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Abstract: This paper proposes a non-common-view axis alignment method for the alignment re-
quirements of airborne laser communication systems. The system consists of a ground transmitting
end and an airborne relay terminal. The ground transmitting end uses a camera and a pan-tilt for
image tracking, while the airborne relay end uses a two-dimensional mirror to control the beam
to achieve non-common-view axis alignment between the transmitting and receiving sides. The
working principle and process of both the transmitter and receiver of the non-common-view axis
alignment system for airborne laser communication were compared with traditional wireless optical
alignment methods. The design process of the two-dimensional mirror used in this paper is intro-
duced, the scanning trajectory of the two-dimensional mirror is simulated and analyzed according
to the beam scanning principle, and the field experiment link is set up to carry out the airborne
laser communication experiment. The experimental results show that when the link distance is 10 m,
the tracking errors of the system in the azimuth and pitch directions are 19.02 µrad and 22.35 µrad
respectively, and the amplitude of the electrical signal output by the signal detector is 84.0 mV; When
the link distance is 20 m, the tracking errors of the system in the azimuth and pitch directions are
39.66 µrad and 33.94 µrad respectively, and the amplitude of the electrical signal output by the
signal detector is 23.0 mV. Using this method, the alignment can be completed without data return,
and the establishment of the reverse link can also be realized while the transmission link is quickly
established, and there is no need for an air stability platform. The feasibility of the application of the
non-common-view axis alignment method to the airborne laser communication system is verified.

Keywords: airborne laser communication; non-common-view axis alignment; acquisition; pointing;
and tracking; two-dimensional mirror

1. Introduction

Wireless optical communication is a communication method that uses laser beams
to carry signals to transmit in free space. It has the advantages of a high transmission
rate and good security and can be applied to long-distance signal transmission, secure
communication, and other fields [1,2]. Traditional aircraft-to-ground, aircraft-to-air, and
relay communications mostly use radio frequency signals for transmission. With the devel-
opment of wireless optical communication technology and related detection technologies,
the application range of wireless optical communication technology is gradually expand-
ing [3–5]. An airborne laser communication system is a wireless optical communication
terminal carried on air platforms such as airships, drones, and aircraft. It is not only an
important part of the construction of a wireless optical communication network, but also an
important relay communication node in the communication link between satellite-ground
and ground [6]. It is easily affected by the airborne platform’s vibration and the atmo-
spheric channel’s random disturbance. The disturbance caused by this will cause the
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beam’s position to shift, and even the receiving end will lose the information on the spot,
eventually leading to the interruption of the communication link [7]. Therefore, an accurate
and fast acquisition, pointing, and tracking (APT) mechanism is needed to assist in the
establishment of airborne laser communication links [8,9].

The APT system requires high precision and continuous alignment of the beam and
can overcome the influence of mechanical vibration and the external environment on the
system [10]. Wang Fuchao designed a full tracking controller applied to fast mirrors, using
the full tracking method to effectively reduce the steady-state error of the system and
expand the control bandwidth of fast mirrors [11]; Wang Junyao and others proposed
a beam tracking method, which uses a rotating double prism for beam tracking, and
uses a fast mirror to correct the optical axis deviation of the double prism for compound
tracking [12]; Gao Lu proposed a two-dimensional optical phased array mirror structure
based on the Gires-Tournois (optical standing wave resonator) resonator. The high-speed
phase delay generated by the resonator is used to control the beam deflection angle. The
simulation results show that the structure can achieve a deflection angle of 11.2◦ [13];
Antonello and others proposed a high-precision tracking and aiming system applied to
satellite laser communication. Through indoor simulation experiments, the alignment error
value of the system was measured to be better than 10 µrad [14]; Ke Xizheng proposed
a method of alignment using a two-dimensional mirror as an actuator, and carried out
far-field experiments of 1.3 km and 10.3 km. Experimental results show that this method
can effectively reduce the tracking variance of the spot centroid [15].

This paper proposes a method to realize airborne laser communication by using a camera
and a gimbal to track targets at the transmitter on the ground and using a two-dimensional
mirror to control beam alignment at the airborne relay. The two-dimensional mirror is
scanned and captured by changing the angle of the two-dimensional mirror in the pitch and
azimuth directions, and the signal on the position sensor(PSD) is used as the feedback infor-
mation of the relay terminal for tracking, without the need for an air stabilization platform.

