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Abstract: In this work, we investigate the ground state properties and collective excitations of a
dipolar Bose–Einstein condensate that self-binds into a quantum droplet, stabilized by quantum
fluctuations. We demonstrate that a sum rule approach can accurately determine the frequency
of the low energy axial excitation, using properties of the droplet obtained from the ground state
solutions. This excitation corresponds to an oscillation in the length of the filament-shaped droplet.
Additionally, we evaluate the static polarizabilities, which quantify change in the droplet dimensions
in response to a change in harmonic confinement.
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1. Introduction

A dipolar Bose–Einstein condensate (BEC) is made up of particles with a significant
dipole moment, making dipole–dipole interactions (DDIs) important. Highly magnetic
atoms have been used in experiments to create dipolar BECs [1–4] and to explore various
phenomena arising from these interactions [5,6]. In the dipole-dominated regime, where
DDIs dominate over short-ranged interactions, quantum droplets can be formed. These
droplets are mechanically unstable at the mean-field level, but are stabilized against collapse
by quantum fluctuations [7–13]. Experiments using dysprosium [11,14,15] and erbium [16]
atoms have prepared and measured various properties of these quantum droplets, which
have a filament-like shape due to the anisotropy of the DDIs.

The extended Gross–Pitaevskii equation (EGPE) provides a theoretical description of
the ground states and dynamics of quantum droplets, incorporating quantum fluctuation
effects within a local density approximation. The collective excitations of these quantum
droplets are described by the Bogoliubov–de Gennes (BdG) equations, which can be ob-
tained by linearizing the time-dependent EGPE about a ground state. Baillie et al. [17]
presented the results of numerical calculations of the collective excitations of a dipolar
quantum droplet (also see [18]). Additionally, a class of three shape excitations has been
approximated using a Gaussian variational ansatz [19]. Experiments have measured the
lowest energy shape excitation, corresponding to the lowest nontrivial axial mode, for a
large trapped droplet [16]. Experiments with dysprosium droplets have also measured the
scissors mode [20].

In this paper, we consider dipolar quantum droplet ground states and the m = 0
(projection of angular momentum quantum number) collective excitations in free-space
cases and in trapped cases. We focus on a low energy axial collective excitation, which
softens to zero energy to reveal the unbinding (evaporation) point for a free-space quantum
droplet. We use a sum rule approach to estimate the excitation frequency of this mode in
terms of the ground state properties, including its static response to a small change in the
axial trapping frequency. We compare the result of this sum rule method to the excitation
frequency obtained by direct numerical solution of the BdG equations. We verify that the
sum rule predictions are accurate over a wide parameter regime, including deeply bound
droplet states, droplets close to the unbinding threshold, and in the trapped situation where
the droplet crosses over to a trap-bound BEC.
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2. Formalism
2.1. Ground States

Here we consider a gas of magnetic bosonic atoms described by the EGPE energy
functional

E =
∫

dx ψ∗
[

hsp + 1
2 gs|ψ|2 + 1

2 Φdd + 2
5 γQF|ψ|3

]
ψ, (1)

where

hsp = − h̄2

2M
∇2 + V(x), (2)

V(x) =
1
2

M(ω2
xx2 + ω2

yy2 + ω2
z z2), (3)

are the single particle Hamiltonian and the harmonic trapping potential, respectively. Here,
gs = 4πh̄2as/M is the coupling constant for the contact interactions, where as is the s-wave
scattering length. The potential

Φdd(x) =
∫

dx′Udd(x− x′)|ψ(x′)|2, (4)

describes the long-ranged DDIs, where the magnetic moments of the atoms are polarized
along z with

Udd(r) =
3gdd

4πr3

(
1− 3z2

r2

)
. (5)

Here gdd = 4πh̄2add/M is the DDI coupling constant, with add = Mµ0µ2
m/12πh̄2 being

the dipolar length, and µm the atomic magnetic moment. The quantum fluctuations are
described by the nonlinear term with coefficient γQF = 32

3 gs
√

a3
s /πQ5(εdd), where

Q5(x) = <
{∫ 1

0
du [1 + x(3u2 − 1)]5/2

}
, (6)

(see reference [8]) and εdd ≡ add/as. We constrain solutions to have a fixed number of
particles N and ground state solutions satisfy the EGPE

µψ = LEGPψ, (7)

where µ is the chemical potential and we introduced

LEGPψ =
(

hsp + gs|ψ|2 + Φdd + γQF|ψ|3
)

ψ. (8)

For the results we present here we leveraged the algorithm developed in Reference [21]
to calculate the ground states.

