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Abstract: Driven by emerging technologies such as the Internet of Things, 4K/8K video applications,
virtual reality, and the metaverse, global internet protocol traffic has experienced an explosive growth
in recent years. The surge in traffic imposes higher requirements for the data rate, spectral efficiency,
cost, and power consumption of optical transceivers in short-reach optical networks, including
data-center interconnects, passive optical networks, and 5G front-haul networks. Recently, a number
of self-coherent detection (SCD) systems have been proposed and gained considerable attention due
to their spectral efficiency and low cost. Compared with coherent detection, the narrow-linewidth
and high-stable local oscillator can be saved at the receiver, significantly reducing the hardware
complexity and cost of optical modules. At the same time, machine learning (ML) algorithms have
demonstrated a remarkable performance in various types of optical communication applications,
including channel equalization, constellation optimization, and optical performance monitoring. ML
can also find its place in SCD systems in these scenarios. In this paper, we provide a comprehensive
review of the recent progress in SCD systems designed for high-speed optical short- to medium-reach
transmission links. We discuss the diverse applications and the future perspectives of ML for these
SCD systems.

Keywords: optical fiber communication; self-coherent detection; machine learning; short-reach
transmission

1. Introduction

With the advent of the 6G era, the Internet of Things, and the metaverse, there has
been an explosive growth in data traffic in recent years, which poses higher requirements
for current optical interconnects in terms of capacity and reliability. Coherent detection
transceivers were introduced in 2006, which have been widely utilized in optical communi-
cation systems spanning thousands of kilometers, such as transoceanic, transcontinental,
and metropolitan networks. In a coherent system, a local oscillator (LO) laser is employed
to linearly map the received optical field into the electrical domain. Linear mapping allows
for the obtainment of the amplitude, phase, and polarization information of the optical
signal and for compensation against a number of transmission impairments, including
fiber chromatic dispersion (CD), nonlinearity, random polarization rotation, and polar-
ization mode dispersion using advanced digital signal processing (DSP) techniques [1–9].
Consequently, coherent detection enables large-capacity and high-spectral-efficiency (SE)
long-haul optical communications.
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On the other hand, short-to-medium distance optical networks mainly encompass data-
center interconnects, passive optical networks, mobile front-haul, and industrial internet.
These networks typically involve a great number of optical connections, making cost
sensitivity a crucial factor for the deployed optical devices [10]. However, the utilization
of LO in coherent detection necessitates temperature control circuits at the receiver to
align with the frequency of the laser at the transmitter. This significantly increases the
manufacturing cost of optical devices and hinders the deployment of coherent transceivers
in cost-sensitive and large-scale short-to-medium distance optical links [11]. Furthermore,
since the LO and the transmitter laser are different, phase noise and frequency offset
estimation need to be performed in DSP, leading to the increased power consumption of
the DSP chips. In contrast, direct detection systems have a natural structural advantage
over coherent detection systems as they do not require a narrow-linewidth and high-stable
LO at the receiver. This eliminates the need for complicated temperature control circuits,
frequency offset estimation, and carrier phase recovery [11]. As a result, the manufacturing
cost of direct detection transceivers is lower, making them promising for short-to-medium
distance optical networks over the past decade.

The intensity modulation and direct detection (IMDD) scheme, as a classic direct
detection system, encodes information directly onto the optical intensity. At the receiver,
the optical intensity is converted into photocurrents through square-law detection using a
single photodetector (PD), achieving the mapping from the optical domain to the electrical
domain. While the IM-DD system is simple and practical, its transmission performance is
limited by power fading caused by fiber CD [12]. The frequency-selective fading limits its
applications for high data rates or long-distance transmission [12].

