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Abstract: We theoretically and numerically investigate the temporal dynamics of a nanodimer system
consisting of a pair of graphene-wrapped dielectric nanospheres with tunable radii. Considering that
symmetry breaks on resonant frequencies, we derive the temporal kinetic equations in an asymmetric
form by utilizing the dispersion relation method in dipole limit. The bifurcation diagrams achieved
via the analysis on the linear instability and numerical solutions can quantitatively characterize the
complex coexistences of stationary and dynamical behaviors in this dimer system, and the asymmetry
apparently can increase the number of regimes with the periodic self-oscillation state or chaos.
Furthermore, we find that the indefinite switching not only can be triggered among the stationary
steady solutions, but it also universally exists among all the possible solutions in a coexistent regime.
The switching can be tuned by applying a hard excitation signal with different durations and
saturation values. Our results may provide new paths to realize a nonlinear nanophotonic device
with tunable dynamical responses or even multi-functionalities.

Keywords: nanodimer; temporal dynamics; asymmetry; dipole–dipole limit; graphene; nonlinearity

1. Introduction

Nowadays, it is well known that nonlinearity is widely involved in a variety of mi-
croelectronics devices, such as logic gates, frequency filter, data storage, signal generators,
and even more complicated Chua’s circuit [1,2]. In view of all-optical information pro-
cessing, the concept of lumped optical nanoelements has become a field of great concern
in the regime of on-chip photonic circuitry [3–11], so optical nonlinearity may similarly
be expected to provide various functionalities as an extension of metactronics paradigm,
whose operating frequency can range from GHz to infrared (IR) and visible regime. In
recent years, several pioneer works have focused on this topic. Based on plasmonic two-
wire transmission-line (TWTL) architecture, half-subtractor and demultiplexer have been
realized experimentally [12]. And the X-shaped plasmonic microstructures with cover
layer can provide low-power half- and full-adders features with small footprint [13]. By
utilizing two counter propagating frequency combs with temporally synchronized pulses,
the excitation of multiple electrically tunable plasmons in fiber can demonstrate the poten-
tial for integrated logic operations [14]. For nanoparticle systems, the terahertz radiation
generation based on modulation instability can be a pioneer work [15], and the mechanism
can lead to the periodic rotation and switching of the scattering pattern acting as a nanoan-
tenna [16]. By utilizing the magneto-optic material, tunable Fano switching sensitive to
light circular polarization has been proposed [17]. Recently, it was found that a nonlinear
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nanodimer made of a pair of resonant nanoparticles can operate as tristable and astable
multivibrators as well as random generators depending on the external stimulation [18,19].
Furthermore, the chains or arrays of nonlinear nanoparticles have also been extended to
the propagation of a wave-packet, leading to interesting nonlinear phenomena, such as
plasmon oscillons [20], solitons [21–23], Faraday waves [24] and chaos [25].

Notably, as a simple but universal model, the coupled dimer system has attracted
more and more attention due to the ability of operation on localized surface plasmon
resonances (LSPRs) [26,27]. Such a system has been potentially applied to enhance the
Raman spectroscopy, optical tweezers [28–30], optical switches [31] and bio-sensing [32]. As
symmetry plays an important role in our understanding of the physics in plasmonic dimers,
abundant and novel physical phenomena can be anticipated when the symmetry of a
dimer is broken, including directional photon-sorting [33], Fano resonances [34], indefinite
switching [35], temporal beats with long-lasting tail [36], neuronlike spiking dynamics [37]
and more [38,39]. Hence, the introduction of asymmetry may provide new degrees of
freedom for modulation on nonlinear temporal dynamics.

In this work, we propose a nanodimer system consisting of a pair of graphene-wrapped
dielectric nanosphere with Kerr-type nonlinearity, and consider the influence of asymmetry
on the optical response by varying the radius of one sphere. By utilizing the dispersion
relation method [15,17,19,20], we derive the temporal kinetic equations in an asymmetric
form. Further, according to the linear instability analysis and numerical calculation, we
present the bifurcation diagrams and characterize the complex dynamical behaviors by
means of quantitative mathematical tools of nonlinear dynamics theory [40,41]. Eventually,
we explore the interesting indefinite switching [35] among the temporal dynamical and
stationary steady solutions by introducing a hard excitation signal due to the coexistence of
these solutions.

