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Abstract: During polarization holographic recording in azopolymer thin films, usually together
with the volume anisotropic grating, a surface relief grating (SRG) is also formed. By using two
consecutive exposures, it is possible to obtain a two-dimensional (2D) grating. To the best of our
knowledge, the polarization properties of such gratings have not been studied yet. To determine
the influence of the surface relief on the polarization selectivity of the 2D gratings, we propose two
methods to suppress the SRG formation: by varying the recording conditions or varying the sample
structure. In these experiments we have used the commercially available azopolymer PAZO, poly[1-
4-(3-carboxy-4-hydrophenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] to perform the
polarization holographic recording using a 442 nm He-Cd laser. As indicated by our results, when the
surface relief is present, it strongly dominates the response of the 2D grating and it behaves almost
as a scalar polarization insensitive grating. Conversely, when the SRG formation is suppressed, the
polarization properties of the 2D grating in all four diffracted orders are very well pronounced. In
this way, we demonstrate that we can easily control SRG formation and, if desired, obtain 2D grating
with high surface relief modulation, or alternatively record polarization-selective 2D gratings with
virtually no surface relief.

Keywords: polarization holography; 2D polarization gratings; surface relief gratings; AFM;
azopolymer PAZO

1. Introduction

One of the challenges in modern photonics is the creation of increasingly complex
optical elements combining different unique properties and performing multiple tasks. One
example is the polarization holographic gratings (PHG) recorded in azobenzene-containing
materials. A detailed overview of the properties and applications of polarization gratings
and azopolymer materials can be found in [1–3]. An important property of azobenzenes is
their polarization sensitivity, discovered as early as 1984 [4]. Following a series of trans-
cis-trans isomerizations, the azobenzene chromophores reorient perpendicularly to the
polarization of the recording light. During polarization holographic recording, this leads
to the formation of significant spatially modulated photoinduced birefringence, which
can be used to create polarization-selective elements. Additionally, it was discovered in
1995 that it is possible to induce a surface relief grating (SRG) of considerable height in
azopolymers when recording polarization diffraction gratings [5,6]. In the following years,
considerable efforts were made to establish the mechanism of this process [7–11]. The
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process occurs at laser powers insufficient for ablation and it is believed to be based again
on trans-cis-trans isomerization, which, in combination with a force gradient formed in the
layer, redistributes the azo molecules, forming topographic structures with a sinusoidal
profile. Thus, the polarization sensitivity of the material is the basis of the mass movement
in azobenzene. The formed relief has a scalar nature. This is because, in a relief structure,
we have a grating caused by the difference in refractive indices of the azopolymer film and
air, which is much higher than the photoinduced birefringence in the azobenzene.

Various applications of the SRGs formed in azo materials have been suggested [12–16].
Using computer-generated holograms, Oscurato et al. have obtained complex surface
relief structures with possible applications in the fields of surface engineering, biology,
and photonics [12]. Another example we find in [13], where the effect of metal nanostruc-
tures on azopolymer after irradiation with polarized light was investigated using atomic
force microscopy (AFM). Thus, SRGs are used as a non-invasive, easy-to-use microscopic
method to characterize metallic nanostructures. Surface relief gratings with high diffraction
efficiency have also been studied in azopolymer-based nanocomposite media with different
types of nanoparticles [14–16].

Additionally, more complex, two-dimensional surface relief structures realized in azo
materials have also been reported [17–22]. Yi et al. [17] show how controlling the relief
height in the created two-dimensional structures can affect the formation of 3D patterns
of colloids on the symmetrically and asymmetrically patterned 2D SRG substrates. The
gratings were fabricated on azopolymer films by exposure to an interference pattern of
Ar+ laser beams. The spacing of the gratings was one and the same in both directions;
however, the asymmetric 2D grating had a larger modulation depth in the vertical direction.
In [18], Stiller et al. analyzed how the relief in 1D and 2D structures changes the elastic
and mechanical properties of the used azopolymer (pDR1M). Additionally, using the
tip of a scanning near-field optical microscope (SNOM), structures with a size of about
100 nm were inscribed onto the polymer surface. In [19], it is demonstrated how the relief
formed on the azopolymer poly(Disperse orange 3) thin films can be used to easily fabricate
various TiO2 nanostructures for applications in photonics and electronics. Varying the
angle of rotation of the substrate between the exposures from 90◦ to 60◦, both square and
hexagonal 2D SRG patterns were obtained. Huang et al. studied 2D structures created
with two-step holographic recording and the dependence of surface modulation of the 2D
SRG on the rotational angle between the 1D gratings for different azobenzene media [20].
Using nematic liquid crystal as an interface, it was demonstrated that the depth of the SRG
groove could be enhanced about 2–3 times. The main material investigated in [21] is the
azopolymer PAZO, showing the possibility to fabricate 1D and 2D SRG with an ultraviolet
laser at 355 nm. Due to the short wavelength of the recording laser, gratings with a period
on the order of 200 nm were obtained. The ability to reversibly generate relief structures is
the main topic of research in [22]. Linearly polarized light or heat were successfully used
as the stimuli for the reversible reshaping of periodic structures, imprinted in a blend of
low-molecular azo glass and polystyrene.

