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Abstract: We study two-dimensional (2D) isotropic quantum droplets (QDs) in dipolar binary Bose–
Einstein condensates (BECs). The QDs are supported by the competition between the 2D form of
the Lee-Huang-Yang (LHY) term and the isotropic dipole-dipole interactions (DDIs). Moreover, the
DDIs in the 2D plane can be tuned to be either repulsive or attractive. Before that, QDs in dipolar
BECs were often explored in three-dimensional (3D) systems, with competition between the attractive
DDIs and the repulsive LHY term. Unlike the 3D system, the LHY term of the 2D binary system
behaves in a logarithmic form, which can feature both attraction and repulsion. In this case, the QDs
can be produced regardless of the interactions (attraction, repulsion, or zero) that the mean-field
effect represents. In this paper, we model the aforementioned QDs via the 2D binary dipolar BECs
with the competition between isotropic DDIs and the logarithmic LHY term. Their characteristic
parameters (the peak density, IP, chemical potential, µ, and effective area, Aeff) using both numerical
and theoretical methods are discussed. The centripetal collision and oblique collision between moving
QDs are also studied.

Keywords: quantum droplets; dipolar binary Bose–Einstein condensates; Lee-Huang-Yang term

1. Introduction

According to mean-field (MF) theory, a condensed bosonic mixture collapses when the
interspecies attraction becomes stronger than the geometrical average of the intraspecies
repulsions [1,2], g2

12 > g11g22. Perhaps the most effective solution to tackling the collapses
has recently been theoretically presented [3] and experimentally implemented [4–16]. It
is based on the LHY correction provided by quantum fluctuations to the MF dynamics
of BECs [17–20]. In binary BECs, the interaction between atoms is nearly eliminated by
modifying the repulsion within the component and the attraction between the components
using the Feshbach resonance technique [21]. These soliton-like states, called Quantum
droplets, are formed as a result of the equilibrium between the MF dynamics and beyond
the mean-field (BMF) effect, which is effectively represented by the famous LHY term,
i.e., the local quartic self-repulsive term in the 3D Gross–Pitaevskii equations (GPEs).

Subsequently, the theoretical scheme was extended from 3D systems to low-dimensional
systems, and the specific expressions for the LHY terms in two- and one-dimensional systems
were re-derived and modified [22]. However, in the two-dimensional (2D) case, the LHY term
is very intriguing because it is proportional to n[ln(n/n0)− 1] (n0 is the equilibrium density).
Due to the nature of the logarithmic function, this LHY correction can show both attraction
and repulsion. This characteristic indicates that whether the MF interaction is attractive or
repulsive, it could be used to create a QD with LHY corrections in 2D binary BECs.

The MF attraction can be provided not only by cubic contact (local) inter-component
attraction in binary BEC [23–46], but also by long-range (nonlocal) dipole-dipole inter-
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actions in a single-component condensate of atoms carrying permanent magnetic mo-
ments [12,47–50]. The situation of a single-component dipolar BECs system has drawn
much attention [51–54]. However, in this system framework, the conflict between the
higher-order repulsive LHY term and attractive DDIs has been mentioned frequently. Re-
garding the scenario involving DDIs in a low-dimensional two-component system, some
relevant reports consider this proposal [55–58]. When we discuss low-dimensional binary
dipolar BECs, especially in the 2D case, unlike the initial stereotypical repulsive effect,
the logarithmic LHY term at a 2D dynamic will expand the system’s options.

It is worth noting that in prior 2D dipolar BECs studies, the polarization direction of
the dipoles is required to be parallel to the 2D plane to ensure the generally attractive DDIs,
which can form QDs in equilibrium with the repulsive LHY term [59,60]. If the dipole is
perpendicular to the 2D plane, QDs cannot be formed unless the rotation field effect is
introduced to tune the effective dipole coupling from the positive value to negative value
through the rapid rotation of the dipole direction [61–63]. Whether repulsive DDIs and
beyond mean-field effects can form QDs in a 2D dipolar BECs system is still debatable. Yet,
this problem has an entirely new possible solution since the LHY term in the 2D binary
system is in logarithmic form.