2. Materials and Methods

As shown in Figure 1, the asymmetric nanodimer dynamical system includes two
nonlinear graphene-wrapped subwavelength nanospheres with radii r1,2, center-to-center
distance d and submerged in host medium, under the illumination of an external optical
field E0 with a frequency ω, close to the frequencies of the surface plasmon resonances of
nanospheres. The relative permittivities of two dielectric nanospheres and the host medium
are denoted as ε1,2 and εh respectively. Since the graphene can be treated as a monolayer,
we consider the graphene as a 2D material with conductivity σ = σL + σNL|Ec|2, where
σL and σNL are the linear and Kerr-nonlinear parts of the conductivity, respectively, and
|Ec|2 is the local field intensity of the interface between the individual nanosphere and the
host medium. Generally, in the terahertz range, the graphene can be well described in a
Drude-like form at room temperature, which leads to the simplified σL and σNL written as
follows [42,43]:

σL(ω) =
ie2EF

π}2(ω + iξ−1)
, σNL(ω) =

−i9e4v2
F

8πEF}2ω3 (1)

where e, }, ξ, EF and vF are electron charge, reduced Planck constant, electron–phonon
relaxation time, Fermi energy and Fermi velocity, respectively.
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Figure 1. Schematic diagram of the graphene-wrapped dielectric dimer with radii 𝑟 , . The dimen-
sionless external field 𝐸  for stimulation can be either a background field 𝐸  or a combination of 𝐸  and a hard excitation 𝐸 �̃� . The corresponding dimensionless forward scattering intensity 𝑈 �̃�  has also been presented here for the possible stationary or temporal outputs. 
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ing form by employing the point dipole approximation: 𝑝 , = 𝛼 , 𝜔 𝐸 + 𝐺𝑝 ,  (2)
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number, and 𝐺 describes the dipole–dipole coupling between the nanospheres, depend-
ing on the direction of the wave vector 𝑘. In this work, we consider 𝑘 as perpendicular 
to the dimer axis, which results in 𝐺 = 𝑒 𝑖𝑘𝑑 − 1 / 𝜀 𝑑  [16]. So this is a relatively 
strong coupling case compared with the one in the case of 𝑘 being parallel to the dimer 
axis, and may bring more complicated nonlinear behaviors. In the linear situation without 
coupling, one can expect the dipole resonant frequency of an individual nanosphere by 
setting the denominator of 𝛼 , 𝜔  to zero, and the result would be as follows: 

𝜔 , = 2𝑒 𝐸𝑟 , 𝜀 𝜋ℏ 𝜀 , + 2𝜀 − 𝜉 /
 (4)

which is only radius-dependent if we consider the parameters of graphene and the die-
lectric constant 𝜀 ,  of the cores to be the same. 

Following the spirit of the dispersion relation method [15,17,19,20], we further derive 
the dynamical system in the assumption of weak nonlinearity, dissipation and detuning, 
i.e., 𝜎 |𝐸 | ≪ 𝜎 , Im 𝜎 ≪ Re 𝜎  and 𝜔 − 𝜔 , /𝜔 , ≪ 1, respectively. One can de-
compose 𝛼 , 𝜔  in the vicinity of 𝜔 , , respectively, and keep the first-order terms in-
volving time derivatives [23,25,45], 

Figure 1. Schematic diagram of the graphene-wrapped dielectric dimer with radii r1,2. The dimen-
sionless external field Ẽ0 for stimulation can be either a background field Ẽb or a combination of Ẽb
and a hard excitation Ẽpulse

(
t̃
)
. The corresponding dimensionless forward scattering intensity Ũ

(
t̃
)

has also been presented here for the possible stationary or temporal outputs.