To address the issue of power fading, researchers have proposed to use vestigial
sideband (VSB) modulation systems. One approach is to utilize an optical filter to eliminate
one of the sidebands of the real-valued double-sideband (DSB) signal [13], reducing the
influence of the fiber CD. While VSB modulation enhances the system’s resistance to
CD, it also introduces nonlinear impairments due to the presence of an incompletely
suppressed sideband. As a result, single-sideband (SSB) modulation systems without
vestigial components have been developed as an alternative [14–17], which can be achieved
using IQ modulators or optical frequency shifters. To further improve the electrical SE
and transmission capacity beyond the SSB systems, single-polarization phase retrieval
(PR) receiver [18–21], carrier-assisted differential detection (CADD) receiver [10,22,23], and
asymmetric self-coherent detection (ASCD) receiver [24] have been proposed to achieve
linear detection of complex-valued DSB signals, effectively doubling the electrical SE with
respect to SSB and IM-DD systems. Additionally, polarization-division-multiplexing can
double the capacity and SE of single-polarization direct detection systems. However, the
random birefringence of the fiber leads to polarization rotation, resulting in polarization
fading [25–30] in direct detection systems with a co-propagating optical carrier. In order
to deal with this effect, Stokes-vector receiver (SVR) [25] and Jones-space field recovery
(JSFR) [30] schemes have been proposed. SVR performs polarization rotation in Stokes
space, allowing for up to three-dimensional real-valued modulation. The JSFR scheme,
however, first recovers the optical field and then performs polarization rotation in Jones
space, enabling four-dimensional modulation including the amplitude and phase of two
polarizations [30]. The above-mentioned schemes in which the optical carrier and the
signal are transmitted together, allowing for phase- or polarization-diversity, are commonly
known as self-coherent detection (SCD) systems. SCD systems recover the optical field
in the receiver DSP, allowing compensation for the CD similar to coherent detection. The
power fading effect induced by the traditional IMDD channel will no longer be a problem
in SCD systems.

Although SCD has numerous advantages, there are still several issues in SCD sys-
tems that need to be addressed, such as signal-to-signal beating interference (SSBI) and
optical field reconstruction. In the past decade, machine learning (ML) technology has
rapidly advanced, and its applications have spread across various fields, including image
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recognition [31], natural language processing [32], medical diagnosis [33], and optical
fiber communications [34–78]. ML techniques often achieve a higher accuracy or lower
complexity compared to traditional approaches in many scenarios. In optical fiber commu-
nications, ML has been extensively studied and has shown a promising performance in
optical performance monitoring [34,35], modulation format recognition [36,37], channel
equalization [38–72], and constellation shaping [73,74]. In this paper, we provide a compre-
hensive overview of the application of ML techniques in SCD communication systems, with
a particular focus on their applications in nonlinear impairment compensation, IQ imbal-
ance correction, PR, polarization demultiplexing, and optical signal processing. In Chapter
2, we provide a brief introduction to the principles and challenges of various self-coherent
systems. In Chapter 3, we provide extensive applications, as well as a detailed analysis of
the performance of ML techniques in SCD systems. Finally, in Chapter 4, we summarize
the findings and provide an outlook on the future development of ML technology in SCD
systems. All the abbreviations used in this paper are listed in Appendix A.

2. SCD Systems
2.1. VSB System

To mitigate the impact of CD-induced power fading impairment, a VSB system is
proposed, employing a simple receiver configuration as depicted in Figure 1a. This receiver
setup requires only a single PD and an analog-to-digital converter (ADC). The modulated
optical spectrum of the VSB signal is shown in Figure 1b. The most commonly-used method
in VSB systems is to employ an optical filter to remove unwanted spectral components in
the optical domain. By selectively filtering out specific frequency components, the spectral
shape of the VSB signal can be modified [13], allowing for effective suppression of the
vestigial sideband. In addition to optical filters, VSB modulation can also be achieved
through dual-drive Mach–Zehnder modulators (MZMs) and radio frequency delays. In
the VSB system, the dominant impairment originates from the unfiltered residual spectral
components, which can be expressed as in [21]:

E(t) = C + Ss(t) + Sr(t) (1)

|E(t)|2 = |C|2 + C∗(Ss(t) + Sr(t)) + C(Ss(t) + Sr(t))
∗ + |Ss(t) + Sr(t)|2 (2)

where C, Ss(t), and Sr(t) denote the co-propagating optical carrier, the desired SSB signal,
and the residual sideband signal, respectively. The superscript * denotes conjugate oper-
ation. After square-law detection as shown in Equation (2), the mirror image of residual
components can cause nonlinear distortion to the signal, which can be compensated for by
using nonlinear equalizers such as neural networks (NNs).
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(c) Optical spectrum of an SSB signal.