We consider DDIs in 2D binary Bose-Bose mixtures with all the dipoles oriented
perpendicular to the 2D plane and theoretically construct the QDs supported by the combi-
nation of the logarithmic LHY correction and MF interaction. In the current formula, not
only attractive DDIs, but also repulsive DDIs can form QDs because the LHY correction
can be adaptively changed into attraction or repulsion. We also discuss how QDs behave in
this physical environment and how their collision dynamics perform.

The rest of the paper is structured as follows. The model is introduced in Section 2.
Basic numerical and theoretical results of QDs are presented in Section 3. Then, the collisions
between the moving QDs are reported in Section 4. The work is concluded in Section 5.

2. Model

We consider isotropic QDs in Petrov’s proposal [22] trapped in a 2D binary dipolar
BEC system with all the dipoles oriented perpendicular to the 2D plane (as shown in
Figure 1). The GPE-LHY of this system is

i
∂ψ+

∂t
= −1

2
∇2ψ+ + κψ+(r)

∫∫
dr′R

(
r− r′

)[∣∣ψ+
(
r′
)∣∣2 + ∣∣ψ−(r′)∣∣2]

+γψ+

[∣∣ψ+
(
r′
)∣∣2 + ∣∣ψ−(r′)∣∣2] ln

[∣∣ψ+
(
r′
)∣∣2 + ∣∣ψ−(r′)∣∣2], (1)

i
∂ψ−
∂t

= −1
2
∇2ψ− + κψ−(r)

∫∫
dr′R

(
r− r′

)[∣∣ψ−(r′)∣∣2 + ∣∣ψ+
(
r′
)∣∣2]

+γψ−
[∣∣ψ−(r′)∣∣2 + ∣∣ψ+

(
r′
)∣∣2] ln

[∣∣ψ−(r′)∣∣2 + ∣∣ψ+
(
r′
)∣∣2]. (2)

If we consider a symmetry form (here, we assumed that ψ+ = ψ− = ψ/
√

2), the GPE-
LHY can be expressed as

i
∂

∂t
ψ = −1

2
∇2ψ + κψ

∫
R(r− r′)|ψ(r′)|2dr′ + γ|ψ|2ψ ln |ψ|2, (3)

where r = (x,y) is the set of the coordinates, ψ is the wave function, and κ is the strength
of the DDI. Notably, κ is an adjustable quantity, i.e., its sign can be positive or negative,
and the total nonlocal interaction can be adjusted to become repulsive or attractive. γ is the
coefficient of the beyond-MF effect in 2D binary BECs. The isotropic kernel corresponding
to the particles’ dipolar moments polarized perpendicular to the (x,y) plane is defined as

R(r− r′) =
1− 3 cos2 Θ

[b2 + (r− r′)2]
3/2 , (4)
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where b is the cutoff of the kernel, which is determined by the confinement length a⊥ in the
transverse dimension [64–66]. In our isotropic 2D system, the angle Θ between the dipole
polarization direction and its relative distance is π

2 , i.e., cos2 Θ = 0. Furthermore, if we
apply a notation

t← γt, (x, y)← √γ(x, y), κ ← κ

γ
, (5)

Eqution (3) can be simplified as

i
∂

∂t
ψ = −1

2
∇2ψ + κψ

∫
R(r− r′)|ψ(r′)|2dr′ + |ψ|2ψ ln |ψ|2, (6)

the total energy of the system is

E =
1
2

∫
dr
[
|∇ψ|2 + κ|ψ|2

∫
R(r− r′)|ψ(r′)|2dr′ + |ψ|4 ln(

|ψ|2√
e
)

]
, (7)

and the total number of particles is defined as

N =
∫
|ψ|2dr. (8)

Figure 1. Schematic diagram of the 2D binary dipolar system plane, with all the dipoles oriented
perpendicular to the 2D plane. The two types of arrows with different colors (pink and blue) represent
the two components of dipolar atoms in the mixture.

