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Abstract: We propose a new partially coherent vortex source model in which the spatial correlation
function is a sinc function on the difference from the q-th power of the coordinates of two points of the
source field. The beam radiated by such source is termed the high-order sinc-correlated model vortex
(SCMV) beam. We derived the propagating formula of the cross-spectral density (CSD) function
for SCMV beams in atmospheric disturbances. On the basis of the derived analytical expression,
the behavior of the spectral density of the SCMV beams propagating in free space and atmosphere
turbulence was investigated under comparative analysis. The results show that the spectral densities
of such beams exhibited interesting novel features, which were significantly different from those of
the trivial vortex beams.
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1. Introduction

Light fields with different spectral coherence characteristics generated by random
sources will produce very different propagation characteristics [1]. Therefore, to generate
radiation fields with specific properties, modeling the spatial correlation function of random
sources has become a research hotspot in recent decades. As a classical partially coherent
beams model, the Gaussian Schell model source is well known for its Gaussian coherence
and spectral density [2]. The Schell model type is currently the foundation for the majority
of investigations on the structure of the partially coherent light source. Since Gori et al.
established the necessary requirements for a valid CSD function [3,4], much consideration
and discussion have been given to the studies of the spatial correlation structure of partially
coherent sources, and a number of partially coherent beam models with extraordinary
correlation structures have been put forth by later researchers [5,6]. Furthermore, it was
discovered that special correlated structured beams are superior to conventional correlated
structured beams in terms of their many distinctive transmission qualities, such as non-
uniform correlated Schell model (NUCSM) beams with a self-focused, self-shifted effect in
transmission [7,8]; multi-Gaussian Schell model (MGCSM) beams with circularly symmetric
flat-topped intensity distribution in the far field [9–11]; and cosine Gaussian Schell model
(CGSM) sources form a dark hollow light intensity distribution after transmission over a
distance [12]. Two types of scalar random beams introduced in [13] can be generated in the
far field with annular intensity.

When the light beams are applied to some real scene such as optical tracking, imaging,
laser radar [14–16], and so on, they will inevitably interact with the medium. However, the
quality of the beam will be degraded due to the interaction of the light field with the medium
during propagation, and the development of the beam in real applications will be hindered
by this. Therefore, the research on the light field’s propagation characteristics in random
media and how to improve the anti-interference ability of light beams in propagation has
become an important topic. In recent years, this field has been widely studied [17–22].
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Recently, a newly developed modeling approach was put forth in [23]. Instead of
being the difference between the two source points, as in the Schell model, the coherence
function in the two directions x and y is depicted as a separable function. On the basis of
this approach, we propose a new class of vortex beams, called SCMV beams, in this paper.
We analyzed the distribution of their spectral densities when they propagate in free space
and turbulent atmosphere, and we also investigated the effect of turbulence on the spectral
densities and profiles at different turbulence parameters, obtaining some interesting results.

2. Sinc-Correlated Model Vortex Beams

Reviewing coherence theory, for a typical planar source, we usually elaborate on the
optical field’s coherence using the CSD function, which reveals the degree of correlation
between two points in the optical field.

W0(ρ10, ρ20) = 〈U∗(ρ10)U(ρ20)〉, (1)

where ρ10 and ρ20 are the position vectors of two points on the source plane, the start is
the complex conjugate, and the ensemble average of the wave field U marked with 〈· · · 〉.
According to the superposition principle, we know that a true CSD function must satisfy
the nonnegative limiting condition. Thus, the CSD must be expressed as follows in the
integral form [3]:

W0(ρ10, ρ20) =
∫

p(v)H∗0 (ρ10, v)H0(ρ20, v)d2v. (2)

in which H0 is a complex-valued function that explains how a light field correlates. The
contour of the correlation function of a light field is defined by p(v), a nonnegative function
that can be Fourier converted. As an example of a typical class, let us choose a kernel H0,
which is a Fourier-like form dependent on v [3],