2. System Working Principle
2.1. System Structure

The airborne laser communication system designed in this paper mainly comprises a
signal transceiver system, an image tracking system, and a two-dimensional mirror control
system. The overall structure is shown in Figure 1.
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Figure 1. Structure diagram of airborne laser communication.

The signal transceiver system includes a signal source, laser tube, modulation driver,
transmitting antenna, APD photodetector, etc. The signal to be transmitted is loaded on
the laser by the modulation driver, and the signal light is collimated and emitted through
the transmitting antenna; the ground-side image tracking system includes a tracking
camera, a two-dimensional aiming platform, and a host computer. When the position
and attitude of the UAV deviate, the deflection angle of the gimbal can be adjusted in
real-time to control the emission direction of the beam, and realize long-distance coarse
alignment from the ground-side transmitting antenna to the airborne two-dimensional
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mirror; The two-dimensional mirror control system is located on the airborne side and
is mainly composed of a stepping motor and a subdivision driver, an optical mirror, an
embedded controller, a through-hole four-quadrant detector(4-QD), and a signal processor.
When the light beam reaches the surface of the UAV, the acquisition, pointing, and tracking
functions of the light beam are completed by driving the two-dimensional mirror, and the
precise alignment between the two-dimensional mirror and the through-hole four-quadrant
detector is realized.

2.2. Alignment Principle

Traditional wireless optical communication systems require the transmitter and re-
ceiver to be aligned on the same boresight, and the alignment principle is shown in Figure 2a.
In the wireless optical communication link, the position information of the transmitting
end and the receiving end is obtained utilizing the global position system (GPS) positioning
system, and the position coordinates are converted into the servo execution amount of the
APT system in the pitch direction and the azimuth direction, and then it is sent to the other
side through the radio frequency signal for adjustment. Before controlling the alignment
of the beam, the transmitting antenna needs to be controlled to scan due to the uncertain
region between the transmitting antenna and the receiving antenna. When a light spot
appears on the surface of the position detector (PSD) at the receiving end, the scanning is
stopped, and the position information of the light spot is fed back to the transmitting end,
and the transmitting end adjusts the deflection angle of the servo mechanism according
to the received signal to control the beam to complete the alignment. When disturbed
by atmospheric turbulence and mechanical vibration, the method of transmitting spot
position information to the transmitter is still used to control the beam for tracking. It can
be seen that, in the workflow of the traditional wireless optical APT system, the sending
and receiving parties need to continuously transmit position signals. When the distance
of the wireless optical communication link is large, it will be affected by atmospheric
turbulence in the process of signal return, which is prone to signal delay, causing the
sending and receiving parties to be unable to receive the spot position information at the
current moment in time, and eventually lead to the interruption of the wireless optical
communication link, greatly increasing the time and uncertainty required to establish the
wireless optical communication link.

In the airborne laser communication system, due to the strong mobility of the fly-
ing platform, it is impossible to establish a wireless optical communication link using
the traditional common-view axis alignment method. The method proposed in this pa-
per for non-common-view axis alignment using a two-dimensional mirror is shown in
Figure 2b. This method decomposes the traditional long-distance alignment of wireless
optical communication into two parts of the alignment system, which are the coarse align-
ment between the tracking camera and the two-dimensional mirror at the airborne end
and the fine alignment between the two-dimensional mirror and the four-quadrant de-
tector [16]. The transmitter keeps the drone always in the center of the camera’s field
of view by driving the servo mechanism. At this time, after the laser is collimated and
emitted by the transmitting antenna, it covers the surface of the airborne end, and the
long-distance coarse alignment from the ground end to the airborne end is completed.
When the airborne end receives the optical signal, the two-dimensional mirror starts to
scan and capture the program. When the light spot information appears on the PSD device,
the motor decelerates and adjusts until the light spot is located at the center of the position
detector to complete the fine alignment. Finally, the light beam is focused on the surface of
the photodetector(APD) behind the through-hole 4-QD in the form of a point light source,
the six-pointed star pattern is used to simulate the position of point light source, and the
light beam is sent back from the original optical path to the ground end for reception
through electro-optical conversion. During the alignment process, since the two can be
operated at a single end, it effectively solves the problem that the traditional alignment
method needs to transmit the position information of the sender and receiver through radio
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frequency signals, and the operation is simple and the complexity of the system is reduced.
In addition, the two-dimensional mirror has a large dynamic adjustment range, which can
quickly execute the scan capture procedure, saving capture time compared with traditional
alignment methods.
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common-view axis beam alignment.