2.2. Excitations
2.2.1. Bogoliubov–De Gennes Theory

The collective excitations are described within the framework of Bogoliubov theory.
These excitations can be obtained by linearizing the time-dependent EGPE ih̄Ψ̇ = LEGPΨ
around a ground state using an expansion of the form

Ψ(x, t) = e−iµt

[
ψ(x) + ∑

ν

{
λνuν(x)e−iωνt − λ∗νv∗ν(x)e

iωνt
}]

, (9)
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where λν are the (small) expansion coefficients. The excitation modes uν, vν and frequencies
ων satisfy the BdG equations(

LEGP − µ + X −X
X −(LEGP − µ + X)

)(
uν

vν

)
= h̄ων

(
uν

vν

)
, (10)

where X is the exchange operator given by

X f ≡ gs|ψ0|2 f + ψ0

∫
dx′Udd(x− x′) f (x′)ψ∗0 (x

′)+ 3
2 γQF|ψ0|3 f . (11)

More details of the Bogoliubov analysis of the EGPE can be found in Reference [17].
Here we consider problems with rotational symmetry about the z axis, which restricts
the trap to cases with ωx = ωy. This symmetry means that the excitations can be chosen
to have a well-defined z-component of angular momentum, h̄m, where we introduced
m = 0,±1,±2, . . . as the quantum number.

2.2.2. Sum Rule Approach for Lowest Compressional Mode

We now wish to discuss a method for extracting the low energy axial compressional
mode. We consider the mode excited by the axial operator σz =

∫
dx ψ̂†z2ψ̂, where

ψ̂ is the bosonic quantum field operator. The energy (h̄ωub) of the lowest mode ex-
cited by σz has an upper bound provided by the ratio

√
m1/m−1, where we introduced

mp =
∫

dω (h̄ω)pSz(ω) as the p-moment of Sz(ω) [22]. Here

Sz(ω) = h̄ ∑
p
|〈p|σz|0〉|2δ(Ep − E0 − h̄ω), (12)

is the zero temperature dynamic structure factor, with |p〉 being the eigenstate of the second
quantized Hamiltonian H of energy Ep, and |0〉 denotes the ground state. The m1 moment
can be evaluated using a commutation relation as

m1 =
1
2
〈0|[σz, [H, σz]]|0〉 =

2Nh̄2〈z2〉
M

. (13)

The m−1 moment can be evaluated as m−1 = 1
2 χzz (see [22]), where χzz is the static

polarizability quantifying the linear response of σz to the application of the perturbation
−λσz to the Hamiltonian, i.e., δ〈σz〉 = λχzz. Setting λ ≡ − 1

2 M δω2
z , we see that this

perturbation is equivalent to a change in the axial trapping frequency, and, hence, the static
polarizability can be evaluated as

χzz = −
2Nδ〈z2〉

Mδω2
z

, (14)

(the reader can also see References [22–24]). Thus, we obtain the following as an upper-
bound estimate of the lowest mode frequency

ωub =

√
4N〈z2〉
Mχzz

. (15)

A similar approach was used in Reference [20] to estimate the scissors mode frequency
of a dipolar droplet, but in that work the z-component of angular momentum was the
relevant excitation operator.
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It is also of interest to understand the static polarizability quantifying the change in
the transverse width (with operator σρ =

∫
dx ψ̂†ρ2ψ̂, where ρ =

√
x2 + y2) to the axial

perturbation, i.e.,

χρz = −
2Nδ〈ρ2〉

Mδω2
z

. (16)

Later, we consider both the axial χzz and transverse χρz static polarizabilities to charac-
terize quantum droplet behavior.

3. Results for Free-Space Droplets
3.1. Energetics

In Figure 1 we consider a free-space (self-bound) 164Dy droplet for as = 80 a0
(i.e., εdd = 1.64) as a function of N. For N > Ncrit ≈ 2020 a self-bound droplet solu-
tion exists while, for N < Ncrit, there is no droplet solution, and the atoms expand to fill all
space. This value of Ncrit is slightly higher than the value obtained in Reference [17] for
the same physical parameters. This is because we use the result Q5(εdd), rather than the
approximation 1 + 3

2 ε2
dd, to define γQF.

In Figure 1a we examine the energy of the free-space droplet, and observe that, as N
approaches Ncrit from above, the total energy of the droplet becomes positive (for N . 2350,
see inset). When the energy is positive the droplet is metastable. We show some examples
of the droplet states in Figure 1c to give some context on the size and shape of the droplet
as N varies.

