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Abstract: We report long-cavity (60.5 λ) GaN-based vertical-cavity surface-emitting lasers with a
topside monolithic GaN concave mirror, a buried tunnel junction current aperture, and a bottomside
nanoporous GaN distributed Bragg reflector. Under pulsed operation, a VCSEL with a 9 µm aperture
had a threshold current density of 6.6 kA/cm2, a differential efficiency of 0.7%, and a maximum
output power of 290 µW for a lasing mode at 411 nm and a divergence angle of 8.4◦. Under CW
operation, the threshold current density increased to 7.3 kA/cm2, the differential efficiency decreased
to 0.4%, and a peak output power of 130 µW was reached at a current density of 23 kA/cm2.

Keywords: GaN VCSEL; tunnel junction; nanoporous GaN DBR

1. Introduction

GaN-based vertical-cavity surface-emitting lasers (GaN-VCSELs) are attracting broad
interest due to their low threshold currents, circular beam profiles, 2D arraying capabil-
ities, and capability for high-frequency operation, thus promoting their applications in
lighting and displays, communications, and sensing, among others [1]. While a majority
of prior GaN-VCSEL demonstrations have utilized short to medium cavities (effective
cavity length Leff < 3 µm) [2–9], recent long-cavity demonstrations (Leff > 10 µm) from
Sony have been shown to provide high thermal stability, low threshold currents, and high
output powers [10]. Until recently, this design held performance records for output power
(15.4 mW) [11], threshold current (0.25 mA) [12], and wall-plug efficiency (WPE, 13.4%) [13],
while reporting device yields above 90%. This design accomplishes this impressive per-
formance by extending the cavity length and decreasing the longitudinal mode spacing
such that there is always a resonant mode near the center of the gain peak, even as the
gain peak has shifted due to self-heating. Lasers based on this design achieve lateral mode
confinement within the long cavity by incorporating a curved III-nitride lens that is etched
onto the bottom side of a polished substrate [14]. The curved lens minimizes the diffraction
loss that would otherwise occur in long cavities [15]. As the cavity length increases for
planar cavities with fixed mirror diameters, so does the diffraction loss; the typical gain
of GaN QWs is approximately 1% per pass, so diffraction loss can quickly deteriorate
device performance for cavities larger than 10 µm. However, converting one of the planar
distributed Bragg reflectors (DBRs) into a curved DBR mirror is known to provide a stable
resonator that forms a beam waist on the planar side, thereby minimizing diffraction loss.
By confining the lateral mode in this way, the beam waist and propagation throughout the
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cavity are primarily determined by the cavity length (L) and the radius of curvature (ROC)
of the mirror.

The design demonstrated by Hamaguchi et al. prioritized low-threshold conditions by
placing the active region at the beam waist (100 nm from the planar mirror) and minimizing
the aperture size. However, to form their lens, they had to polish the substrate down to a
thickness of approximately 20 µm, thus increasing processing complexity. Additionally,
placing the mirror on the bottom of the substrate requires backside alignment. It is beneficial
to place the lens on top of the VCSEL cavity without needing to lap or polish the substrate
down to the desired cavity thickness. For the bottomside mirror, an epitaxial option would
remove the necessity for substrate thinning or flip-chip bonding.

Here, we present a long-cavity (Leff~60.5λ) m-plane GaN-VCSEL with a topside mono-
lithic GaN concave mirror, a buried tunnel junction (BTJ), and a buried planar nanoporous
GaN distributed Bragg reflector (NP DBR) that lases under CW operation. The GaN mirror
has a diameter of 26 µm and an ROC of 31 µm. The active region is placed approximately
6.5 µm from the planar mirror.

