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Abstract: The paper focuses on the problem of a monochromatic terahertz TE-polarized wave
propagation in a plane dielectric layer filled with a homogeneous isotropic medium; one of the
boundaries of the waveguide is covered with a layer of graphene. In fact, the paper aims to find the
eigenwaves of the described waveguiding structure. On the one hand, in the study, energy losses
both in the dielectric layer and in the graphene layer are neglected; the latter assumption is reasonable
in the terahertz range of electromagnetic radiation (on which the paper focuses), where graphene has
a strong plasmonic response and much less loss. On the other hand, this study takes into account
the significant third-order nonlinearity resulting from the interaction of the electromagnetic wave
with the charge carriers in the graphene layer. The paper aims to study the guiding properties
of the above structure using primarily an analytical approach. The wave propagation problem is
reduced to an eigenvalue problem, where one of the boundary conditions is nonlinear with respect
to the sought-for function. The main result of the paper is a dispersion equation allowing for a
waveguide of a given thickness to determine a set of its propagation constants and, consequently,
a set of its eigenwaves. It is worth noting that the dispersion equation being written in an explicit
form can be used to obtain deep qualitative results related to the solvability of the problem and the
properties of its solutions. For example, in the paper, the existence of several propagation constants
(and, consequently, the eigenwaves) of the studied waveguiding structure is proved under some
conditions. Besides studying the problem analytically, the paper presents some numerical results
as well. In particular, the presented figures demonstrate how the nonlinearity in graphene affects
the propagation constants and eigenwaves, providing the dispersion curves and eigenwaves for
nonlinear graphene as well as for the linear one.

Keywords: Maxwell’s equations; electromagnetic waves; plane dielectric layer; graphene; nonlinear
surface electric conductivity; eigenvalue problem; boundary value problem

1. Introduction

Today, much attention is being paid to 2D materials and 2D electronic components; among
the two-dimensional materials, graphene, discovered in 2004 by Geim and Novoselov [1],
occupies a special place. Graphene is a hexagonal crystal lattice of carbon atoms; due to
its special structure, graphene has a number of unique physical properties. In particular,
graphene has properties that make it very promising for various applications in photonics
and optoelectronics: combining graphene with other materials, one can create a variety of
waveguiding devices with better characteristics compared to waveguides made of «traditional»
materials. In [2], there is an overview of waveguides of different configurations based on
the use of graphene; such waveguides can serve as components for various optical devices
such as photodetectors, modulators, polarizers, etc., significantly increasing their efficiency.
In [3–5], waveguiding structures with graphene are shown to be efficient in many fields, such
as biosensors, photoelectric detection, and so on; in [6], the authors considered graphene oxide
(GO) as a potential absorbent for environmental cleanup and suggested an approach, which
enables making full use of GO for this purpose.
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The above applications use only the «linear» optical and electrical properties of
graphene. In papers [7,8], it was theoretically predicted, and in [9], it was experimen-
tally confirmed that graphene has an extremely strong third-order nonlinearity compared
to the commonly used dielectrics and metals; this nonlinearity results from the interaction
of the charge carriers in graphene with strong electromagnetic radiation. The discovery of
the strong nonlinear response of graphene has led to significant efforts to realize a new gen-
eration of practical nonlinear photonic guided wave devices for all optical applications [10].

This paper focuses on the propagation of a monochromatic terahertz TE-polarized
electromagnetic wave in a plane dielectric waveguide, one of the surfaces of which is
covered with a layer of graphene. In fact, in this paper, we consider the problem of finding
the eigenmodes of the waveguide, i.e., such electromagnetic waves that can propagate in
the waveguide without obtaining energy from any external source. In eigenwave problems,
energy losses in the waveguiding structure are often neglected, assuming that the energy
losses are small, and the propagation length of the found eigenwaves is sufficient in
practical applications. Such an approach is also applied in this paper: we neglect the energy
losses in the dielectric as well as in the graphene layer. We stress that although in the
general case graphene absorbs some of the incident electromagnetic wave, in the terahertz
range, the absorption is small compared to the strong plasmonic response of graphene.
We understand that neglecting the absorption properties of graphene might seem to be a
serious drawback of this study. However, we stress that this requirement is unavoidable in
our statement of the problem. Section 4 deals with this issue in more detail.

For applications in photonics and optoelectronics, a convenient parameter charac-
terizing graphene is its surface electrical conductivity σg; it is very important that the
conductivity of graphene can be controlled by an electric field or chemical doping without
changing the size and structure of the sample. In accordance with [7–9,11], the conductivity
σg of graphene depends on the strength of the electric field interacting with graphene.
Due to the centrally symmetric structure of graphene, this dependence has the form
σg = σ(1) + σ(3)|E|2, where σ(1) and σ(3) are quantities depending on the wave frequency.
As the electric conductivity differs from zero, there arises a surface current. Since these
phenomena are localized on the surface, it is essential to take them into account in the
boundary conditions of the problem. Taking into account the nonlinear effects arising in the
graphene (σ3 6= 0), one obtains the boundary conditions, which are nonlinear with respect
to the sought-for function, which, in turn, brings additional complexity to the problem.