Figure 3 shows the workflow of the airborne laser communication non-common-view
axis alignment system. Figure 3a,b are the workflows of the ground tracking system and
the airborne receiver system, respectively. The ground transmitter uses the camera to
extract the image features of the UAV and drives the gimbal to deflect according to the
change of the image feature information of the UAV, to keep the image of the UAV in the
center of the camera’s field of view. After alignment, the laser can cover the surface of the
UAV. The alignment process of the airborne end is the process of grating scanning by using
a two-dimensional mirror until a light spot appears on the surface of the four-quadrant
detector, and adjusting the motor angle to control the outgoing beam to pass through the
central through hole of the four-quadrant detector.
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Figure 3. Flow chart of APT system for airborne laser communication. (a) Transmitting terminal;
(b) Airborne terminal.

2.3. Working Principle of the APT System

In airborne laser communication systems, piezoelectric ceramic or electromagnetically
driven mirrors are often used to achieve high-precision alignment and tracking, but their
structures are complex and difficult to process, and special control boxes are required for
driving. To realize the miniaturization and light weight of the airborne end alignment
system, a two-dimensional mirror driven by a stepping motor is used as the main actuator
of the airborne end in this paper. The structure of the two-dimensional mirror is shown in
Figure 4, which consists of two two-phase hybrid stepping motors, an optical mirror, and
an optical precision turntable. By controlling the rotation of the mirror in the two directions
of pitch and azimuth, a large-scale and high-frequency dynamic adjustment can be realized,
and the rotation of 0~360◦ and 0~160◦ can be realized in the pitch direction and the azimuth
direction, respectively. At the same time, to make the angle of each step of the motor
smaller, a subdivision driver is used to subdivide the basic step angle of the stepping motor
to achieve higher alignment accuracy.
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After the emitted beam covers the surface of the airborne end, the scanning capture
procedure is performed by the two-dimensional mirror. The two-dimensional mirror can
realize the azimuth movement of −90~90◦ and the pitch movement of 0~360◦, and the
beam capture process is completed by raster scanning. The reflection principle diagram of
the two-dimensional mirror beam is shown in Figure 5. A is the incident light vector, A′ is
the beam vector reflected by the mirror, N is the normal vector of the mirror, θ1 and θ2 are
the angles of deflection of the two-dimensional mirror around axes C1 and C2, respectively,
and α is the incident angle.
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According to the reflection theorem of geometric optics, the outgoing ray A′ and the
normal vector N can be expressed as [17]:

A′ = A− 2(A · N)N (1)

Let the components of A, N, and A′ in the XYZ coordinate system be brought into
Equation (1) to obtain:

A′x = (1− 2N2
x)Ax − 2Nx Ny Ay − 2Nx Nz Az

A′y = −2Nx Ny Ax + (1− 2N2
y )Ay − 2NyNz Az

A′z = −2Nx Nz Ax − 2NyNz Ay + (1− 2N2
z )Az

(2)

According to Formula (2), reflection is a linear transformation, so Formula (1) can be
written as follows:

A′ = RA (3)

R is the reflection matrix, which can be expressed as:

R =

 1− 2N2
x −2Nx Ny −2Nx Nz

−2NyNx 1− 2N2
y −2NyNz

−2NzNx −2NzNy 1− 2N2
z

 (4)

In Formula (4), Nx, Ny, and Nz are the projections of the normal vector of the mirror
in its reference coordinates. Assuming that the distance between the reflector and the
four-quadrant detector is S, the coordinates of the spot on the plane of the four-quadrant
detector can be expressed as [15]:
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
Dx = λx

(VA + VB)− (VC + VD)

VA + VB + VC + VD
= λx

(IA + IB)− (IC + ID)

IA + IB + IC + ID
= λx

(SA + SB)− (SC + SD)

SA + SB + SC + SD

Dy = λy
(VA + VC)− (VB + VD)

VA + VB + VC + VD
= λy

(IA + IC)− (IB + ID)

IA + IB + IC + ID
= λy

(SA + SC)− (SB + SD)

SA + SB + SC + SD

(5)

According to the Formula (5), the scanning trajectory of the two-dimensional mirror is
obtained by simulation, as shown in Figure 6:
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Figure 6. Scanning trajectory of the beam emitted from a two-dimensional mirror.