2. Materials and Methods

The epitaxial device structure, shown in Figure 1 and summarized in Table 1, was
grown using atmospheric metalorganic chemical vapor deposition (MOCVD) on free-
standing single-side polished (SSP) m-plane (1010) substrates with an intentional 1◦ miscut in
the [0001] direction. The epitaxial structure consisted of a 1 µm n-GaN ([Si]~2 × 1018 cm−3)
buffer layer grown at 1000 ◦C (18 nm/min); 24 pairs of alternating unintentionally doped
(UID) GaN ([Si]~1 × 1016 cm−3) and n+–GaN ([Si]~4 × 1019 cm−3) grown at 1180 ◦C
(50 nm/min) to form the bottomside DBR; 3860 nm of UID GaN grown at 1000 ◦C
(45 nm/min); 2500 nm of n-GaN ([Si]~8 × 1018 cm−3 grown at 1000 ◦C (43 nm/min);
2 × 8 nm InGaN quantum wells (MQWs) designed to emit at 410 nm with 3 nm GaN barriers
grown at 857 ◦C (6 nm/min); 5 nm UID GaN grown at 857 ◦C (6 nm/min);
10 nm graded p-AlGaN ([Mg]~1 × 1019 cm−3) electron blocking layer (EBL) graded along
the growth direction from 30% to 0% and grown at 1000 ◦C (6 nm/min); 80 nm p-GaN
([Mg]~1 × 1019 cm−3) grown at 1000 ◦C (8 nm/min); and 10.5nm p++–GaN ([Mg]
~3 × 1020 cm−3) grown at 1000 ◦C (8 nm/min). After the first growth, the samples
were treated with concentrated HF and ozone before regrowing the 8 nm n++–GaN ([Si]
~1.5 × 1020 cm−3) TJ layer at 825 ◦C (2 nm/min) via MOCVD [16]. The buried tunnel
junction (BTJ) current apertures were defined by etching 30 nm through the n++/p++–GaN
layers using reactive-ion etching (RIE). Then, all samples were annealed at 730 ◦C in a 4:1
N2/O2 environment for 30 min to activate the p/p++–GaN [17]. Finally, 1810 nm n-GaN
([Si]~4× 1018 cm−3) and 1700 nm UID GaN were grown at 900 ◦C (45 nm/min) via MOCVD.
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Table 1. Epitaxial structure, doping concentrations, and absorption coefficients [18].

Growth Step Layer Thickness (nm) Doping Conc. (cm−3) Abs. Coeff. (cm−1)

SiO2/Ta2O5 DBR
(16–periods) 67.5/45.5 NA 0

GaN 1700 UID 2
3rd n-GaN 1810 8 × 1018 2

2nd n++–GaN 8 1.5 × 1020 235

1st p++–GaN 10.5 2.5 × 1020 180
p-GaN 80 1 × 1019 80

p-AlGaN EBL 10 1 × 1019 27
GaN barrier 5 UID 2

GaN/InGaN QW (2x) 3/8 UID 0
n-GaN 2500 8 × 1018 2
GaN 3860 UID 2

n+–GaN/GaN DBR (24–periods) 48.4/40.4 5 × 1019/UID 0/0

The photoresist lenses were formed via photoresist reflow and then transferred into
the upper UID/n-GaN layers using RIE [19]. Next, SiO2 was deposited on the curved GaN
lenses using plasma-enhanced chemical vapor deposition (PECVD) to act as a hard mask
for subsequent processing steps. Following this, mesas were defined using RIE to allow for
the p-GaN to be activated through the mesa sidewalls [20]. Next, 7 µm deep and 15 µm
wide trenches were defined using RIE to etch the NP DBR. Then, all samples were annealed
again at 730 C in a N2/O2 environment for 30 min to re-activate the BTJ through the mesa
sidewalls. Next, 25 nm SiO2 was deposited on both the top and sidewall surfaces of the
mesa using atomic layer deposition (ALD) to protect the devices from the NP DBR acid etch
and to provide electrical isolation [21] and sidewall passivation [22]. Next, the backside
of the substrate was coated with 40 nm/450 nm Ti/Au using electron-beam evaporation,
and then the samples were taped to a conductive steel holder and submerged in 0.3 M
oxalic acid. A Pt wire was submerged alongside the substrate, and a bias of 2.4 V was
applied for 30 h to etch the NP DBRs. Under these conditions, the n+–GaN layers of the
DBR chemically reacted with the oxalic acid and formed a porous structure with pores
ranging from 20 to 40 nm in diameter [23]. After the etch was completed, the bottom metal
was removed with adhesive tape, and metal contacts comprised of Ti/Au (40 nm/450 nm)
were deposited using electron-beam evaporation on top of the n-type GaN on the topside
of the mesa and slightly overlapping the edge of the lens. Finally, a 16-period SiO2/Ta2O5
dielectric DBR was deposited on the topside of the lenses using ion beam deposition (IBD).

A cross section of a completed device, taken using a focused ion beam (FIB) and imaged
using scanning electron microscopy (SEM), is shown in Figure 2. Electrical characteristics
were analyzed under pulsed operation with a 1000 ns pulse width and a 1% duty cycle, and
under continuous-wave (CW) operation, both at room temperature (20 ◦C). Optical power
measurements were taken by placing the sample directly on top of a Thorlabs bandpass
filter centered at 410 nm with a peak transmittance of 91%; the sample and filter were
placed onto a 3 mm diameter silicon photodetector (model DET36A) reverse-biased at 10 V
for pulsed measurements, and placed onto a wide-area 12 mm diameter unbiased silicon
photodetector (PD) for CW measurements. The bandpass filter was employed because of
excess spontaneous emission present in the unfiltered LIV measurement due to the close
proximity of the device to the PD, which washed out the expected LI kink. The spectrum
data were acquired using an Ocean Insight spectrometer with a spectral resolution of 2 nm.
The topside nearfield patterns (NFP) were taken using an optical microscope with a 20x
objective lens, and the bottomside farfield patterns (FFP) were taken by placing a piece
of fluorescent paper 16.5 mm below the device, which was mounted to a double-side
polished (DSP) sapphire substrate. The 16.5 mm thickness included the thickness of the
DSP sapphire. The resulting mode was imaged with a camera mounted at 35◦.
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Figure 2. Cross-sectional scanning electron microscopic (SEM) image of the fabricated device struc-
ture, with the insets showing the cross sections of the NP DBR from the c- and a-directions.