2.2. SSB System

To suppress the residual signal Sr(t) and nonlinear impairment, an SSB system is
proposed based on the Hilbert transformation and IQ electrical-to-optical modulator [14,15].
The Hilbert transformation enables us to remove the unwanted sideband, generating a
complex-valued electrical signal which drives the IQ modulator to convert into an optical
signal, as shown in Figure 1c. The receiver structure of the SSB system is the same as the
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VSB system. After optical-to-electronic conversion, the dominant distortion is called SSBI,
denoted by |Ss(t)|2. For the SSB system, the received signal can be expressed as in [21]:

|E(t)|2 = |C|2 + C∗Ss(t) + CSs(t)
∗ + |Ss(t)|2 (3)

Fortunately, for the SSB signal, the impact of SSBI can be mitigated by employing
phase recovery algorithms based on the minimum phase condition [79–81] or deep learning
techniques. These methods help in recovering the phase information lost in optical-to-
electronic conversion and enable the compensation of CD in the DSP, avoiding the impact
of power fading.

2.3. PR Receiver

Although the resistance to CD is improved in VSB and SSB systems, the electrical
SE of these systems is the same as the IM-DD system, defined as the achieved date rate
divided by the electrical bandwidth of the receiver. To increase the SE, a PR receiver [18–21]
is proposed to detect a complex-valued DSB signal, as shown in Figure 2a. The PR receiver
consists of two PDs and one dispersive element, as shown in Figure 2b. The two detected
photocurrents i1(t) and i2(t) are expressed as [82]

i1(t) = |C + Sd(t)|2, i2(t) = |(C + Sd(t))⊗ hD(t)|2, (4)

where Sd(t) and hD(t) are the DSB signal and the transfer function of the dispersive element.
Using a fully-connected convolutional NN (CNN), or other nonlinear equalization algo-
rithms, the optical field could be reconstructed in the receiver DSP [83,84]. Note that the PR
receivers also enable to recover the phase of optical SSB signal, which will be introduced in
Section 3.3.
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2.4. CADD

Another kind of receiver used to detect a complex-valued DSB signal is the CADD
receiver [10]. The receiver structure is shown in Figure 2c, consisting of one optical hybrid,
one PD, and two balanced photodetectors (BPDs), which is more complex than the PR
receiver. However, it can achieve a higher modulation bandwidth and electrical SE than
the PR receiver. In the receiver DSP, certain SSBI iterative cancellation algorithms and deep
NNs are also used for optical field reconstruction [10,85]. With the help of ML techniques,
the channel parameters such as the optical delay values and the carrier-to-signal power
ratio (CSPR) can be optimized accurately to achieve a better system performance than the
SSBI iterative cancellation algorithm.

2.5. SVR

The direct detection system has been pursuing polarization division multiplexing
because it can double its capacity and SE. However, for the optical field where the signal
and carrier are transmitted together, the optical signal suffers from polarization fading after
passing through a polarization beam splitter (PBS). Polarization fading can result in the
failure of optical field recovery on random X- or Y-polarization, making it hard to achieve
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polarization demultiplexing using multi-input multi-output (MIMO) equalization. Thus,
the famous SVR [25] was proposed to combat polarization fading in Stokes space. The
receiver structure is shown in Figure 3a, where three received Stokes vectors S1, S2, and
S3 are used to address the polarization rotation. The transmitted Stokes vectors could be
recovered using S1, S2, and S3 and a de-rotation matrix. Thus, the polarization diversity of
the DD system is successfully accomplished.
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2.6. JSFR

Although the polarization fading issue is solved, at most three modulation dimensions
are supported in the real-valued three-dimensional Stokes space. Great efforts are made to
exploit the fourth modulation dimension, but these fail to compensate for CD. More recently,
the JSFR scheme was proposed to realize polarization diversity for a direct detection system
with a co-propagating optical carrier, as shown in Figure 3b. It utilizes the optical coupler
to mix the two polarizations to eliminate the impact of the polarization fading effect.
The generalized receiver (GR) in this scheme can be implemented using one PD, PR
receiver, CADD, and ASCD, according to different modulation formats. Using JSFR, the
amplitudes and phases of both X- and Y-polarizations can be recovered, which provides
the potential of realizing high-SE and large-capacity optical interconnects for short-reach
optical networks. For these polarization-diverse SCD systems, ML can be used to handle the
coupling between the polarization modes, namely polarization tracking and polarization
mode demultiplexing [82,85].

3. ML Techniques in SCD System

In this section, we will introduce the applications of ML techniques in SCD systems in-
cluding nonlinearity compensation [86,87], IQ imbalance correction [88], PR in SSB [89–91],
optical field recovery in PR receiver [83,84] and CADD schemes [82,92], and polarization
tracking and demultiplexing in JSFR schemes [85]. In addition, the transfer learning [93–95]
technique has been employed to realize fast remodeling in SSB system, which could be
scalable to other DD systems. Finally, we briefly introduce the photonics neuromorphic
computing [96] used in SCD systems to extract the phase information and demodulate the
quadrature amplitude modulation (QAM) formats.