The guiding properties of graphene structures play an important role for practical
applications. The ability to propagate TM- and TE-polarized waves localized on a graphene
monolayer with the dispersion in the terahertz range of electromagnetic radiation is shown
in [12–14]. The ability of the structure formed by two graphene layers and a separating thin
dielectric layer to hold the localized plasmon modes has been studied in many papers [15–17].
In [18], the authors investigated the features of guided TE wave modes in a plane structure
consisting of a set of alternating layers of dielectric and graphene. We stress that the novelty
of this paper is that the guiding properties of the considered waveguiding structure (plane
dielectric waveguide covered with a graphene layer) are studied taking into account the
abovementioned third-order nonlinearity of graphene. The obtained results show that this
nonlinearity affects the wave propagation process significantly (for strong electromagnetic
radiation) and for this reason cannot be neglected.

2. Materials and Methods

The main physical model we deal with in this study is the system of Maxwell’s
equations describing the dynamics of an electromagnetic field. Since we assume that
everywhere there is no bulk current (the medium in the waveguide is not conducting) and
an uncompensated electric charge, and the electromagnetic field harmonically depends on
time, then the system of Maxwell’s equations can be written in the harmonic mode, see
Formula (3). One of the boundaries of the considered waveguiding structure is covered
with graphene, which implies a surface current when an electromagnetic wave propagates.
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Since this phenomena is localized on the surface, it is essential to take it into account in
the boundary conditions of the problem. Graphene is characterized by its surface electric
conductivity σg. In this study, we take into account the nonlinear optical properties of
graphene supposing that σg depends on the electric field strength, see Formula (5).

The main goal of the paper is to study the guiding properties of the considered
waveguiding structure analytically. To do this, the problem on electromagnetic wave
propagation is reduced to an eigenvalue problem, where the eigenvalues correspond to
the propagation constants. Solving the main differential equation and taking into account
the boundary conditions, we obtain the dispersion equation of the problem written in an
explicit form. Studying this equation analytically, we obtain results related to the solvability
of the problem and the properties of its solutions.

For solving the eigenvalue problem P , see Section 3.2, numerically, we use mainly the
so-called «shooting method». The main schema of the method is following. We fix some
segment on γ, say γ ∈ [γ′, γ′′], and generate a grid with nodes γ′ 6 γ1 < γ2 < . . . < γn 6
γ′′. For each γ = γi, we solve the Cauchy problem for equation u′′(x) = −(ε2 − γ2)u(x)
with the initial conditions u(0) = A, u′(0)−

√
γ2 − ε1 · u(0) = 0 and evaluate its solution

u ≡ u(x; γi) and the first derivative u′(x; γi) of this solution at point x = h. Then, going
through all γi, we look for the condition F(γi) · F(γi+1) < 0, where

F(γ) = u′(h; γ) +
√

γ2 − ε3 · u(h; γ) + 120πi
(

σ(1) + σ(3)u2(h; γ)
)

u(h; γ),

is true; if it is true, then segment γ ∈ [γi, γi+1] definitely contains a solution to problem
P . The numerical results are presented in Section 3.5. All the numerical methods are
implemented with the package «Maple».

3. Results
3.1. Electrodynamic Statement of the Problem

A monochromatic TE-polarized electromagnetic wave

(E, H)e−iωt, (1)

where ω is a circular frequency,

E =
(
0, Ey(x), 0

)
eiγz, H =

(
Hx(x), 0, Hz(x)

)
eiγz (2)

are complex amplitudes, and γ is (unknown) real spectral parameter, propagates in a plane
dielectric layer

Σ = {(x, z) ∈ R2 : 0 6 x 6 h}

sandwiched between two half-spaces x < 0 and x > h. The boundary x = 0 is open, and
at the boundary x = h, there is a graphene layer, which causes a surface current at this
boundary.

Waveguide Σ is filled with a homogeneous isotropic medium characterized by a
constant permittivity ε2; half-spaces x < 0 and x > h are filled with homogeneous isotropic
mediums characterized by constant permittivities ε1 and ε3, respectively, such that 1 6
ε1 6 ε3 6 ε2. Everywhere, permeability µ = µ0, where µ0 is the magnetic constant. The
geometry of the problem is presented in Figure 1.

0

h ε3

ε2

ε1

graphene
x

z

Figure 1. Geometry of the problem.
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Field (1) satisfies Maxwell’s equations

rot H = −iωε0εE, rot E = iωµH, (3)

where ε0 is the dielectric constant, and

ε =


ε1, x < 0,
ε2, 0 < x < h,
ε3, x > h.

