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Abstract: The descriptions of a radially phased-locked Hermite–Gaussian correlated beam array
are introduced, the equation of this beam array in oceanic turbulence is derived, and the intensity
profiles of this beam array are shown and analyzed. The results imply that the evolutions of the
sub-beam of this beam array in free space are the same as the Hermite–Gaussian correlated beam,
while the intensity of this beam array can be adjusted by controlling the initial beam radius R and the
coherence length. The intensity profiles of this beam array in free space have multiple spots during
propagation, while the same beam array in oceanic turbulence can become a beam spot due to the
influences of R and oceanic turbulence. The beam array with smaller coherence length in oceanic
turbulence retains the splitting properties better during propagation.
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1. Introduction

The characteristics of laser transmitting in underwater turbulence affect the perfor-
mances of underwater optical communication [1], and the propagation of beams in un-
derwater turbulence has recently been widely studied. Partially coherent beams (PCBs)
reduce the degrading effects of turbulence [2], and the structured light can remain invariant
during propagation [3]. Previously, the scintillation properties of waves in underwater
turbulence have been analyzed [4–6]. To examine the performances of underwater optical
systems, the BER properties of laser in oceanic turbulence were investigated [7,8]. PCBs
with unique correlation functions have been introduced into the underwater turbulence
environments. The propagation of a multi-sinc Schell-model beam in anisotropic oceanic
turbulence has been investigated [9]. The self-splitting structured beam can lower the
negative influences of oceanic turbulence, which is achieved by controlling the parameters
of the beams [10]. The influences of oceanic turbulence on non-uniformly correlated beams
have been studied by numerical simulation [11,12]. The propagation of vortex beams in
oceanic turbulence has been investigated, and neural networks have also been used in
studies of vortex beams in underwater turbulence [13–17]. The beam array has a lattice-like
intensity, and the properties of the beam array have been widely analyzed [18,19].

The PCBs’ shaping can be modulated by coherence structure engineering [20], and
PCBs can be experimentally generated [21]. The cross-spectral density (CSD) of PCBs with
different coherence function has been widely discussed. The multi-Gaussian Schell-model
beam (multi-GSM) has a flat-topped intensity profile in the far field [22]. The Gaussian
intensity array can be obtained by anisotropic GSM beam array [23]. The Laguerre-Gaussian
correlated beam can obtain the ring-shaped intensity distribution for propagation in free
space [24]. The Hermite–Gaussian correlated Schell-model (HGCSM) beam can split from
one beam spot to multiple spots [25]. Non-uniform PCB modulated by a non-uniform
HGCSM function has been described, with the position of maximum intensity adjusted
using the beam parameters [26]. The twist HGCSM beam can be obtained by introducing
the twist phase [27]. In practice, the beam array can achieve high power, and can be
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composed of off-axis beams [28,29]. The radial intensity distribution of the beam array can
be obtained by radially phase-locked PCBs [30–32]. The splitting properties of HGCSM
are very interesting. However, the beam array composed of HGCSM sub-beams has not
yet been reported. In this work, the HGSM beam was extended into beam array. The CSD
of a radially phased-locked HGCSM (RPLHGSM) beam array is introduced based on the
HGCSM beam, and the intensity distributions of this beam array transmitting in oceanic
turbulence are numerically analyzed. The paper is organized as follows. In Section 2, the
CSD of an RPLHGSM beam array on the source plane is introduced. In Section 3, the
propagation equation of an RPLHGSM beam array in oceanic turbulence is derived. In
Section 4, the intensity profiles of this beam array in oceanic turbulence are discussed.

2. Model of an RPLHGSM Beam Array

The CSD of the HGCSM beam on the source plane z = 0 in the space-frequency
domain is written as [24]:
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In Equation (1), r = (x, y) is the position vector, C0 is a constant, w0 represents
beam width of Gauss part, δ0x and δ0y denote coherence length along x and y directions,
respectively. Hm is the Hermite polynomial of order m and can be given as [33]:
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where N is the number of sub-beams, R is the radius, rhx = R cos ϕh, rhy = R sin ϕh,
ϕh = h2π/N, (h = 1, 2, . . . N) is the phase of the h-th sub-beam.
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3. Propagation of an RPLHGSM Beam Array in Oceanic Turbulence

The CSD of PCBs propagating in oceanic turbulence is described by the extended
Huygens–Fresnel principle [9–19]:

W(ρ1,ρ2, z) = k2
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where 1/Λ2
0 = π2k2zT0/3, and T0 =