We also consider the components of energy, defined by

Ekin = − h̄2

2M

∫
dx ψ∗∇2ψ, (17)

Epot =
∫

dx V(x)|ψ|2, (18)

Es =
1
2

gs

∫
dx |ψ|4, (19)

Edd =
1
2

∫
dx Φdd(x)|ψ|2, (20)

EQF =
2
5

γQF

∫
dx |ψ|5 (21)

as the kinetic, potential, contact interaction, DDI, and quantum fluctuation energy, respec-
tively. For this free-space case Epot = 0, and we observe that the DDI and contact interaction
energies are the largest energies by magnitude, but have opposite signs. The quantum
fluctuation term is necessary to stabilize the droplet solution against mechanical collapse
driven by the interaction terms, but is typically significantly smaller in magnitude than
either of the interaction energies. The kinetic energy is smaller than all other components,
except when N → Ncrit, where it can exceed EQF.

A virial relation for the system can be obtained by considering how the energy func-
tional transforms under a scaling of coordinates (e.g., see [25]). For the dipolar EGPE in a
harmonic trap this relation is

Λ ≡ Ekin − Epot +
3
2
(Es + Edd) +

9
4

EQF = 0, (22)

and provides a connection between the energy components [21,26]. In Figure 1a we show
Λ for reference. This turns out to be a sensitive test of the accuracy of dipolar quantum
droplet solutions [21], and the results we present here typically have |Λ/Nh| � 10−3 Hz.
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Figure 1. Free-space droplet (V = 0) as a function of atom number N. (a) Components of energy
and the virial Λ. The inset shows a zoom in close to Ncrit ≈ 2020 to reveal where the total energy is
positive. (b) The results from the numerical solution of the BdG equations for the m = 0 excitations
that are even (black lines) and odd (grey lines) with respect to a reflection along z through the droplet
center. The approximate result ωub obtained from (15) is shown in red circles. The droplet binding
energy, characterized by −µ, is shown for reference (blue line). (c) The static polarizabilities χzz and
χρz. Results are for 164Dy using add = 130.8 a0 and as = 80 a0. (d) Density isosurfaces of droplet
states for various N values as labeled. Isosurfaces shown for 1018 m−3 (blue) and 1019 m−3 (red).

3.2. Excitations

In Figure 1b we show the spectrum of m = 0 modes in the droplet as a function of
N. Excitations for other m values were examined in Reference [17]. The lowest energy
excitation branch for the quantum droplets is m = 0 (this is not the case for vortex states,
e.g., see [27]). We note that the excitations are measured relative to the condensate chemical
potential. Thus, excitations with h̄ων > −µ are unbounded by the droplet potential and are
thus part of the continuum. For this reason, we only calculate excitations with h̄ων < −µ.
From these results we observe that the lowest m = 0 mode becomes soft (i.e., approaches
zero energy) as N → Ncrit. This indicates the onset of a dynamical instability of the self-
bound state. We also show the excitation frequency bound ωub obtained from ground
state calculations according to Equation (15). This is seen to be in good agreement with
the BdG result for the lowest excitation over the full range of atom numbers considered.
Indeed, for the results presented, ωub is always greater that the BdG result, with the mean
difference being ∼0.8 Hz (i.e., average relative error of ∼ 2%).
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In Figure 1c we show the results for the static polarizabilities. The axial result χzz
[used in Equation (15)] is always positive, reflecting that the application of a weak axial
confinement to the free-space droplet causes it to shorten. The magnitude of χzz tends to
be much larger than χρz, so we scale it by a factor of 10−2 to make the two polarizabilities
easier to compare. The transverse response χρz changes sign depending on the atom
number. In the deeply bound droplet regime (i.e., for N > 5× 103, where µ is large and
negative), it is negative. Thus, a weak compression along z results in the droplet expanding
transversally. In contrast, closer to the unbinding threshold (N < 5× 103), χρz is positive,
and the transverse width decreases with axial compression. This occurs as the lowest
m = 0 mode starts to soften. This change in behavior of the transverse response occurs as
the lowest excitation mode changes from quadrupolar character at high N to monopole
(compressional) character at low N [17].

3.3. Results with Varying as

In Figure 2a we show results for the m = 0 excitations of a free-space droplet with a
fixed number N = 104, but with as varying. Here the droplet unbinds at as ≈ 98.5 a0, when
the lowest energy mode goes soft. The BdG calculations for the energy of the lowest mode
are again seen to be in good agreement with the results of Equation (15). In Figure 2b we
examine the response of the ground state to a change in axial confinement. For the deeply
bound droplet (as . 87 a0) χρz is negative, while close to unbinding (as & 87 a0) it becomes
positive [see inset to Figure 2b].