It is very important to note, however, that the surface relief gratings (1D or 2D) in
azopolymer materials coexist with an underlying volume polarization grating. In fact,
for some applications, the properties of the polarization grating are more important, and
the SRG has an adverse effect, deteriorating the polarization characteristics of the optical
element. Examples of such applications are optical switches [23], a circular polarization
beam splitter [24], bifocal polarization lenses [25], and a reconfigurable fiber Bragg filter [26],
all based on azo-containing materials. In these cases, it is essential to find an efficient
method to suppress the formation of the surface relief grating or to evaluate its influence
on the polarization properties of the obtained holographic optical element. To the best of
our knowledge however, no detailed analysis of the polarization properties of 2D gratings
in the presence or absence of SRG has yet been reported.

Thus, the main goal of the present work is to investigate the polarization proper-
ties of two-dimensional polarization holographic gratings, comparing the case when an
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SRG with significant height is present and the case when SRG formation is prevented.
The experiments were performed using the well-known commercially available azopoly-
mer PAZO, poly[1-4-(3-carboxy-4-hydrophenylazo) benzene sulfonamido]-1,2-ethanediyl,
sodium salt] [27–29]. Two methods of SRG suppression were employed: recording from
the back (or substrate) side of the sample, for which the azopolymer layer acts as a filter re-
ducing the intensity of light before it reaches its free surface, and enclosing the azopolymer
film between two glasses when no free surface is present.

2. Materials and Methods
2.1. Samples Preparation

Thin film samples for polarization holographic recording were prepared from the
commercially available azopolymer PAZO—poly[1-4-(3-carboxy-4-hydrophenylazo)
benzensulfonamido]-1,2-ethanediyl, sodium salt] (Sigma-Aldrich, St. Louis, Missouri,
United States, #346411). The absorbance spectrum of PAZO is measured earlier [30] and is
presented in Figure 1. Its chemical structure is shown in the inset.
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Figure 1. UV−Vis spectrum of the absorption coefficient of the azopolymer PAZO (adapted from 
[30]). The inset shows the chemical structure of PAZO. 

The samples were deposited via spin-coating of PAZO/methanol solution with 100 
mg/mL concentration on high-quality optical glass substrates (BK7) at 1000 rpm. The sub-
strates are rectangular in shape and their dimensions are 24 × 36 mm. The thickness of the 
azopolymer layer is approximately 1800 nm, as measured by F20 Optical Thin-Film Ana-
lyzer (Filmetrics). The film thickness variation across the samples’ surface is about 1%, or 
around 20 nm. 

Additionally, we have prepared samples with a double-layer or “sandwich” struc-
ture, as shown in Figure 2c. They consist of two thin film samples bonded together with 
the optically transparent glue ethyl 2-cyanoacrylate (CAS No. 7085-85-0). 

Figure 1. UV−Vis spectrum of the absorption coefficient of the azopolymer PAZO (adapted from [30]).
The inset shows the chemical structure of PAZO.

The samples were deposited via spin-coating of PAZO/methanol solution with
100 mg/mL concentration on high-quality optical glass substrates (BK7) at 1000 rpm. The
substrates are rectangular in shape and their dimensions are 24 × 36 mm. The thickness
of the azopolymer layer is approximately 1800 nm, as measured by F20 Optical Thin-Film
Analyzer (Filmetrics). The film thickness variation across the samples’ surface is about 1%,
or around 20 nm.

Additionally, we have prepared samples with a double-layer or “sandwich” structure,
as shown in Figure 2c. They consist of two thin film samples bonded together with the
optically transparent glue ethyl 2-cyanoacrylate (CAS No. 7085-85-0).
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Figure 2. (a) Case 1—single-layer sample, recording from the azopolymer film side; (b) Case 2—
single-layer sample, recording from the substrate side; (c) Case 3—double-layer “sandwich” sample.