While units are not required in the figures shown below, because all the quantities in
Equations (6)–(8) are written in scaled form, it is relevant to summarise here estimates for
the pertinent quantities in physical units. To achieve this, we need to convert the results
into physical units that correspond to the experimental realization of QDs in Bose-Bose
mixtures, using the values of the magnetic moment for 164Dy atoms. The typical size of
confinement length in underlying physical units is a⊥∼3 µm [67–70]. We thus conclude that
the stable 2D binary dipolar QDs may be created with the number of atoms in the range
from Natom∼103 to Natom∼104, and physical lateral sizes lphys∼1 µm. The corresponding
relation between the physical quantities and scaled ones is

Natom∼10 N, (x, y)phys∼(x, y)× 1 µm. (9)

The stationary solution is obtained as a usual form with the wavefunction φ(r) and
real chemical potential µ, i.e.,

ψ(r, t) = φ(r)e−iµt. (10)

A dynamical invariant of the system is the total norm, which is proportional to the total
number of atoms in the dipolar bosonic mixtures. The free control parameters in the system
are the strength of the DDI, κ, and the total norm of the QDs, N.
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3. Stationary Solution of the Quantum Droplets

The isotropic QDs in this system are numerically found using the imaginary-time
method (ITM) [71,72] by inputting a special ansatz

φ(0)(x, y) = Ar̃ exp
(
−αr̃2

)
. (11)

where A > 0 and α > 0 are real constants. r̃ =
√

x2 + y2.
Typical examples of stable fundamental QDs are shown in Figure 2a,b. The size of the

QDs created by the attractive DDI with κ = −0.05 is smaller than another with κ = 0.05.
The stability of the fundamental QDs is demonstrated by direct simulation with 1% random
noise, as plotted in Figure 2c,d. This result demonstrates that both attracting and repelling
DDIs can create stable self-localized states in 2D dipolar binary BECs. At the equilibrium
condition, the QD is a flat-top QD; hence, we can neglect the contribution from the kinetic
energy term by applying the Thomas–Fermi (TF) approximation. In this case, the density
distribution of the QDs satisfies n(r) = |ψ(r)|2 = const. Therefore, the total energy (7) is

E =
1
2

(
κεn2 + n2 ln(

n√
e
)

)
AS, (12)

where AS = N/n is the total area of the QDs and ε =
∫

drR(r) ≈ 6.2 is the totally nonlocal
effect. Then, we can obtain the density value of the QD by solving dE/dn = 0, which
yields the

ne =
1

e1/2eκε
, (13)

and the chemical potential is

µe = κεne + ne ln ne. (14)

If we replace ne = N/AS, substitute it into Equation (12), and then solve dE/dAS = 0, one
can obtain the total area for the equilibrium state satisfying the equation

ln AS = κε + ln N +
1
2

. (15)

To study the characteristics of the QDs, we define the effective area for the QDs as

Aeff =

(∫
|φ|2dr

)2∫
|φ|4dr

. (16)

The peak density (IP), chemical potential (µ), and effective area (Aeff) of the fundamen-
tal QDs as functions of N for repulsive and attractive DDIs are displayed in Figure 3(a1–b3),
respectively. When the MF interaction and LHY term compete, a superfluid, incompressible
state is maintained, whose density (at extremely low values) cannot rise above a particular
maximum. Thus, this quantum macroscopic state is referred to as a fluid, and localized
states filled by it are referred to as “droplets” [4]. In Figure 3(a1,b1), the peak values saturate
at IP ≈ 0.472 and IP ≈ 0.837, respectively, if N is sufficiently large, as may be expected for
the QDs. According to Equation (13), their theoretical prediction equilibrium densities are
ne ≈ 0.445 and ne ≈ 0.827, which are also close to the numerical results [see the red dashed
line in Figure 3(a1,b1)].
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(a) (b)

(c) (d)

Figure 2. Typical examples of the stable fundamental QDs produced by Equation (4).
Panels (a,b) display the density profiles of the QDs with (N, κ) = (1000, 0.05) and (1000, −0.05).
(c,d) The perturbed evolutions of the QDs shown in Panels (a,b), produced by simulations of
Equation (4) with 1% random noise added to the input.