H(ρ, v) = τ(ρ) exp[−i2πv · g(ρ)], (3)

where τ(ρ) is a possible beam intensity amplitude function in parallel with g(ρ), which is a
real vector function, so the CSD function can be presented in this general form:

W0(ρ10, ρ20) = τ∗(ρ10)τ(ρ20) p̃[g(ρ10)− g(ρ20)], (4)

where p̃ represents the Fourier converted form of p(v). Assume that p(v) is a formal
function that can be separated. Create it, for instance, as the product of the x and y
directional functions:

p(v) = δ
q
xrect

(
vxδ

q
x

)
δ

q
yrect

(
vyδ

q
y

)
. (5)

where rect(x) is the rectangular function, δ
q
x and δ

q
y are power functions of positive constant

δ that has the length dimension, and we set the Laguerre–Gaussian model for the complex
amplitude function τ(ρ),

τ(ρ) =
( ρ

σ

)l
exp

(
− ρ2

σ2

)
exp(ilφ). (6)

where exp(ilφ) is the phase factor, and l indicates the topological charge. In this paper, the
value of the topological charge is taken as l = 1.

On substituting Equations (5) and (6) into Equation (4), the CSD function expression
can be written as follows:

W0(ρ10, ρ20) =
(

ρ10ρ20
σ2

)l
exp

(
− ρ2

10+ρ2
20

σ2

)
exp[il(φ20 − φ10)]

×sinc
(
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20
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q
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)
sinc

(
yq

10−yq
20

δ
q
y

)
,

(7)
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where sinc(x) is normalized, and sinc(x) = sin(πx)/(πx) except for sinc(0) = 1. The CSD
represented by Equation (7) satisfies the nonnegative definiteness condition. Thus, the
source is physically realizable. This model serves as an example of a novel type of partially
coherent vortex light sources that we refer to as SCMV beams.

3. Cross-Spectral Density of the SCMV Beams Propagating in Atmospheric Turbulence

Next, we focus on the beam’s propagation characteristics produced by this light source.
Assuming that the beam propagates in the turbulent medium-filled paraxial region of a
z > 0 half-space, according to the diffraction theory of the light field, we can obtain the
CSD function characterizing the relationship between any two positions (ρ1, z) and (ρ2, z)
in the optical radiation field [24]:

W(ρ1, ρ2, z) =
(

k
2πz

)2s
W0(ρ10, ρ20) exp

{
− ik

2z

[
(ρ1 − ρ10)

2 − (ρ2 − ρ20)
2
]}

×〈exp[Ψ∗(ρ1, ρ10, z) + Ψ(ρ2, ρ20, z)]〉Md2ρ10d2ρ20.
(8)

In this equation, the optical field’s wave number k = 2π/λ, which depends on the
wavelength λ. The phase correlation term 〈exp[Ψ∗(ρ1, ρ10, z) + Ψ(ρ2, ρ20, z)]〉M represents
the perturbation caused by the random medium. It can be well approximated as

〈exp[Ψ∗(ρ1, ρ10, z) + Ψ(ρ2, ρ20, z)]〉M

= exp
{
−π2k2z

3

[
(ρ1 − ρ2)

2 + (ρ1 − ρ2)(ρ10 − ρ20) + (ρ10 − ρ20)
2
]∫ ∞

0 κ3 ϕ(κ)dκ
}

.
(9)

Then, we can obtain the CSD

W(ρ1, ρ2, z) =
(

k
2πz

)2s
W0(ρ10, ρ20) exp

{
− ik

2z

[
(ρ1 − ρ10)

2 − (ρ2 − ρ20)
2
]}

× exp
{
−π2k2z

3

[
(ρ1 − ρ2)

2 + (ρ1 − ρ2)(ρ10 − ρ20) + (ρ10 − ρ20)
2
]

×
∫ ∞

0 κ3 ϕ(κ)dκ
}

d2ρ10d2ρ20.