∫
κ3Φ(κ)dκ. Φ(κ) is the power spectrum of oceanic

turbulence and is given as [37]:
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The κ is the spatial frequency of power spectrum of oceanic turbulence. η is the
Kolmogorov micro scale. χT , ε and ς are parameters of oceanic turbulence [36]. The
parameters in Equation (6) are AT = 1.863× 10−2, AS = 1.9× 10−4, ATS = 9.41× 10−3,
Θ = 8.284(κη)4/3 + 12.978(κη)2. The T0 can be given as [12]:

T0 = 0.388× 10−8(εη)−1/3
(

47.5708ς−2 − 17.6701ς−1 + 6.78335
)

(7)

Substituting Equation (3) into Equation (4), the CSD of an RPLHGSM beam array in
oceanic turbulence can be derived as:

W(ρ1,ρ2, z) = k2

4π2z2 exp
[
− ik

2z
(
ρ2

1 − ρ2
2
)]

exp
[
− (ρ1x−ρ2x)

2+(ρ1y−ρ2y)
2

Λ2
0

]
G0

N
∑

h1=1

N
∑

h2=1

1
H2m(0)

1
H2n(0)

exp
[
i
(

ϕh1 − ϕh2

)]
m
∑

lx=0

(−1)lx (2m)!
lx !(2m−2lx)!

(
2√
2δ0x

)2m−2lx n
∑

ly=0

(−1)ly (2n)!
ly!(2n−2ly)!

(
2√
2δ0y

)2n−2ly

Wx(ρx, z)Wy
(
ρy, z

)
(8)

where

Wx(ρx, z) = exp

[
−
(

rh1x−rh2x

)2

Λ2
0

]
exp

[
− ik

2z

(
r2

h1x − r2
h2x

)]
exp

[
ik
z
(
ρ1xrh1x − ρ2xrh2x

)]
exp

[
−

(ρ1x−ρ2x)
(

rh1x−rh2x

)
Λ2

0

]
2m−2lx

∑
sx=0

(2m−2lx)!(−1)sx

sx !(2m−2lx−sx)!√
π
ax

sx!
(

1
ax

)sx
exp

[
1
ax

(
− rh1x−rh2x

Λ2
0
− ρ1x−ρ2x

2Λ2
0
− ik

2z rh1x +
ik
2z ρ1x

)2
]

[ sx
2 ]

∑
tx=0

1
tx !(sx−2tx)!

( ax
4
)tx

sx−2tx
∑

dx=0

(sx−2tx)!
dx !(sx−2tx−dx)!(

− rh1x−rh2x

Λ2
0
− ρ1x−ρ2x

2Λ2
0
− ik

2z rh1x +
ik
2z ρ1x

)sx−2tx−dx

(
1

2δ2
0x
+ 1

Λ2
0

)dx√
π
bx

(
i

2
√

bx

)2m−2lx−sx+dx
exp

(
c2

x
bx

)
H2m−2lx−sx+dx

(
− icx√

bx

)

(9)



Photonics 2023, 10, 551 4 of 10
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Based on the derived equations, the average intensity of an RPLHGSM beam array in
oceanic turbulence is written as [9–19]:

I(r, z) = W(r, r, z) (14)

4. Numerical Results and Analysis

In this section, the average intensity characteristics of an RPLHGSM beam array trans-
mitting in oceanic turbulence are analyzed. In the simulations, the parameters were chosen
as w0 = 4 mm, λ = 532 nm, R = 6 cm, N = 4, m = n = 2, ς = −2.5, χT = 8× 10−8 K2/s,
ε = 10−7 m2 s−1 and η = 1 mm without other descriptions in the figures.

The intensity of an RPLHGSM beam array with N = 4 and δ0x = δ0y = 3 mm
transmitting in free space is given in Figure 1. When the propagation distance is short,
the intensity profile of an RPLHGSM beam array retains the four beam spots (Figure 1a).
As the distance increases further, the sub-beam of an RPLHGSM beam array exhibits
splitting properties, and the intensity distribution of an RPLHGSM beam array in free
space becomes multiple beam spots, due to the influences of coherence δ0x = δ0y. The
self-splitting phenomenon of the sub-beam is the same as the HGCSM beam [24]. Finally,
the intensity profile of an RPLHGSM beam array shows multiple spots at z = 200 m
(Figure 1d). Therefore, the intensity profile of an RPLHGSM beam array in free space is
controlled by the initial beam number N and Hermite correlation function.
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(b) z = 60 m, (c) z = 100 m, (d) z = 200 m.