Figure 3. The first column (a1–a3): the peak density (IP), chemical potential (µ), effective area (Aeff) of
the fundamental QDs as functions of N for repulsive DDIs with κ = 0.05. The second column (b1–b3):
the IP, µ, and Aeff of the fundamental QDs as functions of N for attractive DDIs with κ = −0.05.
The last column (c1–c3): the IP, µ, and Aeff of the fundamental QDs as functions of the strength of κ

with N = 500. Here, the blue curves are the results of the numerical calculation, and the red dashed
curves in the panels are calculated from Equations (13), (14), and (15), respectively.

Figure 3(a2,b2) shows that the chemical potential decreases with an increasing N,
i.e., dµ

dN < 0, which indicates that it satisfies the Vakhitov–Kolokolov (VK) criterion, which
is the well-known necessary stability condition for self-trapped modes [73]. This criterion
has a straightforward physical interpretation: If we introduce one particle into the system
and the energy of this bound state falls, the system is stable. They saturate at µ ≈ −0.219
and µ ≈ −0.397 when N is sufficiently large. The theoretical predictions of the chemical
potential are µe ≈ −0.222 and µe ≈ −0.414, which are also close to the numerical results
[see the red dashed line in Figure 3(a2,b2)].

When κ is positive, the dipole interaction shows repulsion, and in this case, IP signifi-
cantly increase with an increasing N at the beginning [at approximately N < 25], then IP
gradually decreases with an increasing N until it reaches equilibrium. The changing trend
of the effective area in Figure 3(a3) reveals the cause of this phenomenon. In this case, QDs
were not formed as expected because when N is very small (just a few particles), its size is
enormous and comparable to the gas state. At this point, the system will be encouraged by
the increase in the number of atoms to produce droplets of condensate, which causes the
effective area Aeff to decrease rapidly and the corresponding peak density IP to increase
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rapidly. The peak density of the QD remains static once it enters equilibrium due to its
incompressibility; hence, the effective area Aeff grows linearly as N increases.

When κ is negative, the dipole interaction exhibits attraction, and the situation is
similar to that mentioned above. The peak density of the negative κ increases continuously,
while the other peak density increases first and then falls because the effective area of the
latter increases more quickly than the former.

The IP, µ, and Aeff of the fundamental QDs as functions of the strength of κ with
N = 500 are also shown in Figure 3(c1–c3). The numerical results are consistent with those
of the theoretical analysis.

4. Collision between the Moving Quantum Droplets

Stable 2D dipolar binary BEC mixtures can be set in motion by opposite kicks ±η
applied along the x or y-direction. Accordingly, it is possible to simulate collisions between
two mixtures moving in opposite directions. Collisions in the x and y directions behave
similarly due to the isotropic properties. Without loss of generality, we discuss centripetal
collisions that occur in the x direction. Generally, the initial states for both moving QDs can
be constructed as follows:

φ(x, y) = φ(x− x0, y)e−iηx + φ(x + x0, y)eiηx. (17)

Several typical collision results are shown in Figure 4. We investigate the binary collisions
between QDs created in 2D dipolar binary BECs and distinguish between the separation
and merging as the two main outcomes, i.e., quasi-elastic collisions and completely inelastic
collisions. The quasi-elastic collisions will merge at the beginning, but when compressed to
the limit, they will split along the positive and negative directions of the y axis; that is, they
will deflect with an angle of 90 degrees relative to the motion before the collision, as shown
in Figure 4(a1–a6). Similar results have been reported in Ref. [74]. The completely inelastic
collisions are displayed in Figure 4(b1–b6). Two QDs merge into a quadrupolar breather,
repeatedly elongating and oscillating along the y and x directions.