Since the boundaries of the waveguide are open, and the electromagnetic field pen-
etrates into half-spaces x < 0 and x > h, it is essential to impose on (1) the condition of
decaying at x → ±∞. The tangential component Ey of the electric field is continuous at
both boundaries, due to the absence of a surface charge there. The tangential component of
the magnetic field is also continuous at the boundary x = 0, due to the absence of a surface
current there; however, it undergoes a jump at the boundary x = h, due to the surface
current of charge carried in graphene (the current is induced by the electromagnetic wave),
and the jump is equal to surface current density j. Thus, at x = h, the discussed component
satisfies the following condition

[n, H+ −H−] = j = σgE, (4)

where n is a unit vector of the normal directed along the x axis, H+ and H− are the values of
magnetic field above and below the surface x = h, respectively, [∗, ∗] is the vector product,
and σg is the surface conductivity of graphene.

As was previously noted, the electric conductivity σg of graphene depends on the
electric field coupling to the charge carriers in graphene; due to the central symmetric
structure of graphene, this dependence has the form

σg = σ(1) + σ(3)|E|2, (5)

where σ(1) and σ(3) are generally some complex numbers depending on frequency ω [7–9,19,20].
The linear part σ(1) of graphene’s electric conductivity is determined by formu-

las [21,22]. We assume that <σ(1) = 0 and =σ(1) > 0, i.e.,

σ(1) = iσ′, σ′ > 0. (6)

Such a restriction on σ1 is fair in THz range, where graphene has a strong plasmonic
response and much less loss [23,24]. For determining σ(3) in (5), there exist several formu-
las [7,19,20]; for example, one can apply the formula in [7]; in accordance with this formula,
quantity σ(3) is purely imaginary and =σ(3) < 0, i.e.,

σ(3) = −iσ′′, σ′′ > 0. (7)

The main problem — we call it problem P ′ — is to find such values of parameter
γ = γ′, where there exists field (1) satisfying Maxwell’s equations (3) and all the above
conditions and exponentially decaying at x → ±∞.

Substituting (2) into Maxwell’s equations (3), one obtains
iγHx(x)−H′z(x) = −iωε0εEy(x),
−iγEy(x) = iωµHx(x),
E′y(x) = iωµHz(x).

(8)

The third equation in the obtained system provides the relationship between the
tangential components of the electric and magnetic fields expressed by the formula
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Hz(x) = − i
ωµ

E′y(x). (9)

Expressing Hx and H′z from the second and the third equations of system (8), respec-
tively, and substituting them into the first equation, one obtains

γ2Ey(x)− E′′y (x) = ω2µε0εEy(x).

Passing to dimensionless variables in the obtained equation by virtue of the formulas

x̃ = k0x, h̃ = k0h, γ̃ = k−1
0 γ,

where k2
0 = ω2µε0, and, omitting the tilde, we obtain the equation

E′′y (x) = −(ε− γ2)Ey(x). (10)

Solving (10) in half-spaces x < 0, x > h and using the condition at infinity, one finds

Ey(x) =

{
C1ex
√

γ2−ε1 , x < 0,

C2e−(x−h)
√

γ2−ε3 , x > h,
(11)

where C1 and C2 are constants. Note that Ey must be real-valued; from here, taking into
account inequality ε3 > ε1, it follows that γ must satisfy

γ2 > ε3. (12)

From the above conditions imposed on field (1) and Formula (9), expressing the
relationship between the tangential components of the magnetic and electric fields, it
follows that Ey must satisfy the conditions

Ey|0−0 − Ey|0+0 = 0,

E′y|0−0 − E′y|0+0 = 0
(13)

and
Ey|h−0 − Ey|h+0 = 0,

E′y|h−0 − E′y|h+0 = −i · 120πσgEy|x=h,
(14)

where
σg = σ(1) + σ(3)E2

y

∣∣∣
x=h

, (15)

which results from (5), taking into account the form of field (2) and the realness of parameter
γ.

Then, one can reformulate the problem P ′ in the following way. Problem P ′ is to find
such values γ = γ′ satisfying inequality (12), where there exists the solution Ey ≡ Ey(x; γ′)
to Equation (10), satisfying the boundary conditions (13) and (14).