In the condition of r1,2/d ≤ 1/3, one can start the coupled expressions in the following
form by employing the point dipole approximation:

p1,2 = α1,2(ω)(E0 + Gp2,1) (2)

where E0 is the external field including the background field Eb and hard excitation
Epulse and α1,2(ω) are the electric polarizabilities of the individual graphene-wrapped
nanospheres and can be derived according to Ref. [44] in consideration of the
radiation effect:

α1,2(ω) = 4πε0εh

{
ε1,2 + 2εh + 2Θ1,2(ω)

r3
1,2[ε1,2 − εh + 2Θ1,2(ω)]

− i
2
3

k3

}−1

(3)

with Θ1,2(ω) = i
(

σL + σNL|Ec|2
)

/(ωr1,2ε0), ε0 is the vacuum permittivity, k is the wave
number, and G describes the dipole–dipole coupling between the nanospheres, depending

on the direction of the wave vector
⇀
k . In this work, we consider

⇀
k as perpendicular to

the dimer axis, which results in G = eikd(ikd− 1)/
(
εhd3) [16]. So this is a relatively strong

coupling case compared with the one in the case of
⇀
k being parallel to the dimer axis, and

may bring more complicated nonlinear behaviors. In the linear situation without coupling,
one can expect the dipole resonant frequency of an individual nanosphere by setting the
denominator of α1,2(ω) to zero, and the result would be as follows:

ω1,2 =

[
2e2EF

r1,2ε0π}2(ε1,2 + 2εh)
− ξ−2

]1/2

(4)

which is only radius-dependent if we consider the parameters of graphene and the dielectric
constant ε1,2 of the cores to be the same.

Following the spirit of the dispersion relation method [15,17,19,20], we further derive
the dynamical system in the assumption of weak nonlinearity, dissipation and detuning,
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i.e., σNL|Ec|2 � σL, Im(σL) � Re(σL) and (ω−ω1,2)/ω1,2 � 1, respectively. One can
decompose α−1

1,2 (ω) in the vicinity of ω1,2, respectively, and keep the first-order terms
involving time derivatives [23,25,45],

α−1
1,2 (ω) ≈ α−1

1,2 (ω1,2) +
dα−1

1,2 (ω)

dω

∣∣∣∣∣
ω=ω1,2

(
∆ω1,2 + i

d
dt

)
(5)

where ∆ω1,2 = ω−ω1,2 are the detuning variables.
By substituting Equation (5) into Equation (2) and applying dimensionless processing,

the nonlinear coupled dimensionless kinetic equations can be written as follows: W1 · i dP̃1
dt̃

+
(
iγ̃1 + W1Ω̃1 +

∣∣P̃1
∣∣2)P̃1 + G̃P̃2 = Ẽ0

W2
ω1
ω2
· ςi dP̃2

dt̂ +
(
iγ̃2 + W2Ω̃2 + ς2

∣∣P̃2
∣∣2)ςP̃2 + κG̃P̃1 = κẼ0

(6)

where W1,2 = ω2
1,2/

(
ω2

1,2 + ξ−2
)

, Ω̃1,2 = (ω−ω1,2)/ω1,2 and t̃ = ω1t indicate the dimen-
sionless constants, detuning parameters and time unit, respectively. The dipole orientation
of P̃1,2 is along the dimer axis. Furthermore, the other dimensionless parameters and
variables in Equation (6) can be expressed as,

P̃1,2 =
p1,2

[2(ε1 + 2εh)]
1/2εhr3

1

√
2iσNL(ω1)

ω1r1ε0
(7a)

Ẽ0 = −3εh

√
2iσNL(ω1)

ω1r1ε0
· E0

[2(ε1 + 2εh)]
3/2 (7b)

γ̃1,2 =
ξ−1

2ω1,2
+

εh(kr1,2)
3

ε1,2 + 2εh
, G̃ =

3εh
(ε1 + 2εh)

( r1

d

)3
(1− ikd)eikd (7c)

ς =

(
r1

r2

)3.5
√

ω1σNL(ω2)

ω2σNL(ω1)
, κ =

(
r1

r2

)0.5
√

ω1σNL(ω2)

ω2σNL(ω1)
(7d)

where P̃1,2 and Ẽ0 are the dimensionless slowly varying amplitudes of the particle dipole
moments and external electric field, respectively, γ̃1,2 denotes the thermal/radiation losses
of the nanosphere, G̃ is the dimensionless coupling coefficient, and ς and κ stand for the
scale factors resulting from the asymmetry.