The system uses the position of the light spot on the four-quadrant detector as feedback
information to adjust the pitch angle and azimuth angle of the two-dimensional mirror.
When the light spot reaches different quadrants, the position information of the light spot
is calculated according to the voltage value of each quadrant on the surface of the detector,
that is, the offset of the light spot in the x-y direction Dx, Dy, and the calculation formula of
the light spot position is shown in Formula (6) [18]:

Dx = λx
(VA + VB)− (VC + VD)

VA + VB + VC + VD

Dy = λy
(VA + VC)− (VB + VD)

VA + VB + VC + VD

(6)

In the formula, λ is a proportional coefficient, and its size is related to the energy
distribution and size of the spot. Its function is to convert the value in Formula (6) into the
distance between the spot and the center of the four-quadrant detector, and V is the voltage
value of each quadrant. After obtaining the position information of the spot, calculate the
offset of the spot from the center of the four-quadrant detector as ∆Dx, ∆Dy, and calculate
the deflection angle of the beam, as shown in Formula (7) [19,20]:

θ = λx · arctan

√
∆D2

x + ∆D2
y

d

φ = λy · arctan
∆Dx
∆Dy

(7)
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In the formula, θ the pitch angle φ is the azimuth angle, and d is the distance from
the receiving surface to the photosensitive surface of the detector. This formula expresses
the corresponding relationship between the experimental measurement value and the
actual value.

Assuming that the error angles corresponding to the azimuth direction and the pitch
direction are xi and yi respectively, for n measurements, the radial angle deviation ri and its
average value r can be expressed as:

ri =
√

x2
i + y2

i , r =
1
n

n

∑
i=1

ri (8)

Then the 3σ alignment accuracy can be expressed as:

ε = r + 3

√
1

n− 1

n

∑
i=1

(ri − r)2 (9)

3. Methods
3.1. System Composition

Figure 7 shows the structure diagram of the airborne laser communication experiment.
The ground transmitting end is composed of a 650 nm laser, signal modulator, transmit-
ting antenna, tracking camera, PC, and servo pan-tilt; the relay platform is composed of
two-dimensional mirror, motor and its driver, position sensor, photodetector, and single-
chip microcomputer controller. After the coarse alignment from the transmitting antenna
to the two-dimensional mirror, the camera is used to select the image of the UAV, and
the pitch angle and azimuth angle of the pan-tilt are adjusted according to the moving
position information of the UAV so that the beam completely covers the relay system
surface. The two-dimensional mirror executes the scan capture program until there is a
light spot on the surface of the four-quadrant detector, and then the motor slows down for
fine alignment so that the beam passes through a hole in the center of the four-quadrant
detector surface. At this time, the light beam reaches the surface of the photodetector, and
the signal light is loaded to a new laser through the electrical-optical conversion circuit,
and the optical signal is reflected to the ground receiving end through the beam splitter
prism and the two-dimensional mirror. Table 1 shows the main equipment and parameters
of the experiment.
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Table 1. Experimental equipment and parameters.

Equipment Parameters

Laser
wavelength: 650 nm

power: 80 mW

Tracking camera zoom factor: 128
pixel size: 1 pixel = 20 µm

Two-dimensional aiming gimbal
adjustment range: 0~360◦ (orientation)

−70–70◦ (pitch)

maximum load weight: 10 kg

Piezoelectric micro-motion gimbal

model: PT2 K

loading capacity: 4 kg

voltage input range: 0~10 V

driving mode: piezoelectric ceramics

resolution:0.01 µrad

Antenna aperture: 105 mm

Two-dimensional mirror
mirror surface: 60 mm

Adjustment range: −90~90◦ (orientation)
0–360◦ (pitch)

Photodetector
type: InGaAs

cut-off frequency: 30 kHz~1.5 GHz

Four-quadrant detector photosensitive surface diameter: 5.05 mm
response time: 13 ns

