L2
c

∫ ∞

0
(1− 2 sin2(g∆L))

1
Lc

exp
(
−∆L

Lc

)
d∆L = 2g2L2

c (1− 2I)

Therefore,

I =
2g2L2

c
1 + 4g2L2

c

For Gaussian distribution, we express

sin2(θ) =
1− cos(2θ)

2

We then compute the real part of the integral

∫ ∞

−∞
exp(2ig∆L)

1√
2πσ

exp

(
− (∆L− Lc)2

2σ2

)
d∆L

Completing square in the exponent, we have

− (∆L− Lc)2

2σ2 + 2ig∆L = − (∆L− Lc− 2igσ2)
2

2σ2 + 2igLc − 2g2σ2

The formula follows using Cauchy Integral Theorem.

Appendix C

Square root of a complex number
Let z = a + ib be a complex number where a and b are real. The square root of z is

given by
√

a + ib = ±
(√
|a + ib|+ a

2
+

ib
|b|

√
|a + ib| − a

2

)

Appendix D

In this appendix, we will show that the crosstalk given by Equation (15) of this work
is equivalent to Equation (16) of Ref. [11]. In the present work, XT = κ2LcL f (a, b, c) while
in [11], XT = Lhmn. If we take out the term a2 in the definition of G2 in Equation (18),
both formula for XT are the same. We have identified the terms in both equations as
follows, where the terms on the left are from the current paper and the terms on the right
are from [11]:

κ = Kmn, Lc = d, β0D = Bmn, ∆β0 = ∆βmn

Our formula is more general than [11]. G2 contains the term (κLc)
2 and this term does

not appear in [11]. Since κLc is usually small compared to other terms, numerical results
look the same.

To show that the two equations are equivalent, we need to establish the following√
|Z|+ Re(Z)
|Z| =

1√
a
(
b +
√

ac
) + 1√

c
(
b +
√

ac
)
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where
p =

β0DLc
Rb

q = ∆β0Lc

Z = 1 + p2 − q2 + 2iq

a = 1 + (q− p)2

b = 1 + q2 − p2

c = 1 + (q + p)2

|Z| =
√
(1 + p2 − q2)2 + 4q2

Re(Z) = 1 + p2 − q2 = 2− b

We first establish the following

√
ac =

√
1 + 2(p2 + q2) + (p2 − q2)2 = |Z|(√

ac− b
)(√

ac + b
)
= ac− b2 = 4p2

a + c− 2b = 4p2

We start with

1√
a(b+

√
ac)

+ 1√
c(b+

√
ac)

=
√

a+
√

c√
ac(b+

√
ac)

=
(
√

a+
√

c)
√√

ac−b√
ac(b+

√
ac)(
√

ac−b)

=
(
√

a+
√

c)
√√

ac−b
2p
√

ac

The square of numerator of last expression is(
a + c + 2

√
ac
)(√

ac− b
)

= 2ac +
√

ac(−2b + a + c)− b(a + c)
= 2ac + 4p2√ac− b

(
2b + 4p2)

= 2
(
ac− b2)+ 4p2(√ac− b

)
= 4p2(√ac + 2− b

)
= 4p2(|Z|+ Re(Z))

Taking the square root, canceling 2p, the equivalence of the two formulas is established.
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