3.1. Nonlinear Compensation
3.1.1. Fiber Nonlinearity

In optical communication, the electrical field evolution of light in a single-mode fiber
can be described by the well-known nonlinear Schrödinger equation (NLSE) [1], which
takes the following form:

∂A
∂z

+
iβ2

2
∂2 A
∂t2 = −α

2
A + iγ|A|2 A, (5)

where z, α, β2, and γ are, respectively, the propagation distance, the loss coefficient, the
group-velocity dispersion (or second-order dispersion) coefficient, and the fiber nonlinear
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Kerr coefficient. The NLSE is a nonlinear partial differential equation that does not have
an analytical solution, and the nonlinear parameter γ describes the effects of self-phase
modulation and cross-phase modulation. In the case of SCD systems, the transmitted
optical field has a strong optical carrier, making it more susceptible to fiber nonlinear
impairments. It is widely known that NNs have powerful nonlinear fitting capabilities.
Therefore, researchers have proposed the use of NNs to compensate for fiber nonlinearity,
including various types of NNs such as artificial neural networks (ANNs) [86], long
short-term memory networks (LSTMs) [87], and others, showing a better performance
compared to traditional digital back-propagation and perturbation algorithms. LSTMs
are a specific type of recurrent NN (RNN) model designed to mitigate the vanishing
gradient problem commonly encountered in traditional RNNs. LSTMs have proven to
be effective tools for mitigating transmission impairments, including both linear and
nonlinear distortions, making them valuable for various applications in signal processing
and communication systems. In [87], a linear network-assisted LSTM is proposed to
mitigate the fiber nonlinearity in the wavelength-division-multiplexing (WDM) SSB system.
Figure 4 depicts the architecture of a linear network-assisted LSTM.
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The output ŷ can be expressed as [87]:

ŷ = WLX + WNLBi− LSTM(XNL) + bNL, (6)

where X, XNL, WL, WNL, Bi-LSTM, and bNL are, respectively, the linear input vector,
nonlinear vector, the weight matrix for the fully-connected layer of the linear module, the
weight matrix for the nonlinear module, the one-layer Bi-LSTM network operations, and
the bias vector of the nonlinear modules. Compared to conventional Bi-LSTM, the linear
network-assisted LSTM achieves a significant improvement in terms of the Q-factor while
also significantly reducing computation complexity.

3.1.2. Device Nonlinearity

Apart from the fiber nonlinearity, another nonlinear impairment comes from the
electro-optic modulation. When the dual-drive MZM or IQ modulator is used for complex-
valued QAM formats, the modulation nonlinearity will be enhanced with an increase in
the peak-to-peak voltage. Figure 5a shows the bias point of the MZM and the modulation
nonlinearity induced by the function of sin(·). Additionally, other device nonlinearity such
as the responsibility curve of PD also deteriorates the system performance. In scenarios
involving multiple nonlinear impairments, traditional methods face challenges in accurately
estimating the channel parameters and compensating for the mixed nonlinear effects.
However, ML demonstrates its excellent capability for parameter optimization in such
complex channels. In [86], a sparsely connected ANN is proposed to address the fiber
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nonlinearity and modulation nonlinearity. The principle of ANN pruning is shown in
Figure 5b. A weight threshold is set, and connections with weights below this threshold
are pruned, thereby reducing the complexity of the NN. The pruned sparsely connected
ANN is shown in Figure 5c. By implementing this method, the number of connections in
the ANN is reduced by an order of magnitude, while maintaining the bit-error-rate (BER)
performance without significant degradation.

Photonics 2023, 10, x FOR PEER REVIEW 7 of 18 
 

 

involving multiple nonlinear impairments, traditional methods face challenges in accu-

rately estimating the channel parameters and compensating for the mixed nonlinear ef-

fects. However, ML demonstrates its excellent capability for parameter optimization in 

such complex channels. In [86], a sparsely connected ANN is proposed to address the fiber 

nonlinearity and modulation nonlinearity. The principle of ANN pruning is shown in Fig-

ure 5b. A weight threshold is set, and connections with weights below this threshold are 

pruned, thereby reducing the complexity of the NN. The pruned sparsely connected ANN 

is shown in Figure 5c. By implementing this method, the number of connections in the 

ANN is reduced by an order of magnitude, while maintaining the bit-error-rate (BER) 

performance without significant degradation. 