The analysis on these kinetic equations can firstly begin with the stationary states by
considering dP̃1,2/dt̃ = 0 in Equation (6), i.e.,

(
iγ̃1 + W1Ω̃1 + |P̄1|2

)
P̄1 + G̃P̄2 = Ẽ0(

iγ̃2 + W2Ω̃2 + ς2|P̄2|2
)

ςP̄2 + κG̃P̄1 = κẼ0
(8)

where P̄1,2 indicate the stationary solutions, and Ẽ0 only includes the background part

Ẽb. Here, we mainly focus on the regime of W1,2Ω̃1,2 < −ReG̃−
√

3
∣∣∣γ̃1,2 − ImG̃

∣∣∣ for the
emergence of nontrivial solutions [21,46–48]. The further analysis on the linear stabilities
of these stationary states involves the corresponding Jacobian matrix of Equation (6) when
we separate the complex variables P̃1,2 into real and imaginary parts, which can be written
as follows:

J =
[
−W−1

1 A1 −W−1
1 O

−W−1
2 κς−1O −W−1

2 A2

]
(9)
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Here,

An =

[
2ζ2

nxnyn + γ̃n WnΩ̃n + ζ2
n
(
x2

n + 3y2
n
)

−
[
WnΩ̃n + ζ2

n
(
3x2

n + y2
n
)]

−2ζ2
nxnyn + γ̃n

]
(10)

O =

[
ImG̃ ReG̃
−ReG̃ ImG̃

]
(11)

where xn = ReP̃n, yn = ImP̃n, n = 1, 2, ζ1 = 1 and ζ2 = ς. By calculating the eigenvalues
of J at the stationary point

(
P1, P2

)
, one can confirm that the stationary solution is stable

only if the real parts of the eigenvalues are all negative. We further numerically develop
Equation (6) with fourth-order Runge–Kutta scheme, and the corresponding temporal
dynamical behaviors based on different parameters, initial conditions and external fields
can be investigated in detail.

3. Results and Discussion

As for the universality of Equation (6) in representing a broad class of nonlinear cou-
pled systems [18,19,39,49,50], we provide quantitative estimations of parameters without
loss of generality in the basis of practicality. Here, we consider the geometric parameters of
r1 = 100 nm, d = 300 nm and variable r2 which is the origin of asymmetric detuning in our
model. The parameters of graphene are set as ξ = 0.3 ps, EF = 0.9 eV and vF ≈ c/300, and
the dielectric cores are set as ε1 = ε2 = 2. It should be remarked that the dielectric constant
can correspond to BaF2 whose dispersion is negligible in a terahertz range Ref. [51]. The
host medium is set as εh = 1. According to Equation (4), we can obtain the resonant
frequency }ω1 ≈ 0.161 eV of an isolated particle with r1 = 100 nm. In order to simplify
our discussion, the working frequencies of an external field illuminated on the asymmetric
dimer are set with two discrete detuning values, i.e., Ω̃1 = (ω−ω1)/ω1 = −0.1 and−0.04.
Furthermore, the evolution of forward scattering intensity is mainly concerned in our phase
diagram for its macroscopic characteristics from the view of experimental accessibility. In
the dipolar limit consideration, the expression of the dimensionless forward scattering
intensity with P̃1,2

(
t̃
)

parallel to the dimer axis and kd� 1 can be given by the following:

Ũ
(
t̃
)
=
∣∣∣P̃1
(
t̃
)∣∣∣2 + ∣∣∣P̃2

(
t̃
)∣∣∣2 + 2

∣∣∣P̃1
(
t̃
)∣∣∣∣∣∣P̃2

(
t̃
)∣∣∣cos

[
φ
(
t̃
)]

(12)

where φ
(
t̃
)

indicates the internal phase difference between the two dipoles.
In the first place, we investigate the situation with the strong detuning, i.e., Ω̃1 = −0.1.

As shown in Figure 2a, for the symmetric case, the linear instability analysis based on the
Jacobian matrix J in Equation (9) indicates that there is a lack of steady stationary solution
in Regimes II and III for Ẽ0, roughly ranging from 0.0075 to 0.01073, and the bistability of
Ũ can only be detected in Regimes I and IV. For the asymmetric case shown in Figure 2b,
the steady stationary solutions can be extended to all the regimes because of the inequality
of detuning parameters, i.e., Ω̃1 6= Ω̃2. In the meantime, by comparing Figure 2a,b, we
can find that the bistable regimes are enlarged and accompanied with the emergence
of tristability.
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Figure 2. (a,b) Bifurcation diagrams based on Ũ with strong detuning Ω̃1 = −0.1, as well as
(a) r2 = 100 nm (Ω̃2 = −0.1), and (b) r2 = 95 nm (Ω̃2 = −0.1228); the control parameter is the
constant external electric field Ẽ0. The black lines indicate the stationary steady solutions and the gray
dots indicate the unstable temporal solutions. With the vertical blue dashed lines, the diagrams are
divided into several regimes, marked with Roman numerals. The color stars S1−3 and S4−6 represent
the stationary solutions of Ẽ0 = 0.0025 and Ẽ0 = 0.02, respectively. (c–f) The typical phase portraits
of temporal solutions extracted from Regimes V, III, IV and II shown in (b), which corresponds to
(c) periodic self-oscillation state, (d) period doubling phenomenon and (e,f) chaos with Ẽ0 = (c) 0.016,
(d) 0.01008, (e) 0.01084 and (f) 0.0094, respectively.