Figure 8 is a schematic diagram of the airborne laser communication field experiment.
The ground transmitting end and the airborne end are located on the north side and the
center of the Xi’an University of Technology playground, respectively. The experiment time
is 29 May 2023. The weather is fine, the temperature is 18 ◦C, and the northeast wind is 3–4.
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3.2. Ground End Alignment Experiment

Figure 9 is a schematic diagram of calibration and coarse alignment using the camera
and the pan-tilt, and the image position of the drone is used as the feedback information
for adjusting the gimbal rotation. Firstly, the upper computer interface selects the UAV
and the airborne terminal as calibration targets. By adjusting the deflection angle of the
pan-tilt and the zoom factor of the camera, the ground pan-tilt is driven to move to keep
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the UAV in the center of the camera field of view, and the long-axis coarse alignment
between the transmitting antenna and the two-dimensional mirror of the relay terminal is
completed. After the alignment, the laser beam can cover the surfaces of the UAV and the
relay terminal.
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Figure 9. Schematic diagram of ground terminal alignment. (a) Transmitting terminal; (b) Upper
computer interface.

After the coarse alignment is completed, tracking is performed by calculating the pixel
point deviation value between the center of mass position of the drone and the center point
of the camera’s field of view. As shown in Figure 10a,b, the tracking curves in the pitch
direction and azimuth direction of UAV during mobile flight are shown respectively. The
longitudinal axis represents the size of pixels, and the number of breakpoints is the number
of times pan-tilt adjustment. As can be seen from the figure, the azimuth was adjusted
9 times, and the pitch angle was adjusted 4 times.
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3.3. Airborne End Fine Alignment Experiment

As shown in Figure 11, it is the change of the output voltage of each quadrant of the
four-quadrant detector during the flight state of the UAV during take-off, movement, and
hovering. It can be seen from the figure that at the 0 sampling point, the voltage values
of the first and fourth quadrants are the highest, that is, after the capture is completed,
the light spots fall on the first and fourth quadrants. At sampling points 50–200, after the
motor decelerates and executes the fine alignment command, the voltage changes in each
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quadrant are relatively gentle. During the flight, the motor continuously adjusts the pitch
angle and azimuth angle to complete the tracking, and the voltage value of each quadrant
changes greatly at this stage; after the sampling point 3800, the UAV is in the hovering
stage, and the voltage value of each quadrant changes gradually.
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Figure 12 shows the variation of the voltage difference in the pitch and azimuth
direction of the through-hole four-quadrant detector, in which Figure 12a shows the voltage
difference variation curve in the azimuth direction, and Figure 12b shows the voltage
difference variation curve in the pitching direction. It can be seen from the figure that the
voltage difference is too large in the range of sampling points 0–3700. At this time, the UAV
is in the mobile flight stage, and the adjustment range of the two-dimensional mirror is
relatively large; after the sampling point of 3700, the voltage difference is close to 0. At this
time The UAV is in a hovering flight state, the adjustment range of the two-dimensional
mirror is small, and the voltage difference curve gradually tends to be stable.
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As shown in Figure 13, the spot position distribution calculated according to the
voltage difference on the four-quadrant detector has a total of 6300 data points. As shown
in Figure 14, since there is a hole in the center of the four-quadrant detector, there is no
voltage data at the hole after alignment, so there is a hole in the middle of the spot position
distribution, and the closer to the central through hole, the higher the alignment degree.
After calculating the distance from the coordinates of each spot to the center of the detector,
the pitch angle and azimuth angle errors of the two-dimensional mirror are obtained
through calculation, and the tracking error of the system is calculated to be 13.98 µrad(3σ)
according to Formula (9).

Photonics 2023, 10, x FOR PEER REVIEW  11  of  17 
 

 

this time The UAV is in a hovering flight state, the adjustment range of the two‐dimen‐

sional mirror is small, and the voltage difference curve gradually tends to be stable. 

 
 

(a)  (b) 

Figure 12. Four‐quadrant detector x‐y axis voltage change curve. (a) X‐axis direction; (b) Y‐axis di‐

rection. 

As shown in Figure 13, the spot position distribution calculated according to the volt‐

age difference on the four‐quadrant detector has a total of 6300 data points. As shown in 

Figure 14, since there is a hole in the center of the four‐quadrant detector, there is no volt‐

age data at the hole after alignment, so there is a hole in the middle of the spot position 

distribution, and the closer to the central through hole, the higher the alignment degree. 