(a)

1

 1

bias  point

 Vpi/2 Vpi
 Vpi Vpi/2

(b)

peak-to-peak 

voltage

Fully-connected

ANN

Set weight threshold 

Pruning and 

retraining

Sparsely connected 

ANN

Input 

layer

hidden 

layers

output 

layer

(c)

bias 

voltage (V)

power (dBm)

 

Figure 5. (a) Transfer function of MZM. (b) Principle for ANN pruning. (c) Sparsely connected ANN. 

3.1.3. SSBI Cancellation 

Unlike coherent detection, the direct detection system does not utilize LO and BPD 

to cancel the common-mode component inside the photocurrent, known as SSBI. There-

fore, for direct detection systems, SSBI generated by the PD becomes the primary impair-

ment limiting the system’s transmission capacity. As observed from the fourth term in 

Equation (3), SSBI takes the form of a quadratic term of the original signal. The spectra of 

the signal and its SSBI are depicted in Figure 6a, illustrating that the bandwidth of SSBI is 

twice that of the original signal in the electrical domain. Consequently, SSBI distorts the 

signal, degrading system performance. Certain methods have been proposed to handle 

SSBI in direct detection systems such as the Volterra nonlinear equalization and SSBI iter-

ative mitigation methods. Additionally, ML methods such as NNs can also play a signifi-

cant role in SSBI cancellation. Compared to traditional algorithms, an NN-based equalizer 

offers tremendous improvements in SSBI elimination, improving the performance of the 

transmission system. In [81], a soft-combined ANN was proposed and its structure is 

shown in Figure 6b. The output of the soft-combined ANN is an average of the outputs of 

all of the ANNs. The results reveal that the soft-combined ANN exhibits a superior per-

formance compared to a single ANN in compensating for both linear and nonlinear SSBI 

impairments in the signal. Remarkably, this improved performance is achieved while 

maintaining the same symbol length of the required training sequence. 

 signal SSBI

(a) (b)

T T T T

ANN1 ANNi ANNn

 ×1/n

ˆ
NL

y

E(f) (dBm)

f (GHz)

 

Figure 6. (a) Electrical spectra of a typical direct detection signal and its SSBI. (b) Structure of a soft-

combined ANN. 

Figure 5. (a) Transfer function of MZM. (b) Principle for ANN pruning. (c) Sparsely connected ANN.

3.1.3. SSBI Cancellation

Unlike coherent detection, the direct detection system does not utilize LO and BPD to
cancel the common-mode component inside the photocurrent, known as SSBI. Therefore,
for direct detection systems, SSBI generated by the PD becomes the primary impairment
limiting the system’s transmission capacity. As observed from the fourth term in Equation (3),
SSBI takes the form of a quadratic term of the original signal. The spectra of the signal
and its SSBI are depicted in Figure 6a, illustrating that the bandwidth of SSBI is twice
that of the original signal in the electrical domain. Consequently, SSBI distorts the signal,
degrading system performance. Certain methods have been proposed to handle SSBI in
direct detection systems such as the Volterra nonlinear equalization and SSBI iterative
mitigation methods. Additionally, ML methods such as NNs can also play a significant
role in SSBI cancellation. Compared to traditional algorithms, an NN-based equalizer
offers tremendous improvements in SSBI elimination, improving the performance of the
transmission system. In [81], a soft-combined ANN was proposed and its structure is
shown in Figure 6b. The output of the soft-combined ANN is an average of the outputs
of all of the ANNs. The results reveal that the soft-combined ANN exhibits a superior
performance compared to a single ANN in compensating for both linear and nonlinear
SSBI impairments in the signal. Remarkably, this improved performance is achieved while
maintaining the same symbol length of the required training sequence.
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3.2. IQ Imbalance Correction