Next, we investigate the characteristics of the temporal solutions, which result from
the modulation instability. Here, we numerically calculate the temporal solutions of
Equation (6) based on the fourth-order Runge–Kutta scheme. Simultaneously, we trace
and denote the extrema of Ũ

(
t̃
)

using the Poincaré section method, and the results are
presented as scatter gray points in Figure 2a,b. For the symmetric case, by decreasing
Ẽ0, the lower branch of the bistable state undergoes an Andronov–Hopf bifurcation and
generates a limit cycle or periodic self-oscillation state, which is depicted by two typical
gray branches landing between Regimes III and IV (Ẽ0 = 0.01535), shown in Figure 2a. The
further decrease in Ẽ0 in Figure 2a leads to an obvious period doubling on the self-oscillation
depicted by the increase in the number of gray branches in Regime III, and the dimer system
finally settles to a chaotic behavior which can manifest itself as non-periodic extrema of
the temporal evolution in Regime II. However, the general scenario of temporal solutions
based on asymmetric dimer can be more complicated. In Figure 2b, we can distinguish
two Andronov–Hopf bifurcations with the decrease in Ẽ0; one begins at the boundary
between Regimes V and VI (Ẽ0 = 0.01912), the other one begins in Regime V (Ẽ0 = 0.01476).
Eventually, they both undergo period doubling bifurcation and reach the chaotic states
shown in Regimes II and IV, respectively. Moreover, based on this symmetry breaking, it is
found that one temporal solution can not only coexist with the steady stationary solutions,
but also with other type of temporal solutions. For instance, the chaotic state, periodic
self-oscillation state and two steady stationary solutions are coexistent in Regime IV, shown
in Figure 2b.

To reveal the different dynamical behaviors in concrete details, we present the typical
phase portraits extracted from the bifurcation diagram of the asymmetric case, which
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correspond to the periodic self-oscillation (Figure 2c), period doubling phenomenon
(Figure 2d), and chaotic behavior (Figure 2e,f), respectively. Here, we note that although the
phase portrait of Figure 2e is not a typical strange attractor in butterfly-shape, its intrinsic
dynamical behavior can be still chaotic. In order to describe these chaotic behaviors quanti-
tatively, by applying the standard method [41], we have computed the corresponding four
Lyapunov exponents Λi(i = 1, 2, 3, 4), shown in Figure 2e, rising from the variable space
(x1, y1, x2, y2), and their values can be read as follows: 0.010742, −0.000031, −0.014132, and
−0.024261, respectively. With these values, we can obtain the Kaplan–Yorke (KY) fractal
dimension DKY = 2.441493 using the method described in Ref. [52], which is an obvious
signature of the chaotic behavior when DKY > 2. The formula of DKY is as follows:

DKY = j +
1∣∣Λj+1
∣∣∑j

i=1 Λi (13)

where j is the largest integer satisfying ∑
j
i=1 Λi ≥ 0 and ∑

j+1
i=1 Λi ≤ 0, with

Λ1 > Λ2 > Λ3 > Λ4. Similarly, for the chaotic behavior shown in Figure 2f, we ex-
pectedly obtain DKY = 2.479822 > 2. In our following results and discussions, the chaotic
behaviors are all confirmed with this procedure.