3. Results and Discussion

The root-mean-square (RMS) roughness for the final regrowth surface was approxi-
mately 0.7 nm, as measured using atomic force microscopy (AFM). The fabricated devices
had an effective cavity length of approximately 60.5 λ (10.7 µm) for a target emission
wavelength of 410 nm. The cross-sectional SEM images of the NP DBR are shown in the
insets of Figure 2, with pictures taken of the pores in the c- and a-directions. The porosity of
the NP DBR was extracted by binarizing the SEM image in the a-direction and calculating
the porous fraction from the known thicknesses of the individual layers. Using this method,
a porosity of 29% was calculated. From there, the index of refraction of the porous layer,
npor, can be determined based on the volume average theory (VAT) as follows:

npor = [(1− ϕ)n2
GaN + ϕn2

air]
1/2

(1)

where ϕ describes the porosity fraction [24]. At 410 nm, the nGaN was ~2.5, leading to
a calculated npor of ~2.18 and creating an index contrast of 0.32. Using 1D transmission
matrix method (1D TMM) simulations, the peak reflectivity of the 24-period NP DBR was
99.617%. There is inhomogeneity of the pore size observed throughout the NP DBR layers,
which may lead to scattering [25]. Future studies will be conducted to further characterize
the magnitude of this effect within NP DBRs for III-nitride VCSELs. Additional 1D TMM
simulations were carried out to calculate the internal loss <αi>, mirror loss αm, confinement
factor ΓxyΓzΓenh, and dielectric DBR reflectivity, which were determined to be 2.52 cm−1,
1.8 cm−1, 0.00117, and 99.995%, respectively [26]. The absorption coefficients listed in
Table 1 are rough estimates used to guide insights into the internal loss of the structure [18].

Figure 3a shows the light-current-voltage (LIV) characteristics of a VCSEL with a 9 µm
current aperture analyzed under pulsed and CW operations. Under pulsed operation,
the peak total output power was 260 µW and the threshold current (Jth) and voltage (Vth)
were 6.6 kA/cm2 and 8.9 V, respectively, as determined using the linear line fitting method.
Correcting for the filter transmittance gave a peak output power of 290 µW. The slope
efficiency (SE) was 0.02 W/A, leading to a differential efficiency (ηd) of 0.7%. Under CW
operation, Jth and Vth were 7.3 kA/cm2 and 8.8 V, respectively, with rollover occurring at
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approximately 23 kA/cm2 at a peak total power of 120 µW, or 130 µW with filter correction.
The SE reduced to 0.013 W/A, resulting in a reduced ηd of 0.4%.
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Figure 3. (a) LIV for pulsed (solid) and CW (dashed) operations of a VCSEL with a 9 µm current
aperture. The inset features LI for pulsed (solid) and CW (dashed) operations through a Thorlabs
bandpass filter. (b) Pulsed emission spectrum as a function of injected current. The inset shows the
comparison between the pulsed and CW spectra taken at 8 mA (12.5 kA/cm2). The arrows designate
adjacent longitudinal peak positions.

The diameter of a Gaussian beam, 2ω(z), at the location of the active region can be
expressed using the following equation [27]:

2ω(z) = 2ω0

√
1 + (

λz
nπω2

0
)

2
(2)

where λ is the lasing wavelength and n is the index refraction. ω0 is the beam waist radius
formed at the planar mirror and can be calculated as follows:

ω0 =

√
λ

nπ

√
Le f f R− L2

e f f (3)

where Leff is the effective cavity length and R is the ROC of the concave lens. At the active
region, which is placed approximately 6.5 µm from the planar mirror, 99.7% of the Gaussian
profile is contained in a 5.8 µm diameter. This was calculated by calculating the beam
diameter using Equations (2) and (3), and then multiplying the result by three to account
for 99.7% of the light. The result suggests that only 41% of the 9 µm current aperture
is coupled to the resonant mode, and the remaining light becomes excess spontaneous
emission. Additionally, there is current crowding observed around the edge of the 9 µm
aperture. This non-uniformity in current distribution could lead to increased recombination
at the edge of the aperture and outside of the mode, which is approximately centered over
the aperture. Figure 3b shows the unfiltered spectra as a function of the injected current
under pulsed operation, showing the selection of a mode centered at 411 nm that grows
with the injected current. The inset of Figure 3b shows the lasing behavior at a bias of 8 mA
under pulsed and CW operations, showing a minimal shift of the mode at the injected
current. It should be noted that the resolution of the spectrometer (2 nm) is similar to
the longitudinal-mode spacing calculated using 1D TMM modeling (2.3 nm). The arrows
designate adjacent longitudinal peak positions, which are almost at the same position of
the observed peak emission wavelength. Additional equipment is needed to accurately
resolve the longitudinal-mode behavior.
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Prior NP-DBR VCSEL demonstrations with cavity lengths of 8.9λ [28], 6λ [6], 6λ [7],
and 1.5λ [29] exhibited threshold currents of 20 kA/cm2 (pulsed), 42 kA/cm2 (pulsed),
59 kA/cm2 (pulsed), and 0.7 kA/cm2 (CW), respectively. Previous curved mirror VCSEL
demonstrations exhibited threshold current densities that ranged from 3.5 to
141 kA/cm2 [10,11,14,30,31]. Our device performs favorably compared to prior NP-DBR
VCSEL demonstrations, and the results are in line with prior curved mirror VCSEL demon-
strations. However, we note that the threshold current density calculated from the threshold
current divided by the current aperture area is not always an accurate metric, given that
the injected current density is seldom uniform over the aperture and that the optical mode
diameter is usually smaller than the current aperture diameter [9].

CW performance is limited by thermal rollover, which is caused by a higher than
anticipated voltage. A high voltage is believed to be caused by incomplete activation of the
TJ interface in the BTJ [5,32], which is a problem exacerbated by the thick n-GaN regrowth
immediately following the BTJ etch. Additionally, the Mg doping within the p++-GaN of
the BTJ is approximately [Mg] = 3 × 1020 cm−3 as measured using secondary ion mass
spectrometry (SIMS), potentially leading to passivating Mg-H complexes at or near the TJ
interface [33].

Figure 4a,b show the topside NFP images taken of the device below and above Jth.
Above the threshold, a bright spot appears above the BTJ at the center of the lens that is
approximately 2 µm wide. The spot diameter for a fundamental Gaussian beam at the
concave mirror is calculated using the following equation [34]:

2ωconcave = 2

√√√√√ λ

nπ

√√√√ L2
e f f R2

Le f f R− L2
e f f

(4)
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Figure 4. (a,b) Optical microscopic images of a 9 µm diameter aperture VCSEL below and above
Jth (pulsed), respectively. (c,d) Captured images of the bottomside FFP of the same VCSEL below
and above Jth, respectively. (e) Cross-sectional profile of the bottomside FFP above Jth taken along
the c-direction.

For this design, the beam diameter was calculated to be 2.15 µm, which is in agreement
with the observed experimental value.

Figure 4c,d show the fluorescent paper when illuminated through the bottomside of the
VCSEL below Jth and above Jth at a bias of 10 mA. The rough SSP GaN substrate contributes
to the significant scattering of the mode. However, a rough central lateral mode shape
appears above the threshold and grows with the injected current. Figure 4e shows a 2D line
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scan of the mode, with a full width at half maximum (FWHM) of approximately 2.9 mm.
The fluorescent paper was placed 16.5 mm away from the bottom of the 250 µm thick
GaN substrate, leading to an extracted divergence half-angle, θFWHM, of 8.4◦. This value is
comparable to the theoretical θFWHM ≈ 10◦ calculated using the following equation [27]:

θFWHM =
√

2ln2
λ

πω0
(5)

Taking the radius of the spot observed in the topside NFP in Figure 4b and applying it
to Equation (5) gives an expected topside θFWHM of 8.8◦, which is in reasonable agreement
with the bottomside value. The experimental top and bottom θFWHM values are in line
with recent curved mirror cavity demonstrations, which reported divergence half-angles of
8.5◦ and 3.9◦ [11,35], but higher than recent planar cavity demonstrations, which reported
divergence half-angles of 5.1◦ and 2.8◦ [3,36].

4. Conclusions

In summary, 60.5 λ cavity GaN-VCSELs utilizing a topside curved mirror, BTJ, and
NP DBR were successfully fabricated. The peak output power for a 9 µm aperture under
pulsed operation was 290 µW, with a Jth of 6.6 kA/cm2 and ηd of 0.7%. Under CW
operation, Jth increased to 7.3 kA/cm2, ηd decreased to 0.4%, and the peak output power at
rollover was 130 µW. The bottomside FFP images show that the divergence half-angle was
approximately 8.4◦.
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