In the present setting, the simulations show that the values of κ will affect the results
of collisions. When κ > 0, for instance, quasi-elastic collision is more likely to occur than
when κ < 0. This might result from the repulsive interaction of DDIs, which produces a
low surface tension that cannot absorb the collision pair’s kinetic energy [75].

Depending on the pair’s collision velocity, which is proportional to η, the increase in η
leads to a transition from completely inelastic collisions between slow QDs to quasi-elastic
outcomes for fast QDs. When η becomes too large, the collision will split the initial binary
mixture into several pieces, as shown in Figure 4(c1–c6). In addition, the values of N mainly
affect the size of droplets, which will cause the critical velocity that discriminates between
the completely inelastic and quasi-elastic cases to display a different dependence on the
norm N for small and large droplets [8].

We also discuss the collision dynamics between two QDs whose centers of mass are not
at the same level, i.e., off-center collisions. In our simulations, we move the two mixtures
by a distance of y0 in the positive and negative directions of the y axis and then apply
appropriate opposite kicks ±η. The initial states for these moving QDs can be constructed
as follows:

φ(x, y) = φ(x− x0, y− y0)e−iηx + φ(x + x0, y + y0)eiηx, (18)

and a typical result is shown in Figure 4(d1–d6). We find that the formation of a rotating
quadrupolar breathing body is the result of an oblique collision. Some characteristics of
the collision result, such as the rotational speed and the duration of the breathing motion,
are affected by the values of κ, N, y0, and η. Of course, an excessive η will also cause the
mixture to separate.
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Figure 4. Several typical examples of colliding QDs. (a–c) The collision of two QDs by inputting
Equation (17) with x0 = 64 and the norm of each QD N = 500. (a1–a6) Quasi-elastic collisions
between two QDs with κ = 0.05 and η = 0.1. (b1–b6) Completely inelastic collisions between two
QDs with κ = −0.05 and η = 0.1. (c1–c6) Collisions between two QDs with κ = −0.05 and η = 0.5.
(d1–d6) The off-center collision of two QDs by input Equation (18) with x0 = 64 and y0 = 10; the
other parameters are κ = 0.05 and η = 0.1.

5. Conclusions

Based on the adaptive balance mechanism of the LHY term in the 2D binary BECs that
represents the correction of the beyond mean-field effects, we prove that both repulsive and
attractive DDIs can construct 2D isotropic QDs in a binary dipolar BEC system with all the
dipoles oriented perpendicular to the 2D plane. We discuss the characteristic parameters of
the QDs formed by the combination of attracting or repelling DDIs and the logarithmic LHY
term, and the numerical results are consistent with the theoretical predictions. In addition,
we also discussed the collision dynamics under this physical setting from the two cases of
centripetal collision and non-centripetal collision. The numerical simulation results show
that when the collision velocity is appropriate, there will be completely inelastic collisions
and quasi-elastic collisions, while a large collision velocity will destroy the mixtures and
split them into multiple components.

The present analysis can be extended further. First, the QDs outlined above are
fundamental modes, and it is natural to expect that the vortex (alias spinning) modes
may offer an opportunity to study more sophisticated properties of the QD state of matter.
Furthermore, anisotropic QD embedded vorticity has been constructed in a 2D binary
dipolar system [60]. Another relevant possibility is constructing anisotropic QD modes
with vorticity in a 3D binary dipolar BEC system, which will be intriguing and challenging.

Author Contributions: Conceptualization, X.J., Z.F., Z.C., B.L. and Y.L.; Software, A.Y. and G.L. All
authors have read and agreed to the published version of the manuscript.
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