3.2. An Eigenvalue Problem

Introducing the notation u(x) := Ey(x), Equation (10) in the layer can be written in
the form

u′′(x) = −(ε2 − γ2)u(x). (16)

Using conditions (13) and (14), the solutions in half-spaces (11), and Formula (15), one
can write the boundary conditions for function u(x) as

u′(0)−
√

γ2 − ε1 · u(0) = 0, (17)

u′(h) +
√

γ2 − ε3 · u(h) = −120πi
(
σ(1) + σ(3)u2(h)

)
u(h). (18)
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Besides this, we need one more condition in order to obtain a discrete set of solutions
to the problem. It is in accordance with the physical process of the electromagnetic wave
propagation in waveguiding structures. We use the following form of the additional
condition

u(0) = A, (19)

where A 6= 0 is a constant.
It is easy to determine that when a couple (γ, u) satisfies Equation (16), (−γ, u) satisfies

it as well. For this reason, we consider positive γ.
So, problem P ′ is equivalent to the boundary value problem; we call it problem P ,

which is to find the positive γ = γ̂ satisfying inequality (12), such that there exists a twice
continuously differentiable function u ≡ u(x; γ̂) that is a solution to Equation (16) satisfying
conditions (17)–(19). A number γ̂ is called an eigenvalue of problem P , and function u(x; γ̂)
is called an eigenfunction of problem P .

Note that condition (18) is nonlinear with respect to the unknown function u(x); so, in
fact problem P is nonlinear. If one sets σ(3) = 0 in (18), then problem P degenerates into a
linear problem, which we call problem P0.

Although the statement of problem P is given above, and problem P0 is its special
case, we present the statement of problem P0 here as well. So, problem P0 is to find the
positive γ = γ̃ satisfying inequality (12), such that there exists a function v ≡ v(x; γ),
which is a solution to the equation

v′′(x) = −(ε2 − γ2)v(x)

satisfying the following boundary conditions

v′(0)−
√

γ2 − ε1 · v(0) = 0,

v′(h) +
√

γ2 − ε3 · v(h) = −i · 120πσ(1)v(h);

the number γ = γ̃ is called an eigenvalue of problem P0, and function v(x; γ̃) is called an
eigenfunction of problem P0.

We stress that problem P0 does not require (19).
Problem P0 and problem P serve as mathematical models of the monochromatic TE-

wave propagation in a plane waveguide having a graphene layer on one of its boundaries,
but in the case of problem P0 graphene is characterized by σg = σ1, i.e., the nonlinear
response of graphene is neglected. Note that such a model allows one to obtain results
close to the experimental data only at intensities of electromagnetic radiation.

3.3. Dispersion Equation of Problem P
The solution to Equation (16) has the form

u = C3 cos
√

ε2 − γ2x + C4 sin
√

ε2 − γ2x,

where C3 and C4 are constants. Using condition (17), one can express C4 by C3 and then,
using condition (19), determine C3; doing this, one obtains

u =
1√

ε2 − γ2
A
(√

γ2 − ε1 sin
√

ε2 − γ2x +
√

ε2 − γ2 cos
√

ε2 − γ2x
)

.

Using condition (18), one obtains the following equation
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(√
γ2 − ε1

√
γ2 − ε3 + 120πiσ(1)

√
γ2 − ε1 − (ε2 − γ2)

)
sin h

√
ε2 − γ2+

+
√

ε2 − γ2
(√

γ2 − ε1 +
√

γ2 − ε3 + 120πiσ(1)
)

cos h
√

ε2 − γ2 =

= −120πi
A2

ε2 − γ2

(√
γ2 − ε1 sin h

√
ε2 − γ2 +

√
ε2 − γ2 cos h

√
ε2 − γ2

)3
. (20)

Let us introduce notation λ2 = ε2 − γ2, ε2
1 = ε2 − ε1, ε2

3 = ε2 − ε3, σ̄1 = i · 120πσ(1),
σ̄3 = i · 120πσ(3); taking into account Formulas (6) and (7), it is clear that σ̄1 and σ̄3 are real,
σ̄1 < 0, and σ̄3 > 0. Using this notation, Equation (20) can be written in the form

(√
ε2

1 − λ2
√

ε2
3 − λ2 − |σ̄1|

√
ε2

1 − λ2 − λ2
)

sin λh+

+
(√

ε2
3 − λ2 +

√
ε2

1 − λ2 − |σ̄1|
)

λ cos λh =

= −|σ̄3|λ−2 A2
(√

ε2
1 − λ2 sin λh + λ cos λh

)3
. (21)

Expression (21) can be considered as the characteristic equation of problem P . This

means that any solution λ = λ̂ to Equation (21) corresponds to an eigenvalue γ̂ =
√

ε2 − λ̂2

of problem P , and any eigenvalue γ̂ of problem P corresponds to the solution λ̂ =√
ε2 − γ̂2 of Equation (21).

From a physical point of view, relation (21) is the so-called dispersion equation, as
it provides the relationship between the thickness of the waveguide and its propagation
constants.