After calculating the distance from the coordinates of each spot to the center of the detec‐

tor, the pitch angle and azimuth angle errors of the two‐dimensional mirror are obtained 

through calculation, and the tracking error of the system is calculated to be 13.98 µrad(3σ) 

according to Formula (9). 

 

Figure 13. Spot position distribution diagram. 

 

Figure 14. Align the position of the front and rear light spots (a) Before alignment; (b) After align‐

ment. 

Figure 13. Spot position distribution diagram.

Photonics 2023, 10, x FOR PEER REVIEW 11 of 17 
 

 

this time The UAV is in a hovering flight state, the adjustment range of the two-dimen-

sional mirror is small, and the voltage difference curve gradually tends to be stable. 

 
 

(a) (b) 

Figure 12. Four-quadrant detector x-y axis voltage change curve. (a) X-axis direction; (b) Y-axis di-

rection. 

As shown in Figure 13, the spot position distribution calculated according to the volt-

age difference on the four-quadrant detector has a total of 6300 data points. As shown in 

Figure 14, since there is a hole in the center of the four-quadrant detector, there is no volt-

age data at the hole after alignment, so there is a hole in the middle of the spot position 

distribution, and the closer to the central through hole, the higher the alignment degree. 

After calculating the distance from the coordinates of each spot to the center of the detec-

tor, the pitch angle and azimuth angle errors of the two-dimensional mirror are obtained 

through calculation, and the tracking error of the system is calculated to be 13.98 µrad(3σ) 

according to Formula (9). 

 

Figure 13. Spot position distribution diagram. 

 

Figure 14. Align the position of the front and rear light spots (a) Before alignment; (b) After align-

ment. 
Figure 14. Align the position of the front and rear light spots (a) Before alignment; (b) After alignment.

When the communication link distance is 10 m, the light beam is captured 10 times by
using the two-dimensional mirror on the airborne end, all of which are captured successfully
and the average capture time is 31.2 s. In the tracking process, the tracking errors of the
spot in the azimuth direction and the elevation direction of the through-hole four-quadrant
detector are calculated respectively. From the test results in Figure 15, it can be seen that
the tracking mean square error of the system in the azimuth direction is 19.02 µrad(3σ),
and the tracking mean square error in the pitch direction is 22.35 µrad(3σ).

When the communication link distance is different, the signal optical power received
by the airborne end is also different. As shown in Figure 16, when the communication link
distance is 10 m, the optical power change curve is measured by the APD at the airborne
end. It can be seen from the figure that the detected average optical power is about 6.05 µW,
and the variance of the logarithmic amplitude fluctuation of the received power is 7 × 10−7.



Photonics 2023, 10, 1037 13 of 17

Photonics 2023, 10, x FOR PEER REVIEW 12 of 17 
 

 

When the communication link distance is 10 m, the light beam is captured 10 times 

by using the two-dimensional mirror on the airborne end, all of which are captured suc-

cessfully and the average capture time is 31.2 s. In the tracking process, the tracking errors 

of the spot in the azimuth direction and the elevation direction of the through-hole four-

quadrant detector are calculated respectively. From the test results in Figure 15, it can be 

seen that the tracking mean square error of the system in the azimuth direction is 19.02 

µrad(3σ), and the tracking mean square error in the pitch direction is 22.35 µrad(3σ). 

  

(a) (b) 

  

(c) (d) 

Figure 15. Tracking error curve of 10 m field experiment. (a) Tracking error in azimuth direction; 

(b) Statistical value of tracking error in azimuth direction; (c) Tracking error in pitch direction; (d) 

Statistical value of tracking error in pitch direction. 

When the communication link distance is different, the signal optical power received 

by the airborne end is also different. As shown in Figure 16, when the communication link 

distance is 10 m, the optical power change curve is measured by the APD at the airborne 

end. It can be seen from the figure that the detected average optical power is about 6.05 

µW, and the variance of the logarithmic amplitude fluctuation of the received power is 7 

× 10−7. 

Figure 15. Tracking error curve of 10 m field experiment. (a) Tracking error in azimuth direction;
(b) Statistical value of tracking error in azimuth direction; (c) Tracking error in pitch direction;
(d) Statistical value of tracking error in pitch direction.