For complex QAM modulation, IQ imbalance and crosstalk can lead to an incorrect
signal decision resulting in a degraded BER performance. Therefore, in classical DSP steps,
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IQ orthogonalization algorithms are commonly used for compensation. In optical commu-
nication systems where both nonlinear impairments and IQ imbalance exist, the traditional
DSP algorithms used for compensation can be replaced by a MIMO-ANN. The joint com-
pensation approach, which addresses both types of impairments simultaneously, generally
yields superior results compared to using separate compensation for each impairment
individually. In [88], a MIMO-ANN is proposed to compensate for the fiber nonlinearity,
SSBI, and IQ imbalance simultaneously. Figure 7 displays its structure, consisting of two
ANNs. The in-phase and quadrature components, XI and XQ, and their delay copies are fed
into these two ANNs. YI and YQ are the outputs of the MIMO-ANN. In order to minimize
the cost function, the back-propagation algorithm is employed to update the weights and
biases of layers. After the training processes, the optimized ANNs are used to equalize
the received data. The experimental results confirm the outstanding performance of the
MIMO-ANN scheme in mitigating interference between two orthogonal signals.
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3.3. PR and Optical Field Recovery

In a DD system, the phase information of the optical signal is lost during envelope de-
tection by the PD while the intensity information is retained in the photocurrent. To recover
the phase information, the Kramers–Kronig (KK) receiver algorithm was proposed for DD
in 2016 [79], which relies on the minimum phase condition. If the SSB signal satisfies the
minimum phase condition, the phase can be extracted from the intensity information using
a Hilbert transformation. To successfully apply the KK receiver algorithm, a high CSPR is
required. However, achieving a high CSPR comes with certain challenges. It introduces
an additional sensitivity penalty and increases the impact of nonlinear fiber propagation
effects. These factors need to be carefully considered when implementing the KK receiver
algorithm in DD systems. To alleviate the CSPR requirement, a supervised learning CNN
model was proposed in [89,90] to emulate the KK algorithm for the PR task. The architecture
of the NN model is illustrated in Figure 8a. The input of the NN is the received photocurrent,
namely |E(t)|2 in Equation (2). The down-sampling blocks, labeled as Di (i = 1, 2, 3), consist
of a convolutional layer followed by the Rectified Linear Unit (ReLU) activation function. The
up-sampling blocks, labeled as Ui (i = 1, 2, 3), incorporate a combination of convolutional
layers, transposed convolutional layers, and ReLU activation functions. In this NN model,
the target outputs are selected as the in-phase and quadrature components, rather than the
amplitude and phase. Through simulations, it has been demonstrated that the ML-based
PR scheme accurately reconstructs the phase of a modulation phase signal even at weak
carrier power levels. This ML-based approach relaxes the CSPR requirement and improves
the receiver sensitivity compared to the original KK algorithm. Overall, the proposed
NN model provides a promising solution for PR, leveraging the power of deep learning
techniques to enhance the performance of SCD systems.
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architecture for phase retrieval receiver.

In addition to constructing SSB signals that do not satisfy the minimum phase condi-
tion, PR receivers and their corresponding algorithms can be utilized to restore the phase
of the optical field. It can be applied to phase recovery of SSB signals or complex-valued
DSB signals. Gerchberg–Saxton algorithm is most commonly employed for PR [18–21],
but it requires multiple iterations to converge. For SSB signals, the received two optical
photocurrents (i1(t) and i2(t)) can be fed as inputs to an NN [91], as shown in Figure 8b. This
NN consists of eight convolutional blocks aimed at down-sampling and up-sampling. The
outputs of the NN are the real and imaginary parts of the optical field. By implementing this
NN to achieve PR, the required dispersion value of the dispersive element is significantly
decreased and the computational complexity is also reduced by 30%. Most importantly,
the SSB signal no longer requires a strong optical carrier to satisfy the minimum phase
condition. With the same Erbium-doped fiber amplifier launch power, it is possible to
increase the number of WDM channels and reduce nonlinear fiber impairments, which
potentially provides a larger capacity.

On the other hand, the optical and electrical SE could be improved if the PR receiver is
utilized to detect the complex-valued DSB optical signal. The deep-learning-enabled direct
detection scheme [83,84] was proposed to recover the optical field at a low CSPR, which is
shown in Figure 9. Similarly, the inputs are two samples of photocurrents. The NN based
on deep residual learning blocks consists of two convolutional layers and several residual
modules. Its output is the desired phase information of the optical field. Residual learning
is a technique that introduces shortcut connections into the traditional CNN structure,
providing benefits in terms of training speed and network performance. The deep residual
network architecture is built around stacked residual blocks, with each block consisting of
two convolutional layers and a shortcut connection. The shortcut connections enable the
direct propagation of information from one layer to another, bypassing intermediate layers.
The integration of shortcut connections and stacked residual blocks improves the training
efficiency and enables the effective learning of deep CNN models. This architecture has
been proven highly effective in various computer vision tasks, enabling the construction
of deeper networks without the issues of vanishing or exploding gradients. In [83], the
residual learning technique is applied to accurately recover the transmitted signal in the
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presence of a large SSBI under the low CSPR condition. Compared with the conventional
SSBI cancellation scheme, the deep-learning-enabled DD receiver shows a significant
reduction of 8 dB in the optimum CSPR when detecting a complex-valued DSB signal.
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3.4. Polarization Demultiplexing