Setting σ̄3 = 0 in (21), one obtains the dispersion equation for problem P0 in the form

tg λh =
λ
(√

ε2
3 − λ2 +

√
ε2

1 − λ2 − |σ̄1|
)

λ2 −
√

ε2
1 − λ2 ·

√
ε2

3 − λ2 + |σ̄1|
√

ε2
1 − λ2

. (22)

Further, setting σ̄1 = 0 in the previous formula, one obtains the classical dispersion
equation of the form

tg λh =
λ
(√

ε2
3 − λ2 +

√
ε2

1 − λ2
)

λ2 −
√

ε2
1 − λ2 ·

√
ε2

3 − λ2
(23)

for the problem of the electromagnetic TE-wave propagation in a plane dielectric layer
sandwiched between two half-spaces; the above equation is given in [25] and in [26] (only
for the case ε1 = ε3).

3.4. Solvability of Problem P
Problem P might have eigenvalues in the interval γ ∈ (

√
ε3,
√

ε2), as well as in
the unbounded domain γ >

√
ε2 (unless the contrary is proved). The former kind of

eigenvalues corresponds to solutions of Equation (21) belonging to the interval λ ∈ Λ,
where Λ = (0, ε3); the latter one corresponds to solutions of Equation (21) having the form
λ = iλ′ with λ′ > 0.

Statement 1. Equation (21) does not have solutions of the form λ = iλ′, λ′ > 0 if λ′ > λ′∗, where

λ′∗ = max
{√|σ̄1|2 + |σ̄1|

√
|σ̄1|2 + 16ε2

1

2
√

2
,

√
|σ̄1|

2

}
. (24)



Photonics 2023, 10, 523 8 of 15

Proof. So, let λ = iλ′, where λ′ > 0. Substituting λ = iλ′ into (21), one obtains the
equation, with respect to λ′, of the form

(√
ε2

1 + λ′2
√

ε2
3 + λ′2 − |σ̄1|

√
ε2

1 + λ′2 + λ′2
)

sh λ′h+

+
(√

ε2
3 + λ′2 +

√
ε2

1 + λ′2 − |σ̄1|
)

λ′ ch λ′h =

= −|σ̄3|λ′−2 A2
(√

ε2
1 + λ′2 sh λ′h + λ′ ch λ′h

)3
. (25)

It is clear that the right-hand side of (25) is negative for all λ′ > 0, whereas the left-
hand side is positive starting with some λ′ = λ′∗. This means that Equation (25) does not
have solutions in the domain λ′ > λ′∗.

Let us obtain the estimate (24) for λ′∗. It is clear that the left-hand side is positive as
soon as both terms in brackets are positive. Taking into account the inequality√

ε2
1 + λ′2

√
ε2

3 + λ′2 − |σ̄1|
√

ε2
1 + λ′2 + λ′2 > 2λ′2 − |σ̄1|

√
ε2

1 + λ′2

and the inequality 2λ′2 − |σ̄1|
√

ε2
1 + λ′2 > 0, which holds for all λ′ > λ′1, where

λ′1 =

√
|σ̄1|2 + |σ̄1|

√
|σ̄1|2 + 16ε2

1

2
√

2
,

one finds that the expression in the first bracket is positive for all λ′ > λ′1. Further, the
inequality √

ε2
3 + λ′2 +

√
ε2

1 + λ′2 − |σ̄1| > 2λ′ − |σ̄1|

together with 2λ′ − |σ̄1| > 0, which holds for all λ′ > λ′2, where λ′2 =
√
|σ̄1|

2 , imply that the
expression in the second bracket is positive for all λ′ > λ′2. Combining the obtained results,
one obtains Formula (24).

Now, let us pass to the case λ ∈ Λ. For the further analysis, it is convenient to rewrite
Equation (21) in the following way

tg λh = −λ · θ1(λ)

θ2(λ)
, (26)

where

θ1(λ) =
√

ε2
1 − λ2 +

√
ε2

3 − λ2 − |σ̄1|+ |σ̄3|A2
(

1 +
3ε2

1 − 4λ2

λ2 sin2 λh
)

,

θ2(λ) =
√

ε2
1 − λ2

[√
ε2

3 − λ2 − |σ̄1|+ |σ̄3|A2
(

3 cos2 λh +
ε2

1 − λ2

λ2 sin2 λh
)]
− λ2.

Since functions θ1 and θ2 in the right-hand side of (26) do not have accumulation
points of zeros, then (26) can have only a finite number of solutions λ ∈ Λ.

The following result provides a sufficient condition for the existence of at least one
solution to Equation (26).