Photonics 2023, 10, x FOR PEER REVIEW 13 of 17 
 

 

R
ec

ei
v
in

g
 o

p
ti

ca
l 
p

o
w

er
/m

W

Sampling Points

0 1000 2000 3000 4000
0

1

2

3

4

5

6

7

8

 

1 2 3 7

30

5

15

0

25

P
ro

b
a
b
il

it
y
 v

al
u
e/

%

Receiving optical power/mW

4 5 6 8

20

10

0

 

(a) (b) 

Figure 16. The change curve and distribution of received optical power at the airborne end of the 10 

m field experiment. (a) The change curve of optical power; (b) The statistical value of optical power. 

When the communication link distance is 10 m, the waveform of the transmitted sig-

nal and the waveform output by the detector at the ground end are shown in Figure 17a,b. 

The laser power at the transmitting end is 80 mW, the signal amplitude is 300 mV, the 

signal frequency is 5 MHz/s, and the waveform amplitude output by the detector is 84.0 

mV. 

  
(a) (b) 

Figure 17. Output waveform of the detector at a distance of 10 m. (a) Transmission signal; (b) De-

tection signal. 

When the communication link distance is 20 m, the tracking errors of the spot in the 

azimuth and elevation directions of the through-hole four-quadrant detector are calcu-

lated respectively. From the test results in Figure 18, it can be seen that the tracking mean 

square error of the system in the azimuth direction is 39.66 µrad(3σ), and the tracking 

mean square error in the pitch direction is 33.94 µrad(3σ). 

  

Figure 16. The change curve and distribution of received optical power at the airborne end of the
10 m field experiment. (a) The change curve of optical power; (b) The statistical value of optical power.

When the communication link distance is 10 m, the waveform of the transmitted signal
and the waveform output by the detector at the ground end are shown in Figure 17a,b. The
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laser power at the transmitting end is 80 mW, the signal amplitude is 300 mV, the signal
frequency is 5 MHz/s, and the waveform amplitude output by the detector is 84.0 mV.
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Figure 17. Output waveform of the detector at a distance of 10 m. (a) Transmission signal;
(b) Detection signal.

When the communication link distance is 20 m, the tracking errors of the spot in the
azimuth and elevation directions of the through-hole four-quadrant detector are calculated
respectively. From the test results in Figure 18, it can be seen that the tracking mean square
error of the system in the azimuth direction is 39.66 µrad(3σ), and the tracking mean square
error in the pitch direction is 33.94 µrad(3σ).
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When the communication link distance is 20 m, the optical power change curve
measured by the APD at the airborne end is shown in Figure 19. It can be seen from the
figure that the detected average optical power is about 2.63 µW, and the variance of the
logarithmic amplitude fluctuation of the received power is 8.04 × 10−13.
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The waveform of the transmitting signal and the waveform output by the detector
on the ground are shown in Figure 20a,b. The power of the laser at the transmitting
end is 80 mW, the signal amplitude is 300 mV, the signal frequency is 5 MHz/s, and the
communication link distance is 20 m, the waveform amplitude of the detector output is
23.0 mV.

Photonics 2023, 10, x FOR PEER REVIEW  15  of  17 
 

 

   
(a)  (b) 

Figure 20. Output waveform of the detector at a distance of 20 m. (a) Transmission signal; (b) De‐

tection signal. 

In non‐common‐view axis communication, light does not propagate along an ideal 

straight‐line path, but undergoes factors such as refraction and scattering. Therefore, as 

the distance of the communication link increases, when the signal reaches the receiving 

end, it will be affected by factors such as the external environment and optical devices, 

and part of the energy will be lost during transmission, so the received optical power will 

decrease, resulting in a decrease in the quality of airborne laser communication and an 

increase in the tracking error of the system. 