(10)

where ϕ(κ) is a function that determines the intensity of the turbulent medium and is
named as the power spectrum [25]. In our work, we choose the function as

ϕ(κ) = A(α)C̃2
n

exp
(
κ2/κ2

m
)(

κ2 + κ2
0
)α/2 , 0 ≤ κ < ∞, 3 < α < 4, (11)

which represents the power spectrum in the non-Kolmogorov turbulence model. The term
C̃2

n is the refractive index structural parameter in unit m3−α. In addition, κ0 = 2π/L0 and
κm = c(α)/l0. The external and internal scales of turbulence are denoted by L0 and l0,
respectively.

c(α) =
[

Γ
(

5− α

2

)
A(α)

2π

3

]1/(α−5)
, (12)

A(α) = Γ(α− 1)
cos(απ/2)

4π2 , (13)

with Γ(x) being the gamma function. Substituting Equation (7) into Equation (10), the CSD
is derived as

W(ρ1, ρ2, z) =
(

k
2πzσ

)2
exp

[
− ik

2z
(
ρ2

1 − ρ2
2
)
− π2k2z
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2
]

×
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s
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s
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}

,

(14)
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where

Fj = exp
[
− ρ2

10+ρ2
20

σ2 − ik
2z
(
ρ2

10 − ρ2
20 − 2ρ1ρ10 + 2ρ2ρ20

)]
× exp

{
−π2k2z

3

[
(ρ1 − ρ2)(ρ10 − ρ20) + (ρ10 − ρ20)

2
]∫ ∞

0 κ3 ϕ(κ)dκ
}

×sinc
(

jq10−jq20
δ

q
j

)
, j = x, y.

(15)

On the basis of the propagation expression of the CSD function expressed in Equation (14),
we can calculate the spectral density of the SCMV beam in free space and in non-Kolmogorov
turbulence using the spectral density definition:

S(ρ, z) = W(ρ, ρ, z). (16)

4. Numerical Results

We now numerically integrate Equation (12) to study the propagation characteristics of
the SCMV beams in free space and atmospheric turbulence. Unless as otherwise indicated
in the captions, the source parameters values are set to σ = 1 cm, δx = δy = 7 mm,
λ = 632.8 nm. The external and internal scales of turbulence are set to L0 = 1 m, l0 = 1 mm.
In Figure 1, we show the evolution of the longitudinal spectral density distribution of the
beam propagating from the source plane to 250 m corresponding to different values of q.
Due to the presence of the vortex structure, it made the spectral density of the radiation
field produced by the beam show a pattern of dark hollow distribution. Meanwhile,
some noteworthy phenomenon emerged here. When q was odd, the size of this spectral
density dark hollow distribution profile gradually became smaller as the beam transmission
distance increased, and when the beam continued to be transmitted to a certain distance,
this dark hollow distribution pattern completely disappeared and the central intensity
of the beam was no longer zero. However, the difference was that when q was even,
the spectral density dark hollow contour was always able to exist stably throughout the
propagation of the beam. That is, when q was odd, the SCMV beam had a vortex structure
that disappeared after a certain distance during the transmission, while the vortex structure
was able to exist stably during propagation when q was even. In addition, we also found
that the dark hollow region of the beam exhibited a self-focusing effect during propagation
when q was even. Moreover, the beam profile narrowed at the focus position, and the
location where the focusing effect occurred varies for different values of q. This result was
similar to the results exhibited by the self-focusing vortex beam [26]. From this result, it
can be seen that by varying the q value, a possibility for beam shaping is provided.