Figure 2. Free-space droplet (V = 0) as a function of s-wave scattering length as. (a) Results from
numerical solution of the BdG equations for the m = 0 excitations that are even (black lines) and odd
(grey lines). The droplet binding energy, characterized by −µ, is shown for reference (blue line). The
approximate result ωub obtained from (15) (red circles). The droplet binding energy, characterized
by −µ, is shown for reference (blue line). (b) The static polarizabilities χzz and χρz. (c) Density
isosurfaces of droplet states for various as values as labelled. Isosurfaces shown for 1018 m−3 (blue)
and 1019 m−3 (red). Results for N = 104 164Dy atoms using add = 130.8 a0.
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4. Results for Trapped Droplet

In Figure 3a we show the excitation spectrum for a droplet confined in a weak cigar-
shaped trap (ωx,y, ωz) = 2π × (20, 10)Hz. This geometry allows a smooth crossover be-
tween a self-bound droplet and a trap-bound dipolar BEC. Apart from the trap, the parame-
ters of these results are otherwise identical to the case studied in Figure 2. For as . 95 a0 the
lowest excitation energies, and chemical potential are similar for the trapped and untrapped
cases. A notable feature is the emergence of a Kohn mode at the axial trap frequency ωz.
The transverse Kohn modes, with frequency ωx,y, are in the m = ±1 excitation branches
and do not appear here. For as & 95 a0 the trap starts playing an increasingly important role.
In this regime the droplet self-binding begins to fail and the trap provides the confinement
[see Figure 3c]. As this happens the chemical potential becomes positive. Since the trap
binds excitations at all energy scales, we show BdG results with h̄ων > −µ.

Figure 3. Trapped quantum droplet as a function of s-wave scattering length as. (a) Results from
numerical solution of the BdG equations for the m = 0 excitations that are even (black lines) and odd
(grey lines). The approximate result ωub obtained from (15) (red circles) and the excitation frequency
estimate ω2 from Equation (23) (blue circles). The energy scales ±µ are shown for reference (blue
lines). (b) The static polarizabilities χzz, χρz and χρρ. (c) Density isosurfaces of droplet states for
various as values as labelled. Isosurfaces shown for 1018 m−3 (blue) and 1019 m−3 (red). Results for
N = 104 164Dy atoms using add = 130.8 a0 and (ωx,y, ωz)/2π = (20, 10)Hz.

For the full range of parameters considered in Figure 3a Equation (15) is seen to provide
an accurate description of the axial mode. The lower energy Kohn mode has no effect on



Photonics 2023, 10, 393 8 of 9

our sum rule since the symmetry of the that mode does not couple to the σz operator. In
Figure 3a we also present results for the transverse equivalent of Equation (15), i.e.,

ω2 ≡
√

4N〈ρ2〉
Mχρρ

, (23)

where δ〈σρ〉 = λχρρ defines the static polarizability for a transverse perturbation of −λσρ.
The frequency estimate of Equation (23) is in reasonable agreement with the second even
mode in the trap-bound region, but ascends to a high frequency in the droplet regime.
These results indicate that Equation (23) is of limited use in the droplet regime.

We show results for the static polarizabilities in Figure 3b. In the droplet regime
χzz � |χρρ|, |χρz|, while in the trap-bound regime they all become of comparable magni-
tudes. Interestingly χρz is positive at intermediate values of as. Correspondingly we find
that the axial mode changes character from being a quadrupolar excitation at low as values,
to monopolar at intermediate values, before returning to quadrupolar character at high
values of as. Aspects of this behavior has also been described within a variational Gaussian
approach [19].

5. Conclusions

In this work we presented results for the ground state properties of quantum droplets,
their collective excitations and static polarizibility related to a change in confinement. We
showed that a simple sum rule approach can accurately predict the frequency of the lowest
energy (nontrivial) axial collective mode over a wide parameter regime. This mode plays a
critical role in the instability of a free-space droplet, and softens to zero energy as the droplet
unbinds. Our results for the static polarizabilities quantify changes in the widths of the
droplet in response to variations in the axial or transverse confinement. We observed that
the transverse static polarizability χρz is negative in deeply-bound droplets and is positive
for weakly-bound droplets and in the crossover to a trap bound droplet. This change
correlates with the lowest excitation changing from having quadrupolar (incompressible)
to monopolar (compressible) character.

The lowest energy axial collective mode was measured in experiments by Chomaz et al. [16]
for a dipolar BEC under confinement in the crossover regime to a quantum droplet. Our results
motivate further experiments to study this collective excitation, ideally for a system with lower
loss where it will be possible to study this excitation in more deeply bound droplets. It would
also be interesting to quantify the static response of the droplet. Since the χρz and χρρ responses
are typically much smaller than χzz in the droplet regime, and may be challenging to measure
these with optical imaging.
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