For polarization-multiplexed optical communication systems, random birefringence
in optical fibers can lead to random coupling between polarization modes. Therefore, at
the receiver end, DSP algorithms are required to accomplish polarization demultiplexing.
Additionally, the coupling of polarization states varies over time, necessitating algorithms
with the ability to track polarization changes. In the phase- and polarization-diverse JSFR
scheme, a MIMO-NN was proposed [81,85] to simultaneously achieve linear optical field re-
covery, polarization demultiplexing, and non-linear SSBI mitigation. The receiver structure,
along with the MIMO-NN, is depicted in Figure 10. The MIMO-NN consists of four layers
and takes the six digital waveforms as inputs. It first extracts the in-phase and quadrature
components of the dual-polarization optical field. Then, the MIMO-NN performs polar-
ization mode demultiplexing by utilizing the inverse matrix of the polarization rotation
unitary matrix. This integrated scheme enables the reconstruction of the optical field, the
demultiplexing of the polarization modes, and the mitigation of nonlinear SSBI effects.
By harnessing the capabilities of the MIMO-NN, the receiver achieves the detection of
four-dimensional modulated signals, encompassing the amplitudes and phases of both
polarizations. This advanced technique significantly enhances the SE of the DD system,
approaching the performance levels of coherent detection systems.
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Figure 10. Receiver of the JSFR scheme concatenated with a four-layer NN used for polarization
demultiplexing. PBS: polarization beam splitter; OC: 3 × 3 optical coupler; D: dispersive element;
PD: photodetector.

3.5. Fast Remodeling

Transfer learning (TL) refers to the process of leveraging knowledge and experience
gained from previous tasks to improve performance on new target tasks. In TL, the source
task and the target task may not be consistent, meaning that they may differ in terms of
data distribution, input/output spaces, or even objectives. In optical fiber communications,
to reduce the number of training symbols and epochs, TL has been introduced and proven
to enable fast remodeling [93,94], nonlinear equalization, and optical signal-to-noise ratio
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estimation [95]. In [93], a TL-assisted ANN was proposed for a multi-channel nonlinearity
mitigation scheme in an SSB system. In the case of multi-channel transmission where
multiple channels co-propagate in the same fiber, there exists a correlation of nonlinear
distortion. This means that the nonlinear effects introduced by one channel can impact the
other channels. Understanding and accounting for this correlation is crucial in designing
and optimizing multi-channel transmission systems. By considering the correlation of non-
linear distortion, more accurate modeling and compensation techniques can be developed
to mitigate the impact of nonlinearities and improve the overall system performance.

The principle of TL-ANN for multiple channels is shown in Figure 11. At the initial
stage, an ANN is trained using labeled training data that have been collected. Once the
initial training is complete, the prior distribution of parameters from the trained source
model is transferred to accelerate the remodeling process. This parameter transfer avoids
the need for re-initialization in the retraining method. By leveraging the learned knowledge
from the source model, the remodeling process can be accelerated and potentially achieve a
better performance. Subsequently, a few samples are used to train the parameters of the TL-
ANN so that it can converge and accurately compensate for the impairments in the current
channel. The experimental results show that the required training epochs can be reduced by
80% without BER performance degradation, saving considerable computational complexity.
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3.6. Optical Signal Processing

Photonic NNs, also known as optical NNs, are a class of NNs that utilize the principles
of photonics to perform signal processing in the optical domain. Instead of relying on
traditional electronic components, these networks employ optical elements for computation
and communication. One specific implementation of photonic NNs is photonic reservoir
computing (RC), which is an ML framework that utilizes a fixed, random dynamical
system called the reservoir to process data. In the case of a photonic RC, the reservoir
is implemented using photonic components and principles. In [96], a recurrent optical
spectrum slicing (ROSS) neuromorphic accelerator was proposed to realize an SCD receiver.
This network aimed to extract phase information and demodulate QAM formats while
simultaneously mitigating CD. The structure of the neuromorphic receiver based on ROSS
is illustrated in Figure 12.
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Figure 12. The neuromorphic receiver based on ROSS concatenated with a light RNN. SOA: semicon-
ductor optical amplifier; TIA: transimpedance amplifier; ADC: analog-to-digital converter. Three
recurrent nodes comprised from an MZDI in a loop equipped with a variable optical attenuator,
phase shifters, and optical delays.