The characteristics of an RPLHGSM beam array with δ0x = δ0y = 3 mm for the
different initial beam parameters N, R, m and n transmitting in free space at z = 200 m
are illustrated in Figure 2. From Figures 1d and 2a, it is found that the intensity profile
of an RPLHGSM beam array has multiple spots, N affects the distribution of sub-beams,
and the intensity pattern can be modulated by controlling the sub-beam number N. When
the initial parameters m, n of sub-beams change, the intensity pattern of an RPLHGSM
beam array has different intensity distributions. The intensity profile of the sub-beam
is the same as the HGCSM beam with the same parameters in free space, however, the
whole intensity pattern of an RPLHGSM beam array in free space is composed of different
HGCSM beamlets (Figure 2a–c). When the radius R decreases, the multiple spots of the
sub-beam of an RPLHGSM beam array overlap with the near sub-beams (Figure 2d), and
the separate spot distributions are destroyed. Hence, we can adjust the intensity profiles of
an RPLHGSM beam array in free space by modifying the initial beam parameters.

We considered the effects of an increase in the coherence length δ0x = δ0y. The
intensity of an RPLHGSM beam array with larger δ0x = δ0y = 5 mm in free space is
shown in Figure 3. It shows that the beamlet of an RPLHGSM beam array with larger
δ0x = δ0y in free space retains the single spot better at z = 100 m (Figure 3a), while the beam
array with δ0x = δ0y = 3 mm splits into multiple spots (Figure 1c), an RPLHGSM beam
array with smaller coherence length split fasters. Comparing Figure 3b with Figure 1d,
an RPLHGSM beam array with larger δ0x = δ0y = 5 mm also split at z = 200 m, but the
splitting phenomenon is not more apparent than for the beam array with δ0x = δ0y = 3 mm.
Thus, the intensity distributions of an RPLHGSM beam array with smaller δ0x = δ0y can
retain the array profile better during propagation.
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(a) z = 100 m , (b) z = 200 m.

Figures 4 and 5 show an RPLHGSM beam array with different δ0x = δ0y propagat-
ing in oceanic turbulence. In Figure 4, the sub-beam of an RPLHGSM beam array with
δ0x = δ0y = 3 mm in oceanic turbulence has combining properties (Figure 4b), while the
same beam array in free space has separate spot profiles (Figure 1d). when δ0x = δ0y
increases, the sub-beam of an RPLHGSM beam array with δ0x = δ0y = 5 mm in oceanic
turbulence becomes a spot, and this beam array in free space can retain multiple spot distri-
bution (Figure 3b). Comparing Figures 3–5, the beam array with smaller δ0x = δ0y better re-
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tained its splitting properties during propagation on oceanic turbulence (Figures 4b and 5b).
The combining properties of an RPLHGSM beam array can be seen in this example of
beam array propagation in oceanic turbulence. (Figures 3b and 5b). Thus, the combining
phenomenon of an RPLHGSM beam array in oceanic turbulence is affected by oceanic
turbulence and coherence length, and a beam array with low coherence length retains its
splitting properties better during propagation in oceanic turbulence.
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When the radius R decreases, the intensity profiles of an RPLHGSM beam array with
N = 4 and R = 2 cm transmitting through free space and oceanic turbulence are given in
Figures 6 and 7. At z = 100 m, the intensity profile of sub-beam of an RPLHGSM beam array
remains a spot profile. The sub-beam of this beam array splits at z = 200 m (Figure 6b), but
the sub-beams of an RPLHGSM beam array in free space overlap with the surrounding
sub-beams (Figure 6b) due to the reduction of R. While the same beam array in oceanic
turbulence can evolve into one beam spot at z = 200 m, the combining properties of this
beam array in oceanic turbulence are affected by radius R (Figures 5b and 7b). Therefore,
the intensity profile of an RPLHGSM beam array in free space and oceanic turbulence can
be modulated by controlling the parameter R and oceanic turbulence.
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5. Conclusions

A new type of beam array, named RPLHGSM beam array, composed of N HGCSM
sub-beams with radial distribution is proposed. The CSD of this beam array in oceanic tur-
bulence was derived, and the influences of initial beam parameters and oceanic turbulence
on evolution characteristics of this beam array are numerically discussed. The beamlets
of an RPLHGSM beam array retain self-splitting properties in free space, the RPLHGSM
beam array in free space can attain multiple spot distribution during propagation, and an
RPLHGSM beam array with low coherence retains splitting properties better. The sub-beam
of the same beam array transmitting in oceanic turbulence will overlap, and as R decreases,
the profile of this beam array in oceanic turbulence becomes a beam spot. An RPLHGSM
beam array with smaller coherence length in oceanic turbulence will retain its splitting
properties better. The results confirm that an RPLHGSM beam array can have applications
in underwater laser sensing and laser radar.
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