When we consider the relatively small detuning parameter, i.e., Ω̃1 = −0.04, it can be
found that the temporal solution and the steady stationary state can be completely separated
in the bifurcation diagram in the symmetric case (Figure 3a), and the bistability of Ũ can
only be detected in Regime V, in Figure 3a. When Ω̃1 6= Ω̃2, similar with Figure 2b, the
asymmetry can induce the extension of the regimes of steady stationary solutions, as well
as the emergence of bistability with a low switch-threshold electric field and multistability
shown in Regimes I and V in Figure 3b, respectively.
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Figure 3. (a,b) Bifurcation diagrams based on Ũ with relatively small detuning Ω̃1 = −0.04, as well
as (a) r2 = 100 nm (Ω̃2 = −0.04), and (b) r2 = 90 nm (Ω̃2 = −0.0893); the control parameter is the
constant external electric field Ẽ0. The black lines indicate the stationary steady solutions and the gray
dots indicate the unstable temporal solutions. With the vertical blue dashed lines, the diagrams are
divided into several regimes, marked with Roman numerals. (c–f) The phase portraits of temporal
solutions extracted from Regimes III of (a), V, IV and II of (b), which correspond to (c,e,f) chaos and
(d) period doubling phenomenon with Ẽ0 = (c) 0.0036, (d) 0.0064, (e) 0.0062 and (f) 0.0051, respectively.
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The further illustration on the temporal solutions has followed the same trend in
Figure 2. Here, we notice that the chaotic regime is between the two regimes of periodic
self-oscillation for the symmetric case shown in Figure 3a. This means that the chaotic
behavior will not disappear abruptly, i.e., undergo other types of temporal solutions before
turning into the steady stationary solutions as the decrease in Ẽ0, which is quite different
from the phenomenon at the boundary between Regimes I and II of Figure 2a,b and
Figure 3b. When asymmetry is introduced in this dimer system, similarly, we can observe
that the number of Andronov–Hopf bifurcation is doubled: one is at Ẽ0 = 0.01282, the
other is at Ẽ0 = 0.00646. Also, as the decrease in Ẽ0, they both lead to the emergence of
the chaotic states shown in Regimes II and IV in Figure 3b, respectively, whose regime is
much narrower than the one in asymmetric case with strong detuning. Here, we also plot
the phase portraits extracted from the typical regimes. We can confirm that Regime III of
the symmetric case (Figure 3c), and Regimes II and IV of the asymmetric case (Figure 3e,f)
are all chaotic behaviors according to the calculation on DKY, while the phase portrait
in Figure 3d is the period doubling phenomenon. In addition, this symmetry breaking
with the inequality of detuning parameters can also result in the coexistence of temporal
solutions and steady stationary solutions under the same external electric field.

To further reveal the coexistence of temporal dynamic and stationary steady solutions,
as well as the switching among them, we introduce a hard excitation whose envelope is in
a form of quasi-square function, and its formula can be expressed as follows:

Ẽpulse
(
t̃
)
=

Ep

π

[
atan

t̃− t̃0

τ̃
− atan

t̃− t̃0 − ∆t̃
τ̃

]
(14)

where Ep, t̃0, ∆t̃ and τ̃ represent the saturation value, starting time, duration and edge
sharpness of the hard excitation pulse, respectively. Hence, the total external field during
our following calculation should be a combination of the background field Ẽb and the pulse
signal Ẽpulse, which results in the time-dependent Ẽ0, i.e., Ẽ0

(
t̃
)
= Ẽb + Ẽpulse

(
t̃
)
.

For the switching among the stationary steady solutions, we consider the cases of
tristability extracted from Regimes I and VI in Figure 2b, and the background fields Ẽb are
set as 0.0025 and 0.02, corresponding to the red and green star points shown in Figure 2b,
respectively. By initializing the numerical calculation with the lower state S1, we can find
the scenario of indefinite switching among the stationary steady solutions S1−3, depicted in
Figure 4a with Ẽb = 0.0025. The result means that although the total external field intensity
Ẽ0 is considerably larger than the corresponding upper thresholds of the tristability, the
dimer system can eventually either transit to one of the upper states S2,3 or remain in
the initial state S1, sensitively depending both on Ep and ∆t̃. In Figure 4b, for the case of
Ẽb = 0.02, a similar scenario is detected when the initial lower state is set as S4, but the
domain of final upper state S6 is quite dominant because of the much higher Ẽb. Examples
of such indefinite switching are shown in Figure 4c–f. By comparison, we can find that the
switching to upper states can be cancelled (as the blue lines shown in Figure 4d,f), even
though the corresponding duration ∆t̃ or saturation value Ep is not the smallest one.