The azopolymer films are from the inside of this sample, and the glass substrates are
from the outside. In this case, two important advantages are achieved: (i) the glass slides
protect the sample from mechanical damage or scratches; and (ii) there is no free surface of
the azopolymer film, so the formation of surface relief grating can be effectively suppressed.

2.2. Polarization Holographic Setup

The polarization holographic recording of diffraction gratings requires the interfer-
ence of two coherent light beams with wavelengths within the absorbance band of the
azopolymer. In our experimental setup, illustrated in Figure 3, the coherent light source
is He-Cd gas laser (IK4171I G, Kimmon Koha, Tokyo, Japan) with λ = 442 nm. Using
half-wave plate (HWP) and polarizing beam splitter (PBS), the laser light is split into
two beams with equal intensities and by means of two quarter-wave plates (QWP), their
polarizations are set to left and right circular (LCP and RCP). The resulting interference
field has constant intensity, and its polarization is linear with periodically varying azimuth.
These polarizations of the recording beams were selected, as it is known that, in this case,
polarization holographic gratings with highest diffraction efficiency and highest surface
relief modulation are obtained in azopolymers [2].
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After use of the beam expander (BE), the diameter of the recording beams was 7 mm.
The total light intensity on the sample was approximately 160 mW/cm2, and the recording
angle (the angle between the two recording beams, as shown in Figure 3) was 2θ = 20◦,
which corresponds to grating period of about 1.3 µm. The angle, θ, is defined as the angle
between each of the recording beams and the line perpendicular to the surface of the
sample. The diffraction efficiency (DE) is measured in real time during the inscription of
the polarization holographic gratings, simultaneously in both +1 and –1, diffracted order,
by two computer-operated power meters (PM100D, Thorlabs). The probe laser beam used
to determine the DE is with left circular polarization and wavelength of 635 nm from a
DPSS laser (B&W Tek Inc., Newark, Delaware, United States).

We employ three modes of recording, denoted as case 1, case 2, and case 3, as illustrated
in Figure 2. In case 1, the recording is performed with the azopolymer layer facing the
recording beams (Figure 2a). In this case, the intensity on the free surface of the film is
maximal and this results in formation of surface relief grating. In case 2, the sample is
turned back, so the substrate side is facing the recording beams (Figure 2b). The light first
encounters the substrate/film interface where, due to the adhesion of the azopolymer layer
to the substrate, SRG cannot form. Then, during its propagation through the azopolymer
film, the intensity of light is significantly reduced due to the absorption (about 100 times
for the given wavelength and sample thickness), and when it reaches the free surface of
the layer, it is not sufficient to induce SRG. Finally, in case 3 (Figure 2c), there is no free
azopolymer/air surface where the SRG can form.

The inscription of the 2D polarization holographic gratings is performed in two
steps. First, a 1D grating is recorded until reaching saturation of the diffraction efficiency.
Afterward, the sample is rotated at 90◦ counterclockwise, as shown in Figure 4a, and
the recording of the second superimposed grating starts. The indices for the diffracted
orders of the first grating are denoted as ±1, 0, while for the second grating, they are 0, ±1
(Figure 4b).
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Figure 4. (a) Rotation of the sample between the two exposures to obtain the 2D PHG; (b) Illustration
of the notations of the diffracted orders of the 2D gratings.

The inscription of the second grating reduces the diffraction efficiency of the first, so
our aim is to terminate the second recording when the diffraction efficiencies of the two grat-
ings are approximately equal. This task is even more complex because we have to take into
account that the surface relief grating is more stable than the volume polarization grating.

2.3. Characterization of the Recorded 2D Gratings

To determine the polarization state and the diffraction efficiencies of the four diffracted
orders of the 2D polarization holographic gratings, we used probe beam from a DPSS
laser at 635 nm with polarization state, controlled via polarizer and quarter-wave plate
(Figure 4b). The polarization incident on the sample was consecutively set to left circular
(LCP), right circular (RCP), and linear, with azimuth varying from 0◦ to 180◦. The polariza-
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tion state of the ±1, 0 and 0, ±1 diffracted orders were measured by a polarimeter (Thorlabs
PAX 5710).