At the receiver side, a semiconductor optical amplifier compensates for the transmis-
sion and insertion losses of the integrated chip. The structure includes three recurrent
nodes, each consisting of a Mach–Zehnder delay interferometer (MZDI) in a loop equipped
with variable optical attenuators, phase shifters, and optical delays. PDs follow these nodes
and are then connected to transimpedance amplifiers and ADCs. The subsequent DSP
includes a light-based RNN for each quadrature. This configuration enables the extrac-
tion of phase information, demodulation of QAM formats, and effective mitigation of CD
using the photonic components and principles employed in the ROSS structure. The pho-
tonic RC contributes to reducing the power consumption associated with high-bandwidth
PDs/ADCs and heavy digital equalization algorithms.

4. Conclusions

This paper introduced the challenges and advancements in SCD systems and reviewed
the application of ML techniques in addressing these challenges. The utilization of ML
algorithms has exhibited promising results in compensating for various impairments such
as fiber nonlinearity, IQ imbalance, SSBI, PR, polarization demultiplexing, and fast channel
remodeling. CNNs, LSTMs, sparsely connected ANNs, and MIMO-NNs have been suc-
cessfully employed to achieve accurate nonlinear impairment compensation and efficient
signal processing. Furthermore, transfer learning has been utilized to reduce training time
and improve modeling in multi-channel scenarios, while the residual learning method
combined with a CNN has been proven effective for optical field recovery. Additionally,
the emergence of photonic NNs, such as photonic reservoir computing, harnesses the
advantages of photonics for information processing in SCD systems. The integration of
ML techniques into SCD systems has resulted in significant enhancements in modulation
dimensions, SE, transmission performance, and capacity. Integrating machine learning
into direct detection systems may also raise costs due to specialized hardware needs for
efficient computation. The actual impact varies with the technology advancements and
performance benefits gained. However, further research is necessary to optimize ML mod-
els, explore novel network architectures, and address practical implementation challenges
to fully leverage the potential of ML in SCD systems. In the context of SCD systems,
machine-learning techniques are increasingly favored for tasks such as optical field recov-
ery or phase retrieval: tasks that traditional nonlinear equalization algorithms struggle
to achieve. Regarding challenges linked to applying ML in SCD systems, these involve
concerns about computational complexity and hardware requirements, especially for ASIC
chips. Consequently, it is essential to focus future endeavors on exploring and resolving
the intricacies of ML algorithms to facilitate their practical implementation.

In summary, the combination of SCD systems and ML techniques holds tremendous
promise for enabling high-capacity, cost-effective, and reliable optical communication
networks in the 6G era and beyond. The advancements in ML algorithms offer new avenues
for overcoming the challenges and improving the overall performance of SCD systems.
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Appendix A

Table A1. This table gives the abbreviations and their definitions used in the paper.

Abbreviation Definition Abbreviation Definition

LO Local oscillator CD Chromatic dispersion

DSP Digital signal processing IM-DD Intensity modulation and
direct detection

SE Spectral efficiency PD Photodetector
VSB Vestigial sideband DSB Double-sideband
PR Phase retrieval SSB Single-sideband

CADD Carrier-assisted differential
detection ASCD Asymmetric self-coherent

detection
SVR Stokes-vector receiver JSFR Jones-space field recovery

SCD Self-coherent detection SSBI Signal-to-signal
beating interference

ML Machine learning ADC Analog-to-digital converter
MZM Mach–Zehnder modulator NN Neural network

CNN Convolutional neural
network BPD Balanced photodetector

CSPR Carrier-to-signal power ratio PBS Polarization beam splitter
MIMO Multi-input multi-output GR Generalized receiver

QAM Quadrature amplitude
modulation NLSE Nonlinear Schrödinger

equation

ANN Artificial neural network LSTM Long short-term
memory network

RNN Recurrent neural network WDM Wavelength-division-
multiplexing

BER Bit-error-rate KK Kramers–Kronig
ReLU Rectified Linear Unit TL Transfer learning

RC Reservoir computing ROSS Recurrent optical
spectrum slicing

MZDI Mach–Zehnder delay
interferometer
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