Statement 2. If inequalities

|σ3|A2 min
{

3; ε2
1ε−2

3

}
> |σ1| (27)
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and

h >
3π
√

ε2
1 + ε2

3

2ε1ε3
(28)

are fulfilled, then Equation (26) has at least one solution λ̂ ∈ (0, λ∗), where

λ∗ =
ε1ε3√
ε2

1 + ε2
3

(< ε3). (29)

Proof. Let us consider the right-hand side of (26). It is clear that function θ1(λ) is continu-
ous for all λ ∈ Λ. Function θ2(λ) is continuous for all λ ∈ Λ, but generally, it can change
the sign. Nevertheless, one can check that under condition (27), function θ2 preserves the
sign and, to be more precise, is positive for λ < λ∗, where λ∗ is defined in (29). Indeed,
taking into account the chain of simple inequalities

3 cos2 λh +
ε2

1 − λ2

λ2 sin2 λh > 3 cos2 λh +
ε2

1 − λ2
∗

λ2∗
sin2 λh > min

{
3; ε2

1ε−2
3

}
and condition (27), one can see that

|σ̄3|A2
(

3 cos2 λh +
ε2

1 − λ2

λ2 sin2 λh
)
> |σ̄1|.

Combining this result with the inequality√
ε2

1 − λ2
√

ε2
3 − λ2 > λ2

taking place for λ < λ∗, one comes to conclusion that θ2(λ) > 0 for such λ. Thus, the
right-hand side in (26) is continuous for λ < λ∗.

Condition (28) implies that, firstly, λh takes all values from zero to 3π/2, and secondly,
inequality λ∗h > 3π/2 is valid. Equation (26) is defined for λh ∈ (0, 3π/2), and the
right-hand side of (26) is continuous for such λh. This means that a graph of the function
in the right-hand side of (26) has at least one intersection with tg λh in the left-hand side
of (26), for λ ∈ (h−1π/2, h−13π/2).

The sufficient condition for the existence of one solution to Equation (26) given in
Statement 2 can easily be generalized to the case of the existence of n > 1 solutions. Indeed,
the following result takes place.

Statement 3. If inequalities (27) and

h >
(1 + 2n)π

√
ε2

1 + ε2
3

2ε1ε3
(30)

are fulfilled, then Equation (26) has at least n solutions λ̂k ∈ (0, λ∗), k = 1, n, where λ∗ is defined
in (29).

Proof. The proof of this statement repeats the proof of Statement 2. We have λ∗h > (1 +
2n)π/2, where λ∗ is defined in (29). Further, λh takes all values from zero to (1 + 2n)π/2.
Thus, Equation (26) is defined for λh ∈ (0, (1 + 2n)π/2), and the right-hand side of (26)
is continuous in this interval. This means that a graph of the function in the right-hand
side of (26) has at least n intersections with tg λh in the left-hand side of (26) in interval

λ ∈
(

π
2h , (1+2n)π

2h

)
.

Taking into account Statements 1–3 and the equivalence between Equation (21) and
problem P , one obtains the following result.
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Statement 4. If conditions (27) and (30) are fulfilled, then problem P has at least n eigenvalues
γ̂k ∈ (γ∗, γ∗), k = 1, n, where

γ∗ =

√
ε2

2 − ε1ε3

2ε2 − ε1 − ε3
, γ∗ =

√
ε2 + λ′2∗ ;

here, λ′∗ is defined in (24).

In fact, Statement 3 gives a sufficient condition for the existence of eigenmodes sup-
ported by the waveguide under consideration.

3.5. Numerical Results

In the calculations below, we used the following parameters: ε1 = ε3 = 1, ε2 = 11.7,
σ(1) = i · 4.67 · 10−4 S, σ(3) = −i · 2.15 · 10−17 S ·m2 ·V−2. The value of amplitude A of the
electric field is given in figures’ captions.

It is worth giving a comment about the chosen values of the parameters. The linear
part of the electric conductivity of graphene was calculated by virtue of the formula
given in [22]. In this formula, there are three optional parameters: the wave frequency
ω, the chemical potential µc, and the absolute temperature T; for calculating σ1, we used
ω = 2π · 4 · 1012 Hz, µc = 0.1 eV, and T = 300 K; we stress that we neglected the real part
of σ1. Quantity σ(3) was calculated by virtue of the formula presented in [7] using the same
parameters as for calculating σ1.

In Figure 2, the dispersion curves of problems P (blue curves) and P0 (red curves)
are presented. The dispersion curves were plotted as the dependence of a wave number
(a propagation constant) on either the wave frequency ω or thickness h of the waveguide.
Since the statement of the problem does not involve ω explicitly due to the normalization
by k2

0 = ω2µ0ε0, we plotted the dispersion curves as γ vs. h.
The vertical line h = 3 in Figure 2 corresponds to the waveguide of thickness 3k−1

0 .
The intersection points of the dispersion curves with this line denoted by diamonds are the
eigenvalues of the corresponding problems, and these eigenvalues, in turn, correspond to
the propagation constants γk0 of the waveguide in the problems of electromagnetic wave
propagation.