In order to analyze the surface topography of the gratings, we employed an atomic
force microscope (Asylum Research MFP-3D, Oxford Instruments, Abingdon, UK) supplied
with standard silicon probes AC160TS-R3 operating at 300 kHz with spring constant
26 N/m. For optimal visualization of the SRG features, the dimensions of the measurement
area were set to 10 µm × 10 µm.

3. Results and Discussion

This section consists of three parts. In the first part, we present the kinetics of the DE
for the ±1 diffracted orders obtained during the inscription of the first and the second 1D
grating. Next, we present the measured ellipticities and DE for all four diffracted orders of
the 2D PHGs for probe light with LCP, RCP, and linear polarizations. In the last case, we
also vary the input azimuth from 0◦ to 180◦. Finally, in the third part, we use AFM analysis
to obtain the parameters of the relief structures for case 1 and case 2.

3.1. Diffraction Efficiency Kinetics

The diffraction efficiency kinetics for cases 1, 2, and 3 are shown in Figure 5. The main
graphs correspond to the inscription of the first 1D gratings, while the insets correspond
to the recording of the second 1D gratings. The polarization of the probe beam is set up
to LCP. In all figures diffraction efficiency kinetics of both the +1 order (DE+1) and the
−1 order (DE–1) are plotted.
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Figure 5. Kinetics of the DE for the first 1D grating in both +1 and −1 diffracted orders for case 1 (a), 
case 2 (b), and case 3 (c). The insets present the DE kinetics for the second grating recording. 

Figure 5. Kinetics of the DE for the first 1D grating in both +1 and −1 diffracted orders for case 1 (a),
case 2 (b), and case 3 (c). The insets present the DE kinetics for the second grating recording.
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Here, we analyze in detail the data presented in Figure 5. It is well known from the
theory of polarization holography [2], that when a polarization grating, recorded with left
and right circularly polarized beams, is illuminated with circularly polarized light, the
light will be directed only in the +1 order of diffraction. In case 1, however, we observe
significant diffraction also in the −1 order, both for the first and second grating. This
clearly indicates the formation of surface relief grating. Because of its scalar nature, the SRG
distributes light equally in +1 and −1 orders. On the other hand, the fast increase in DE+1
at the beginning of the recording and the fact that the value of DE+1 is higher than DE−1
prove that a volume polarization grating is also present. Still, the ratio of the maximal
diffraction efficiencies for the ±1 orders, DE–1max/DE+1max = 65%, indicates that the SRG
has a more significant contribution to the total DE in comparison with the polarization
grating. The noticeable fluctuations of the kinetic curve DE+1(t) are due not only to external
factors but also to the change in the polarizations of the recording beams caused by the
surface grating. This issue will be discussed in more detail in our forthcoming article.

In contrast, in case 2 and case 3, the ratio DE–1max/DE+1max is negligible (about or
even below 1%). Hence, we can conclude that in these two cases, the formation of the
surface relief grating was efficiently suppressed. The absence of SRG leads to a lower value
of the maximal DE compared to case 1, but at the same time significantly improves the
polarization properties of the PHG, as will be demonstrated in the next section.

We should also note that the recording time of the second grating is shorter than the
recording time of the first grating. The first grating is recorded until saturation of DE+1 is
reached, while the recording of the second grating is stopped when its DE is approximately
the same as that of the first one.

3.2. Polarization Properties of the 2D Gratings

After the inscription of the 2D polarization holographic gratings, their polarization
properties were evaluated using the method described in Section 2.3. Generally, we could
expect the behavior of each couple of diffracted orders of the 2D polarization holographic
grating (+1, 0 and −1, 0; 0, +1 and 0, −1) to be similar to that of the orders of the 1D grating.
The dependencies of the diffraction efficiency and ellipticity for all four diffracted orders
on the azimuth, ϕ, of a linearly polarized probe beam are presented in Figure 6.

If we consider the ellipticity vs. azimuth dependences, we can see that the presence
of the surface relief in case 1 significantly influences the polarization properties of the
2D grating. The average value of the ellipticity is approximately zero (or linear, as is the
polarization of the probe beam) due to the dominance of the SRG, with a modulation of
about 0.3. On the other hand, in case 2 and case 3 where the surface relief grating is absent,
we observe a very clear distinction between the ellipticity of the diffracted orders: two of
them are close to RCP, and the other two are close to LCP. These characteristics are typical
for polarization-selective grating.