Remarkably, the situation of switching among the temporal dynamic solutions and
stationary steady solutions can be more interesting and complicated because of their coex-
istence in the same regime. As shown in Figure 5, for the strong detuning and asymmetric
case with Ẽb = 0.013 (from Regime V in Figure 2b), when we initialize the dimer system
with a periodic self-oscillation solution (Figure 5a,b), it can switch into a stationary steady
state or another periodic self-oscillation solution with larger amplitude depending on the
duration ∆t̃ of the hard excitation despite the same Ep. In the meantime, the initialized sta-
tionary steady state can also switch into the periodic self-oscillation solutions with different
amplitudes, respectively, by applying the signals with the same ∆t̃ but different Ep. When
the system involves the chaotic solution with Ẽb = 0.011, (from Regime IV in Figure 2b), the
similar indefinite switching among the temporal dynamic solutions and stationary steady
solutions is also detected in Figure 6, which is sensitively determined by the profile of the
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hard excitation. In addition to the generation of self-oscillations or chaos from the same
stationary steady solution shown in Figures 6a and 6b, respectively, one should especially
notice the switching between self-oscillation and chaos shown in Figure 6c,d. Practically, it
provides an efficient route to exchange the radiation system from an oscillator to a random
generator and vice versa, which is unachievable for the symmetrical dimer because of the
lack of coexistence of temporal dynamic solutions [18,19,49,50].

In addition, we should mention that via an in-depth investigation of the differ-
ent coexistent regimes of this asymmetric dimer system, one can thoroughly establish
the mapping relationship between the profiles of external stimulation and scattering re-
sponse, which may provide potential applications based on the tunable and exchangeable
modulation instability.
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Figure 4. (a,b) The switching diagrams in terms of pulse saturation value Ep and duration ∆t̃ based
on background field (a) Ẽb = 0.0025 and (b) Ẽb = 0.02, respectively; the colors indicate different
final stationary states, respectively, with blue (S1,4), green (S2,5) and red (S3,6). The white star points
correspond to the parameters of the examples shown in (c,d) and (e,f). (c) The input signal Ẽ0(t) with
varied ∆t̃ and fixed Ep = 0.02. (d) The temporal evolutions correspond to the input signal of (c). The
gray dashed lines indicate the scattering intensities of S1−3. (e) The input signal Ẽ0(t) with varied Ep

and fixed ∆t̃ = 55. (f) The temporal evolutions correspond to the input signal of (e). The gray dashed
lines indicate the scattering intensities of S4−6.
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4. Conclusions

To summarize, we have proposed a nonlinear nanodimer system made of a pair of
graphene-wrapped dielectric nanospheres, whose resonant frequency is tunable by chang-
ing the radius of the nanosphere. The detailed analytical and numerical investigations
on the bifurcation diagram indicate that the dimer system can present different temporal
or stationary solutions, such as multistability, periodic self-oscillation, period doubling
phenomenon and chaos. These solutions can be spontaneously stimulated by applying the
external field only with the background part. We find that the introduction of asymmetry
into the dimer system can increase the number of regimes with temporal solutions, as well
as result in the emergence of regimes with multistability and the expansion of regimes
with stationary steady solutions. By calculating the Lyapunov exponent and fractal dimen-
sion [41,52], we can quantitatively identify the main characteristics of chaotic behaviors
from the temporal solutions in the bifurcation diagram. It is also presented that the phase
portraits of chaos can be quite different in topology, although they can always provide
DKY > 2. Furthermore, with a hard excitation in quasi-square form combined with the
background field, we demonstrate that the indefinite switching is a universal phenomenon.
This kind of switching can occur not only among the stationary steady solutions but also
among the stationary and temporal solutions because of the coexistence of these solutions.
We also find that the switching can be sensitively dependent on the saturation value and
the duration of the hard excitation. In terms of practical accessibility, the evolution of the
scattering intensity of the dimer system is mainly concerned, and the efficient exchange
among the self-oscillation and the chaos can provide possible applications as a nanoan-
tenna. We also hope that our findings on this temporal dynamical dimer system with
nonlinearity can provide insight into the design of on-chip nanophotonic devices with
tunable functionalities, such as logical operator, astable multivibrator, random number
generator, and so on.
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