Figure 2. The first five dispersion curves of problems P (blue curves) and P0 (red curves); the value
of the electric field at the boundary x = 0 is A = 108 V ·m−1. The diamonds denote the eigenvalues
γ̂1 ≈ 3.29 (blue), γ̂2 ≈ 2.88 (green), and γ̂3 ≈ 2.07 (orange) of problemP and the eigenvalues γ̃1 ≈ 3.3
(red), γ̃2 ≈ 2.95 (brown), γ̃3 ≈ 2.29 (purple), and γ̃4 ≈ 1.11 (red) of problem P0.

In Figure 3, we plotted the eigenfunction u(x; γ̂3) of problem P and the eigenfunction
v(x; γ̃3) of problem P0. The eigenvalue γ̂3 of problem P is a perturbation of eigenvalue
γ̃3 of problem P0, and it can be shown that limσ3→+0 γ̂3 = γ̃3. Due to the closeness
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of the eigenvalues γ̂3 and γ̃3, it is natural to expect the closeness of the corresponding
eigenfunctions u(x; γ̂3) and v(x; γ̃3); Figure 3 demonstrates this clearly; in addition, it can
be shown that limσ3→+0 u(x; γ̂3) = v(x; γ̃3). In Figure 3, one can see that in the nonlinear
case, the absolute value of the eigenfunction (tangential component of the electric field)
at the boundary x = h was significantly smaller than in the linear case. This means that
the nonlinearity arising in graphene led to a greater localization of the electromagnetic
field inside the waveguide. At the same time, the maximum and minimum values of the
eigenfunction (tangential component of the electric field) in the nonlinear case were smaller
in absolute value than in the linear case, and the extremum points shifted to the left relative
to their positions in the linear case.

In Figure 4, we plotted the eigenfunction u(x; γ̂2) of problem P and the eigenfunction
v(x; γ̃2) of problemP0. The eigenvalue γ̂2 of problemP is a perturbation of eigenvalue γ̃2 of
problem P0, and it can be shown that limσ3→+0 γ̂2 = γ̃2. Figure 4 shows that the eigenmode
corresponding to the nonlinear case was more localized than its linear counterpart. In
addition, the maximum and minimum values of the nonlinear eigenmode were smaller in
absolute value than the maximum and minimum values of the linear eigenmode, and the
extremum points shifted to the left relative to their positions in the linear case.

It also seems interesting to learn at which conditions the discussed nonlinear effect in
graphene became significant. In Figure 5, as well as in Figure 2, we plotted the dispersion
curves of problems P (blue curves) and P0 (red curves); however, in the calculations,
we used a smaller value for the amplitude of the electric field, namely A = 2 · 107 V ·
m−1. In this case, the dispersion curves of the (nonlinear) problem P were no longer
strongly different from the dispersion curves of (linear) problem P0. In Figures 6 and 7,
the eigenfunctions of the problems P and P0, corresponding to the eigenvalues denoted in
Figure 5, are presented. It can be seen that the eigenmode corresponding to the nonlinear
case was more localized within the waveguide than its linear counterpart; however, this
effect was much weaker than the one demonstrated in Figures 3 and 4, and the reason is
that the amplitude of the electric field was smaller. It is worth noting that the strength
of the nonlinearity in graphene depends on the value of the nonlinearity coefficient σ3
in the formula as well as on the amplitude of the incident wave; in accordance with the
formula given in [7], the coefficient σ3 was proportional to ω−3. Thus, in order to make the
considered nonlinear effect more significant, one can either increase the amplitude of the
incident wave or decrease its frequency.

−3 −2 −1 10 2 3 4 5

50

100

−50

−100

Figure 3. The orange curve presents the eigenfunction u(x; γ̂3) of problem P , corresponding to the
eigenvalue γ̂3 ≈ 2.07 denoted in Figure 2 by the orange diamond. The purple curve presents the
eigenfunction v(x; γ̃3) of problem P0, corresponding to the eigenvalue γ̃3 ≈ 2.29 denoted in Figure 2
by the purple diamond.
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Figure 4. The green curve presents the eigenfunction u(x; γ̂2) of problem P corresponding to the
eigenvalue γ̂2 ≈ 2.88 denoted in Figure 2 by the green diamond. The brown curve presents the
eigenfunction v(x; γ̃2) of problem P0 corresponding to the eigenvalue γ̃2 ≈ 2.95, denoted in Figure 2
by the brown diamond.