The variation of the diffraction efficiency on the input azimuth in case 1 is most
pronounced for the 0, +1 order, and it is in the range 7–11.5%. The DE values in case 1 are
higher than in case 2 and case 3, and this can be ascribed to the presence of SRG, which
contributes to the DE. We should also note that in case 2 and case 3, there is no significant
modulation for three of the diffracted orders.

Table 1 summarizes the experimental data on the diffraction efficiency and the output
ellipticity (eout) of the four diffracted orders when the probe laser beam has left circular
polarization (ein = −1) or right circular polarization (ein = +1).
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Table 1. Experimental data for DE and eout for cases 1, 2, and 3 for LCP and RCP probe light
(ein = ±1).

Case I Case II Case III

ein Diffr. Order eout DE, % eout DE, % eout DE, %

−1 +1,0 −0.72 10.4 0.84 4.0 0.94 2.5

−1 −1,0 −0.77 5.5 - 0.2 0.68 0.5

−1 0, +1 −0.67 10.7 0.90 1.6 0.95 2.6

−1 0, −1 −0.62 6.8 - 0.02 - 0.2

+1 +1, 0 0.86 12.2 - 0.3 −0.94 0.1

+1 −1, 0 0.87 7.1 −0.83 2.7 −0.78 2.0

+1 0, +1 0.90 12.1 - 0.01 - 0.1

+1 0, −1 0.83 10.5 −0.97 1.2 −0.88 4.7

As seen from the data in Table 1, in case 1, the output ellipticity for all orders has
the same sign as the input ellipticity. This fact again confirms the presence of the scalar
surface relief grating. The total diffraction efficiency (the sum of the DE for all four orders),
however, is relatively high: for the RCP probe light, it is DEtotal = 41.9%.

In contrast, for case 2 and case 3, we observe the typical behavior of a polarization-
selective grating: the LCP probe light (ein = –1) is diffracted mainly in the +1, 0 and 0,
+1 orders, while the RCP probe light (ein = +1) is diffracted in the −1, 0 and 0, −1 orders.
At the same time, the ellipticity of the diffracted orders (eout) is with reverse sign compared
to the input ellipticity. The high polarization selectivity of the gratings in cases 2 and 3 is
also the reason for the missing values of the output ellipticity for some of the diffracted
orders: the light intensity is so low that it is not possible to obtain reliable data using the
polarimeter. We should also note that for case 2 and case 3, the ratio between the diffraction
efficiency in the +1 and −1 order (DE + 1/DE − 1) is higher for the second gratings than
for the first ones. A possible explanation is that the inscription of the second polarization
grating reduces the polarization selectivity of the first.

3.3. Atomic Force Microscopy Analysis

Using AFM, we have analyzed the surface topography of the 2D holographic gratings,
recorded in case 1 and case 2. In case 3, the azopolymer layer is covered from both sides
with glass slides and there is no free film surface to be studied by AFM. The results are
shown in Figure 7.
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Figure 7. (a) AFM image of the 2D grating in case 1, where a significant surface relief is present;
(b) AFM image of the 2D grating in case 2, where the SRG formation is suppressed. The scale of the
color bars is from −85 nm to +85 nm.
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In case 1 (Figure 7a), a periodic two-dimensional surface relief structure is clearly
observed with a period of 1.3 × 1.3 µm and a height of about 170 nm. This fully corresponds
to the already presented data about the diffraction efficiency and polarization properties
of this type of grating. Figure 7b is plotted on the same scale and depicts case 2. No
periodic modulation of the surface can be seen, and the maximal height is below 5 nm,
which corresponds to the typical surface roughness of a non-recorded azopolymer film.
This demonstrates that for case 2, SRG formation has been successfully prevented.

4. Conclusions

We have recorded two-dimensional polarization holographic gratings in thin azopoly-
mer films and studied their polarization properties and surface topography. Three different
modes of recording were employed. In case 1, the azopolymer film was facing the recording
beams. As a result, 2D surface relief grating was formed with a height of about 170 nm. The
total diffraction efficiency in this case reached 42%. However, the polarization selectivity of
the grating was low, as the scalar SRG had a more significant contribution than the volume
polarization grating. On the other hand, by recording from the substrate side of the sample
(case 2) or using a “sandwich” sample, covered with glass from both sides (case 3), we
successfully suppressed the formation of SRG and obtained gratings with high polarization
selectivity. Therefore, using the same optical setup and simply flipping the sample, we can
easily obtain 2D polarization holographic gratings either with significant surface relief or
with high polarization selectivity.
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