3.4. Discussion 

The  traditional wireless optical communication system  requires  the  transmitter  to 

keep the same line of sight alignment with the receiver. When the distance of the commu‐

nication link is large, it will produce signal delay and increase time and uncertainty. The 

method proposed in this paper changes the traditional joint control of the transmitter and 

the airborne side to achieve alignment and transforms it into a situation where both the 

transmitter and receiver can be independently controlled to achieve alignment, which is 

more flexible. When testing the capture performance, alignment performance, and spot 

positioning performance of the airborne system, it is found that, compared with the tra‐

ditional method of common‐view axis, it was greatly improved, and the problem of long 

time‐consuming  beam  alignment  in  traditional  wireless  optical  communication  was 

solved. Non‐common‐view axis alignment system is an important technology used in air‐

borne laser communication, which allows a certain angle deviation between transmitter 

and receiver in the process of optical communication. This is especially suitable for UAVs, 

aircraft, and other reasons that may cause orientation changes due to motion, weather, 

and other reasons. Based on the researIh in this paper, there are still some problems to be 

further solved and perfected. Numerical simulation should be carried out to analyze the 

maximum communication link distance under this system, which is helpful in analyzing 

the effect of airborne communication under larger distances. This experiment only real‐

ized the transmission of square wave signals. In the next step, the transmission of voice, 

video, and other signals can be realized by adding cameras, encoders/decoders, and other 

equipment, and the applicability will be strengthened and applicable to more fields. And 

the test environment is carried out under weak turbulent conditions, without considering 

the impact on the airborne laser communication system under strong turbulent weather 

conditions. In the later stage, the impact on the APT system can also be studied by com‐

paring the experimental results under different weather conditions, and more stable com‐

munication can be achieved through technologies and algorithms such as adaptive optics, 

wavefront distortion correction, and anti‐interference design. 

   

Figure 20. Output waveform of the detector at a distance of 20 m. (a) Transmission signal;
(b) Detection signal.

In non-common-view axis communication, light does not propagate along an ideal
straight-line path, but undergoes factors such as refraction and scattering. Therefore, as the
distance of the communication link increases, when the signal reaches the receiving end, it
will be affected by factors such as the external environment and optical devices, and part of
the energy will be lost during transmission, so the received optical power will decrease,
resulting in a decrease in the quality of airborne laser communication and an increase in
the tracking error of the system.
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3.4. Discussion

The traditional wireless optical communication system requires the transmitter to keep
the same line of sight alignment with the receiver. When the distance of the communication
link is large, it will produce signal delay and increase time and uncertainty. The method
proposed in this paper changes the traditional joint control of the transmitter and the
airborne side to achieve alignment and transforms it into a situation where both the
transmitter and receiver can be independently controlled to achieve alignment, which
is more flexible. When testing the capture performance, alignment performance, and
spot positioning performance of the airborne system, it is found that, compared with the
traditional method of common-view axis, it was greatly improved, and the problem of
long time-consuming beam alignment in traditional wireless optical communication was
solved. Non-common-view axis alignment system is an important technology used in
airborne laser communication, which allows a certain angle deviation between transmitter
and receiver in the process of optical communication. This is especially suitable for UAVs,
aircraft, and other reasons that may cause orientation changes due to motion, weather,
and other reasons. Based on the researIh in this paper, there are still some problems to be
further solved and perfected. Numerical simulation should be carried out to analyze the
maximum communication link distance under this system, which is helpful in analyzing
the effect of airborne communication under larger distances. This experiment only realized
the transmission of square wave signals. In the next step, the transmission of voice,
video, and other signals can be realized by adding cameras, encoders/decoders, and other
equipment, and the applicability will be strengthened and applicable to more fields. And
the test environment is carried out under weak turbulent conditions, without considering
the impact on the airborne laser communication system under strong turbulent weather
conditions. In the later stage, the impact on the APT system can also be studied by
comparing the experimental results under different weather conditions, and more stable
communication can be achieved through technologies and algorithms such as adaptive
optics, wavefront distortion correction, and anti-interference design.

4. Conclusions

In this paper, a non-common-view axis alignment system is designed to meet the align-
ment requirements of airborne laser communication. Among them, the coarse alignment
of the ground transmitter can ensure that the transmitted beam covers the drone, and the
airborne terminal can control the beam to achieve alignment by adjusting the pitch angle
and azimuth angle of the two-dimensional mirror, and the sending and receiving parties
do not need to transmit data back. Field experiments were carried out at link distances
of 10 m and 20 m respectively, the experimental results show that the tracking accuracy
of the system is 13.98 µrad, the signal amplitude at the receiving end is 23.0 mV, and the
relative error of spot position detection is 0.97%, which is 36.6% higher than the traditional
positioning algorithm. The feasibility of applying the non-common-view axis alignment
method to the airborne laser communication system was verified.
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