Figure 5. The first five dispersion curves of problems P (blue curves) and P0 (red curves); the
value of the tangential component of the electric field at the boundary x = 0 is A = 2 · 107 V ·m−1.
The diamonds denote the eigenvalues γ̂1 ≈ 3.3 (blue), γ̂2 ≈ 2.95 (green), and γ̂3 ≈ 2.19 (orange) of
problem P and the eigenvalues γ̃1 ≈ 3.3 (red), γ̃2 ≈ 2.95 (brown), γ̃3 ≈ 2.29 (purple), and γ̃4 ≈ 1.11
(red) of problem P0.
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Figure 6. The orange curve presents the eigenfunction u(x; γ̂3) of problem P , corresponding to the
eigenvalue γ̂3 ≈ 2.19 denoted in Figure 5 by the orange diamond. The purple curve presents the
eigenfunction v(x; γ̃3) of problem P0, corresponding to the eigenvalue γ̃3 ≈ 2.29 denoted in Figure 5
by the purple diamond.
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Figure 7. The green curve presents the eigenfunction u(x; γ̂2) of problem P corresponding to the
eigenvalue γ̂2 ≈ 2.92 denoted in Figure 5 by the green diamond. The brown curve presents the
eigenfunction v(x; γ̃2) of problem P0 corresponding to the eigenvalue γ̃2 ≈ 2.95, denoted in Figure 5
by the brown diamond.

4. Discussion

In the paper, the problem of the propagation of a monochromatic TE-polarized elec-
tromagnetic wave in a plane dielectric waveguide, covered with a layer of graphene on
one side, is studied. The novelty of this study is that we take into account the nonlinearity
of graphene, which becomes significant if the electromagnetic radiation is strong enough.
The main result of this paper is the dispersion equation, which allows one to find, for
a waveguide of a given thickness, a set of its propagation constants that determine the
configuration of the so-called eigenmodes of the waveguide. We stress that whereas in most
papers studying the problems similar to the one considered in this paper, the preference is
given to numerical simulations, in this study we focused rather on obtaining qualitative
results related to the solvability of the problem. Studying the dispersion equation, we



Photonics 2023, 10, 523 14 of 15

found sufficient conditions for the existence of several propagation constants (and their cor-
responding eigenwaves) of the considered waveguiding structure, see Statements 2 and 3.
In other words, we proved the ability to propagate the TE waves localized in the plane
dielectric waveguide covered with a graphene layer, taking into account the third-order
nonlinearity of graphene affecting the wave propagation.

The numerical results, see Section 3.5, clearly demonstrate that the nonlinear effects
in graphene have a significant affect on the electromagnetic wave propagation process, if
the radiation is strong enough. For example, Figures 3 and 4 allow one to compare the
component of the electric field in the linear (for σ3 = 0) and nonlinear cases: one can see
that in the nonlinear case, it was more localized within the waveguide, and its extremum
points were shifted to the left relative to their position in the linear case.

In this section, we also want to briefly clarify why we were forced to neglect losses in
our study. Let us look at the dispersion Equation (20). It is easy to notice that if σ1 and σ3 are
complex numbers with a nonzero real part, then Equation (20) does not have real solutions
γ, and we need to assume parameter γ to be a complex number with a nonzero imaginary
part. However, that leads to the following problem. In Formulas (2), the functions Ey, Hx,
and Hz depend only on one spatial variable: the transverse coordinate x. This choice of
the fields is possible only in the case of real γ. Indeed, substituting the fields E and H
with components (2) into Formula (4), with σg defined in (5), we obtain the equation that
depends on x and does not depend on z. To be more precise, the multiplier eiγz is reduced
on both sides of the equations, and the term |E| does not depend on z as |eiγz| = 1 for a real
γ. At the same time, if γ is not real, then |eiγz| is a function with respect to z. This means
that components Ey, Hx, and Hz depend not only on x but also on z. This contradicts the
choice of these components as functions depending only on x. All this, however, does
not mean that it is not possible to consider a complex γ in a waveguiding problem with a
nonlinear graphene layer. We just say that for a complex γ, the problem cannot be solved
correctly mathematically for fields (1) and (2). To overcome the described problem, we
need σ1 and σ3 to be purely imaginary, since in this case, the dispersion Equation (20) might
have real solutions.

In this paper, we focus only on TE-waves and do not study the ability to propagate TM-
polarized waves in the considered waveguiding structure. However, this does not mean
that the TM case is less important and less interesting than the TE one. The reason why
we do not study TM waves here is that the governing equations as well as the boundary
conditions for the TE and TM-waves are different, and the analytical approach, developed
in this paper to deal with the TE-waves, needs to be strongly modified for TM-polarized
waves. So, we strongly believe that it is more convenient to study these two types of
waves separately.

An essential continuation of this research will be the study of waveguiding structures
of a more complex configuration. For example, it is interesting to study the problem of
the propagation of a monochromatic TE-polarized wave in a plane waveguide covered on
both sides by layers of graphene and to take into account the arising nonlinear effects at
both boundaries of the waveguide. We stress that such a problem is very important from
a practical point of view, as well as rich in mathematical content, because it involves two
boundary conditions, which are nonlinear with respect to the sought-for function; in other
words, there arises a new class of boundary value problems with nonclassical (nonlinear)
boundary conditions. Finally, we stress that circular cylindrical waveguides combined with
graphene are of great importance.
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