Figure 2 depicts the transverse spectral density distribution of the SCMV beam propa-
gating in free space at z = 100 m. As can be seen from the figure, when q was even, it had a
central intensity distribution of zero as the general vortex beam, but unlike the intensity of
the ordinary vortex beam that presented a rotationally symmetric distribution, the spectral
density distribution of the SCMV beam showed a pattern of four bright spots surrounding
the central dark core. In the case where q took odd values, the spectral density distribution
of the beam no longer had a central dark core, as shown in Figure 2a–c. The q = 1 showed a
circularly symmetric distribution, while the intensity of the beam converged toward the
center along the x and y axes for larger values of q, and the central intensity was distributed
more rapidly from a hollow to a solid distribution.
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Next, we turned our attention to exploring the variation of the SCMV beam during
propagation. As a representative example, we worked on the case of q = 2. Figure 3
depicts the distribution of the intensity at some specified distance planes as the beam
propagated in free space. Comparing Figure 3a,b, we can clearly see that the size of the
dark hollow profile of the beam shrunk significantly with the increase in the transmission
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distance, and the focusing effect appeared at 100 m, while the spectral density distribution
gradually converged toward the x and y axes. The four bright spots tightly surrounded the
central optical axis and had a tendency to rotate, and the maximum value of light intensity
during propagation also appeared here. As the distance continued to increase, the beam
profile gradually expanded, the focusing effect disappeared, and the beam profile gradually
evolved to a similar appearance to that of the near-field region.
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Then, we investigated the effect of atmospheric turbulence on the propagation char-
acteristics of the SCMV beam. The intensity distribution of the beams moving through
atmospheric turbulence is plotted in Figure 4. In comparison with Figure 3, it conveyed
to us a clear message that the SCMV beams showed a clear difference in the propagation
characteristics in atmospheric turbulence compared to those exhibited in free space. We can
see from the intensity distribution diagram that the near-field region was not much affected
by turbulence, just as in the free space case. When the transmission distance increased, the
center was no longer a completely dark void. Instead, a ring-shaped cavity and a spectral
density peak in the middle indicated that the beam’s intensity was concentrated at its center
and that the beam profile gradually expanded, wherein as the distance rose, the brightness
around the ring-shaped cavity became progressively darker.

Figure 5 shows the transverse distribution of the SCMV beam spectral density for q = 2
in atmospheric disturbance with different values of parameters α and C̃2

n at the plane at
distance z = 100 m. We can observe that when the turbulence parameter values changed,
so did the distribution of the spectral density. Comparing Figure 5a–d, Figure 5b–e, and
Figure 5c–f, we found that the spectral intensity converged significantly toward the center
when C̃2

n was larger. In particular, when α = 3.10, the atmospheric turbulence had the
greatest effect on the spectral density distribution, and the beam intensity was almost
entirely concentrated in the center.
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5. Conclusions

In this study, we structure a kind of novel vortex light source model in which the
degree of coherence is the product of two sinc functions by depending on the qth variance of
the position coordinates of two points in the source plane. The distribution of light intensity
was visualized by numerical simulation, and the propagation properties of light beam in
turbulent space were analyzed. The result shows that the radiation field of the light source
propagated in free space and exhibited a distinctive self-focusing effect when q was even.
We also found that when the power value q = 2, the lateral profile of the beam’s spectral
density was a hollow dark pattern surrounded by four light points in free space. With the
distance z from the source plane gradually increasing, the intensity of the beam converged
to the center, and this self-focusing effect was most obvious at z = 100 m. Then, the beam
gradually expanded. When the beams were transmitted in a non-Kolmogorov turbulent
medium, it still had a hollow distribution of intensity and was able to remain stable in
the region close to the source plane. With increasing distance, however, this dark hollow
pattern was disrupted by atmospheric turbulence. A peak of light intensity appeared in
the center of the dark hollow where the original light intensity was zero. The effect of
turbulence on the light field was analyzed by setting different values of refractive index
structural parameters C̃2

n and power spectrum parameters α for atmospheric turbulence. It
was found that the effect of turbulence on the light field was more pronounced for larger
values of C̃2

n. When α was 3.10, the dark hollow structure was most severely disrupted,
and the light intensity was almost entirely concentrated in the center of the beam. Our
results have potential applications and theoretical guidance for particle manipulation and
materials processing with light beams.
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